
A Survey of Testing Context-aware Software: Challenges
and Resolution

Songhui Yue 1, Songqing Yue2, and Randy Smith 1

1Department of Computer Science, University of Alabama, Tuscaloosa, AL, USA
Department of Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO, USA

Abstract
Testing is an essential method to ensure the quality of
software. Research of testing context-aware software is
gaining in importance with the rapid development of context-
aware software and the increasing needs to ensure their
quality. Context-aware abilities bring new challenges to
testing context-aware software. This paper investigates this
from the perspective of four categories of challenges: context
data, adequacy criteria, adaptation and testing execution. We
also describe approaches current researchers are using to
solve these challenges. Our contributions in this paper
include the analysis of the relationships between the identified
challenges and an ontology diagram that depicts these
challenges and relationships, which may benefit the
exploration of future research in related areas.

Keywords: Context-aware, Testing, Quality, Challenges,
Resolution

1 Introduction
 Nowadays, our electronic devices become more powerful
in both computing and obtaining information from the
environment. Many new devices employ a multi-core
processor, and with the technological advances in networked
computing environments, new computing paradigms such as
cloud computing have been proposed and adopted [8].
Consumers with mobile devices can access data from a
“Cloud” at any time in a fast speed wherever network
connection is available. Particularly, a modern smart phone
can be equipped with as many as fourteen sensors [9], such as
proximity sensor, ambient light sensor, accelerometer,
magnetometer, and gyroscopic sensor. As a result, a large
variety of information could be used as context to enrich the
functionality of software applications. The extra abilities of
modern devices could be used by applications to process more
information for benefits of users, and this advantage makes
context-aware become more and more popular in ubiquitous
computing area.

 A variety of context-aware applications have already
been developed, such as location-aware systems, hospital
information-aware systems, office-aware applications, and
home-aware applications [4][5][6]. These applications are
deployed on different platforms, such as mobile applications,
web-based applications [10] and embedded applications.
Plenty of concepts and components were introduced for

facilitating the development of context-aware software, such
as context, context-aware middleware, and adaptation rule.
They provide software with context-aware abilities and
meantime bring new challenges to testing, thus should be
considered thoroughly. We will discuss these concepts in
detail in section 2.

 The following sections are organized as follows: Section
2 introduces some key concepts as the background for
understanding our study. Section 3 describes the four
categories of challenges we identify from our survey and
various approaches to solving them. Section 4 analyzes the
relationship between the areas inspired by the challenges and
Section 5 serves as the conclusion.

2 Background
 This section provides detailed explanation of important
concepts that serve as the basis for understanding testing
context-aware software.

2.1 Context
 The context definitions given by researchers are slightly
different from each other because of their different
understanding or application of the term. Schilit and Theimer
[14] first introduced “context-aware” in their work and
defined context as location, identities of nearby people and
objects and changes to those objects (1994). Brown [15]
defined context as a combination of elements of the user’s
environment that the computer knows about (1996). Dey et al.
[16] defined context as the user information and user’s
changing location, the changing objects in the environment,
and the familiarity with the environment (1998).

 Based on all the prior attempts to define context, Dey &
Abowd (2000) [17] provided a comprehensive definition of
context which is used by most of the current related studies as
“any information that can be used to characterize the
situation of entities (i.e. whether a person, place or object)
that are considered relevant to the interaction between a user
and an application, including the user and the application
themselves. Context is typically the location, identity and state
of people, groups and computational and physical objects.”

 In a context-aware application, context data can be
retrieved with the assistance of hardware or software. For
location based context-aware software, context information

102 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

contains discrete data to mark the locations, which are usually
derived from the hardware level [19]. Sensors are widely
utilized to capture changing contextual data and then pass
them to the software [18]. Context data may also be generated
from the software level. For instance, contextual information
can be collected from other applications running in the same
or related devices [18].

2.2 Context-aware Middleware
 Context-aware middleware is widely used for facilitating
development and execution of context-aware software [13].
Middleware refers to software systems, which provide an
abstraction and mechanisms between network operating
system layer and applications layer [20] [21]. Researchers
have developed various middleware systems for building and
rapidly prototyping context-aware services [22] [23]. As the
work in [24] suggests, typical middleware architecture for
developing context-aware software contains two key
components: context manager and adaptation manager.
Context manager captures and manages context from
surroundings, and pushes the context changes to adaptation
manager. Adaptation manager is responsible for reasoning on
the impact of context changes and then choosing proper
reactions for applications behaviors.

2.3 Context-aware Adaptation
 Context-aware adaptation refers to the ability of
computing systems to adapt their behaviors or structures to
highly dynamic environments without explicit intervention
from users, with the ultimate aim of improving the user
experience of these computing systems [35]. Context can be
used by software through triggering the context adaptation
rules. Adaptation rules, which are usually maintained,
evaluated and applied by adaptation manager of a context-
aware system, define a significant portion of an application’s
behavior [13]. We can use an example of a car system to
illustrate how an adaptation rule works. Suppose a car
installed with an autonomous-driving system (ADS) needs to
change lanes. The adaptation rules in ADS need to assure that
the car can take this action only if the current context is safe
for changing lanes. There should be some additional rules to
define what is safe in a real driving environment, which ADS
can use to check the safety. If ADS knows the context is safe,
it will choose a way to react according to some other rules:
changing to left lane or changing to right lane, and in what
speed.

2.4 Boundary testing
 Boundary testing is an important traditional testing
technique, which can also be applied to testing context-aware
software. With boundary value testing, test cases are designed
to take extremes of input domain. The extremes include
values of maximum, minimum, inside/outside boundaries,
typical values, error values, and etc. New challenges emerge
when boundary testing is used in testing context-aware
software, which may require extra attention.

3 Challenges in Testing Context-
aware Software
 Context-aware capacity imposes many new challenges in
developing and testing applications that support context-
awareness. After investigating the state of the art in this area,
we have identified four main categories of challenges in
testing context-aware software: context source, adequacy
criteria, adaptation and testing execution. In this section, we
provide detailed description for challenges in each category.

3.1 Context
 Wang et al. [7] argue that the added capabilities of
context-awareness introduce a distinct input space. Since
context changes can affect software behavior at any point
during the execution, context as testing data should be well
studied and selected. However, context data retrieved from
sensors usually have such characteristics as being inaccurate,
inconsistent, and continuous which may increase the difficulty
in selecting testing data. In this subsection, we mainly discuss
the features of inaccuracy and inconsistency in context data
and briefly introduce how continuous context may affect
boundary testing.

3.1.1 Context Inaccuracy
 Sensor data can be inaccurate [25]. Such data should be
well studied before using for testing. Traditional testing
methods usually use accurate values as test cases. However,
for testing context-aware applications, especially those
obtaining data directly from sensors, it is reasonable for
testing engineers to question the reliability of the data.

 Vaninha et al. [25] illustrate the relationships between
the context sources (sensors or software) and defect patterns.
They show that context sources are closely related to faults of
several types: incompleteness, inconsistency, sensor noise,
slow sensing, granularity mismatch, problematic rule logic,
and overlapping sensors. Each fault type is caused by one ore
more failures in context sources, such a Camera, GPS, or
WiFi. Table 1 (borrowed from [25]) shows the relationship
between context sources and fault types, e.g., ambiguity, as
one form of incomplete, may be caused by errors in the
context source of RFID/NFC, QR-CODE or Clock/Alarm.

 The problem of inaccuracy in context data can cause a
high-level defect called context inconsistency, which may
relate to multiple context sources or is a defect in
interpretation from context [25].

3.1.2 Context Inconsistency
 Context inconsistency occurs when there is at least one
contradiction in a computation task’s context [27]. It can be
caused by sensor errors or sensor data inaccuracy [11] [12]
[25] [26]. Asynchronous updating of context information can
also cause the same problem [13]. As a result of the possible

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 103

ISBN: 1-60132-446-4, CSREA Press ©

Table 1. Context-Sources in Combination with Defect Patterns [25]

Context-Source

Incomplete Sensor Noise

Slow Sensing

Overlapping
Sensors

U
na

va
ila

bi
lit

y

N
ot

 In
te

rp
re

ta
bl

e

A
m

bi
gu

ity

In
co

rr
ec

tn
es

s

Fa
ls

e
R

ea
di

ng

In
st

ab
ili

ty

U
nr

el
ia

bi
lit

y

O
ut

-o
f-

D
at

en
es

s

W
ro

ng
 In

te
rp

re
ta

tio
n

C
on

cu
rr

en
t V

al
ue

s

U
np

re
di

ct
ab

le

Accelerometer X X X X X
Wi-Fi X X X X X
Camera X X X X
RFID/NFC X X X X X
QR-Code X X X X X
GPS X X X X X X
Light Sensor X X X X X
Clock/Alarm X X X X
Calendar X X X X X
Gyroscope X X X

inconsistency of context, the application logic that rely on the
context can lead to wrong behaviors or execution errors.

 We can illustrate context contradiction using the WiFi
access point (WAP) application where WAP can be used to
detect the location of a device connected to it [11]. Suppose in
a location identification service, WAP installed in each room
of a building is supposed to detect the location of a person
who is wearing a smart device. The smart device has a unique
identification for each person. Context inconsistency may
happen in the following situation: if WAP S1 installed in
room R1 detects person P and claims that P is in R1 now and
meanwhile WAP S2 embedded in room R2 detects the same
person P and claims P is in R2. This type of inconsistency can
happen in the following scenarios: rooms R1 and R2 are near
each other or they are in the same coordinates of nearby floor.

 Context-aware applications can get raw data from a
single sensor or several sensors, and they can also get
synthesized context data from middleware [29], which
collects data from sensors as well. Raw data from a single
sensor have great opportunities to exhibit inconsistency
problems, however, data from a middleware, which does not
apply consistency checking, may also experience
inconsistency problems.

 Chang et al. [27] try to solve the inconsistency problem
using a framework for realizing dynamic context consistency
management. Based on a semantic matching and
inconsistency-triggering model, the framework can detect
inconsistency problems. The framework also applies

inconsistency resolution with proactive actions to context
sources.

3.1.3 Continuous Context
 Continuous context is used in many context-aware
applications [29]. Challenges may arise when applying
boundary testing in a continuous context. A straightforward
way of modeling continuous context is to directly convert it
into discrete one by dividing it into different time windows
[29] [32]. Hidasi et al. [32] demonstrate that much
information will be lost if such modeling approach is used.
This missing information can be the boundary values, which
will greatly affect the effectiveness of testing with the
technique of boundary value analysis. To build better models
for continuous context, Hidasis et al. propose fuzzy modeling
approaches. The fuzzy modeling method advocates that
context-state is not only associated with the interval it belongs
to, but is also influenced by its relative location in the interval
and neighboring intervals. Thus, a better understanding of the
event or context-state with respect to a specific interval can be
achieved, in which way the information loss of boundary
values can be complemented.

 For context data collection, Chen et al. [31] define
snapshot as the union of all sensing values at a particular
timestamp. The act of collecting multiple continuous
snapshots is called continuous data collection (CDC) [30].
Their work focuses on challenges of network capacity, while
Nath’s [29] work concentrates on reducing sensing cost using
a middleware approach when continuous context sensing is
required.

104 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

3.2 Adequacy Criteria
 Testing adequacy criterion is usually defined as a rule or
a collection of rules a test set should satisfy [36]. To measure
how well a program is examined by a test suite, usually one or
more criteria are used. A variety of testing adequacy criteria
have been developed for traditional testing while only a few
are suitable for testing context-aware software. According to
the work of Lu et al. [28], there are three kinds of obstacles
that hinder the effective application of standard data flow
testing criteria to testing Context-aware Middleware-Centric
(CM-Centric) software, namely,

1) Context-aware faults: faults in the triggering
logics in the middleware;
2) Environmental interplay: environmental updates
may happen anytime, and test set should be updated
in time accordingly;
3) Context-aware control flow: it is difficult to
enumerate every control flow trace of context
changing for some situations.

 Recent research is using special approaches to generate
testing criteria for context-aware software [26] [28]. For
instance, Lu et al. [28] have applied a data flow method to
generate adequacy criteria for testing middleware-centric
context-aware programs. Different from traditional variables,
a context variable can be defined and updated via either an
assignment or an environmental update. Therefore, a new
definition of “definition (DEF) of variables” and “usages
(USES) of variables” are given, as well as “update-use
occurrences of variables”, which refers to an occurrences of a
context definition due to sensing of environmental contexts
and a context use. Imitating the conventional def-use (DU)
associations, the paper provides definitions of def-use
associations for CM-Centric programs, as well as a definition
for the pairwise DU associations. Using the defined data flow
associations, they generate novel test adequacy criteria to
measure the quality of a test set for a CM-centric program.

3.3 Adaptation
 Adaptation is the core process of using context for
computing in context-aware software. In this subsection, we
introduce testing challenges of context-aware software in
adaptation activities. We explain the challenges in two
perspectives: Erroneous adaptation rules and continuous
adaptation.

 Adaptation rules can be erroneous. Realizing that
adaptation rules play an important portion in middleware
based context-aware applications, the work of Sama et al. [13]
is focused on fault detection in adaptation rules. In their
approach, detection is driven by the requirement that the rules
and its finite state machine satisfy the following properties:
Determinism, State Liveness, Rule Liveness, Stability,
Reachability. For example, determinism requires that for each
state of the finite state machine and each possible assignment
of values to the context variables in that state, the assignment
of the value can only trigger at most one rule.

 Continuous adaptation makes it hard to identify which
adaptation rule have caused the faults, so it is difficult to set
up an effective test oracle [33]. Xu et al. [33] suggest that for
context-aware applications, the adaptation to the
environmental changes may contain defects when the
complexity of modeling all environmental changes is beyond
a developer’s ability. Such defects can cause failures to the
adaptation and result in application crash or freezing. More
importantly, they argue that tracking an obvious failure of the
system back to the root cause in adaptation is generally
difficult [33]. The reasons are as follows. Firstly, a failure is
usually a consequence of multiply adaptations, and it is
difficult to set up an effective test oracle. Secondly, when a
failure happens, it is hard to collect all the context data
because some of the data are from outside sensors. Thirdly, it
is hard to repeat an observed failure. In their work, they
propose a novel approach, called ADAM (adaptation
modeling), to assist identifying defects in the context-aware
adaptation.

3.4 Testing Execution
 Testing execution refers to the process of executing a test
plan, in which all the challenges mentioned in above
categories should be considered. It not only needs to consider
making test plans to resolve aforementioned challenges, but
also to realize them by creating novel tools or mechanisms. In
this subsection, we discuss the challenges of generating
context for testing and introduce an open topic that new
mechanisms are necessary for facilitating testing execution.

3.4.1 Context Testing Data Generation
 Context can be complex and plenty of work has
concentrated on context testing data generation. Two
approaches can be used to provide context test information:
real world testing and simulator testing. Real world testing
means to evaluate an application in real devices with multiple
sensors and network conditions. Repeated real-world testing
can be expensive in time and effort, sometimes even
infeasible when context and environment are complex, e.g.
aerospace. However, real-world testing is still highly
recommended before the acceptance or commercialization of
an application.

 Simulator testing can be an alternative when real-world
testing is expensive or unpractical, and it is a frequently used
approach [2] [3] [18] [34]. Designers need a set of models
and tools that aim to achieve the objective of “design for
reality”. In real world, as we have discussed, context derived
from sensors can be inaccurate, inconsistent, and continuous.
Besides, sensor reading and network connections may
strongly depend on the providers of sensors and networks.
Thus it is very challengeable to build a well-equipped
simulator. Eleanor et al. [18] propose a testing platform for
the user-centered design and evaluation of context-aware
services by using a 3D virtual reality simulation to show the
environment to users and generate the simulated
environment’s context. They recognize that to simulate the
sensors is very difficult.

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 105

ISBN: 1-60132-446-4, CSREA Press ©

3.4.2 Adoption of New Mechanism
 Some new mechanisms have been adopted to facilitate
context-aware software testing. Griebe et al. [1] use model
transformation approach on context-enriched design-time
system models to generate platform specific and technology
specific test cases. For fulfilling testing criteria, Wang et al. [7]
use a component of Context Interleave Generator to form
potential context interleaving that may be of value a context-
coverage criterion requires.

 When an observed failure happens, repeating it is a
common method to track to its original defect. Collecting all
the runtime information can help to achieve this purpose.
However, when data is from outside sensors, the task can be
difficult [33]. Asynchronous updating of context information
can also lead to inconsistencies between external states and
internal states. To our best knowledge, these problems have
not been thoroughly discussed and new methods for resolving
them needs to be explored.

4 Relationships among Challenges
 In this section we give our analysis of the relationship
among the four identified categories of challenges. As shown
in Figure 1, an ontology diagram is built to illustrate these
challenges and their relationships.

 There are two outstanding features in context testing data,
data defects and being continuous, which greatly affect the
generation and usage of testing data. Testing criteria are used

to evaluate how well software can be tested. The criteria can
be used to direct testing data generation and usage, and are
also related to adaptation and testing execution. Adaptation
can be erroneous and continuous. It should consider context-
testing data because continuous context can affect the
adaptation as discussed in section 3. Testing execution should
not only consider all the challenges from aforementioned
categories, but it also needs to consider new mechanisms for
implementation of testing plans, e. g., collecting run time data.

5 Conclusion and Future Work
 In this paper, we study the challenges of testing context-
aware software, divide them into four categories and present
the solutions current researchers use to overcome those
challenges. After analyzing the relationship among the
challenges of the four categories, we developed an ontology
diagram to represent the challenges and their relationships. As
far as we know, there is no automatic testing framework that
considers all of the above challenges. We are currently
building such a framework as an execution platform to ease
the difficulty of testing context aware software. We will
concentrate on addressing the challenges mentioned in the
category of testing execution. Since context plays an
important part in assuring the quality of context-aware
software, we also plan to collect data from context-aware
software testing processes and try to find the fault patterns
that lead to system error or failure with respect to data
inconsistency and adaptation.

Figure 1: The ontology of identified testing challenges and their relationships

106 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

References
[1] Tobias Griebe, Volker Gruhn. “A model-based approach

to test automation for context-aware mobile applications”.
In Proceedings of the 29th Annual ACM Symposium on
Applied Computing (SAC '14). ACM, New York, NY,
USA, 420-427. 2014

[2] Vaninha Vieira, Konstantin Holl, and Michael Hassel. “A
context simulator as testing support for mobile apps”. In
Proceedings of the 30th Annual ACM Symposium on
Applied Computing (SAC '15). ACM, New York, NY,
USA, 535-541. 2015

[3] Minsu Jang, Jaehong Kim, Joo-Chan Sohn. "Simulation
framework for testing context-aware ubiquitous
applications" ICACT 2005. The 7th International
Conference on Advanced Communication Technology,
vol.2, no., pp.1337-1340, 0-0 0. 2005

[4] Hao Yan and Ted Selker. “Context-aware office
assistant”. In Proceedings of the 5th international
conference on Intelligent user interfaces (IUI '00). ACM,
New York, NY, USA, 276-279. 2000

[5] Sven Meyer and Andry Rakotonirainy. “A survey of
research on context-aware homes”. In Proceedings of the
Australasian information security workshop conference
on ACSW frontiers 2003 - Volume 21 (ACSW Frontiers
'03), Chris Johnson, Paul Montague, and Chris Steketee
(Eds.), Vol. 21. Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 159-168. 2003

[6] Matthias Baldauf, Schahram Dustdar, and Florian
Rosenberg. “A survey on context-aware systems”. Int. J.
Ad Hoc Ubiquitous Comput. 2, 4 (June 2007), 263-277.
2007

[7] Zhimin Wang, Sebastian Elbaum, David Rosenblum.
"Automated Generation of Context-Aware Tests" ICSE
2007. 29th International Conference on Software
Engineering, vol., no., pp.406,415, 20-26. 2007

[8] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal.
"Market-Oriented Cloud Computing: Vision, Hype, and
Reality for Delivering IT Services as Computing
Utilities" HPCC '08. 10th IEEE International Conference
on High Performance Computing and Communications,
vol., no., pp.5-13, 25-27. 2008

[9] https://blogs.synopsys.com/configurablethoughts/2012/05
/sensing-your-world/

[10] Stefano Ceri, Florian Daniel, Maristella Matera, and
Federico M. Facca. “Model-driven development of
context-aware Web applications”. ACM Trans. Internet
Technol. 7, 1, Article 2 . 2007

[11] Dik Lun Lee, Qiuxia Chen. “A model-based WiFi
localization method”. In Proceedings of the 2nd
international conference on Scalable information systems
(InfoScale '07). ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering),
ICST, Brussels, Belgium, Belgium, Article 40 , 7 pages.
2007

[12] Jalal Mahmud, Jeffrey Nichols, and Clemens Drews.
“Home Location Identification of Twitter Users”. ACM

Trans. Intell. Syst. Technol. 5, 3, Article 47, 21 pages.
2014

[13] Michele Sama, David S. Rosenblum, Zhimin Wang, and
Sebastian Elbaum. “Model-based fault detection in
context-aware adaptive applications”. In Proceedings of
the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering (SIGSOFT '08/FSE-
16). ACM, New York, NY, USA, 261-271. 2008

[14] Bill N. Schilit, Marvin M. Theimer, “Disseminating
Active Map Information to Mobile Hosts”. IEEE
Network, 8(5) 22-32. 1994

[15] Brown, P.J. “The Stick-e Document: a Framework for
Creating Context-Aware Applications”. Electronic
Publishing ’96 259-272. 1996

[16] Dey, A.K., Abowd, G.D., Wood, A. “CyberDesk: A
Framework for Providing Self-Integrating Context-Aware
Services”. Knowledge-Based Systems, 11 3-13. 1999

[17] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel
Davies, Mark Smith, Pete Steggles. “Towards a Better
Understanding of Context and Context-Awareness”.
HUC '99: Proceedings of the 1st international symposium
on Handheld and Ubiquitous Computing. Publisher:
Springer-Verlag. September 1999

[18] Eleanor O'Neill, David Lewis, Kris McGlinn, and Simon
Dobson. “Rapid user-centred evaluation for context-
aware systems”. In Proceedings of the 13th international
conference on Interactive systems: Design, specification,
and verification (DSVIS'06), Gavin Doherty and Ann
Blandford (Eds.). Springer-Verlag, Berlin, Heidelberg,
220-233. 2006

[19] Matthias Baldauf, Schahram Dustdar, and Florian
Rosenberg. “A survey on context-aware systems”. Int. J.
Ad Hoc Ubiquitous Comput. 2, 4, 263-277. June 2007

[20] Licia Capra, Wolfgang Emmerich, Cecilia Mascolo.
"CARISMA: context-aware reflective middleware system
for mobile applications". IEEE Transactions on Software
Engineering, vol.29, no.10, pp.929,945, Oct. 2003

[21] Kristian Ellebæk Kjær. “A survey of context-aware
middleware”. In Proceedings of the 25th conference on
IASTED International Multi-Conference: Software
Engineering (SE'07), W. Hasselbring (Ed.). ACTA Press,
Anaheim, CA, USA, 148-155. 2007

[22] Tao Gu, Hung Keng Pung, Da Qing Zhang, “A service‐
oriented middleware for building context‐aware services”,
Journal of Network and Computer Applications, Volume
28, Issue 1, Pages 1-18, ISSN 1084-8045. January 2005

[23] Qin, Weijun; Shi, Yuanchun; Suo, Yue, “Ontology-based
context-aware middleware for smart spaces”. Tsinghua
Science and Technology , vol.12, no.6, pp.707,713, Dec.
2007

[24] Di Zheng; Hang Yan; Jun Wang, “Research of the
Middleware Based Quality Management for Context-
Aware Pervasive Applications”. 2011 International
Conference on Computer and Management (CAMAN),
vol., no., pp.1,4, 19-21. May 2011

[25] Vaninha Vieira, Konstantin Holl, and Michael Hassel. “A
context simulator as testing support for mobile apps”. In
Proceedings of the 30th Annual ACM Symposium on

Int'l Conf. Software Eng. Research and Practice | SERP'16 | 107

ISBN: 1-60132-446-4, CSREA Press ©

Applied Computing (SAC '15). ACM, New York, NY,
USA, 535-541. 2015

[26] Heng Lu, Chan W.K., Tse T.H.. “Testing pervasive
software in the presence of context inconsistency
resolution services”. ICSE '08. ACM/IEEE 30th
International Conference on Software Engineering, vol.,
no., pp.61,70, 10-18 May 2008

[27] Chang Xu and S. C. Cheung. “Inconsistency detection
and resolution for contextaware middleware support”. In
Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software
engineering (ESEC/FSE-13). ACM, New York, NY,
USA, 336-345. 2005

[28] Heng Lu, W. K. Chan, T. H. Tse. “Testing context-aware
middleware-centric programs: a data flow approach and
an RFID-based experimentation”. SIGSOFT '06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering.
November 2006

[29] Suman Nath. “ACE: exploiting correlation for energy-
efficient and continuous context sensing”. In Proceedings
of the 10th international conference on Mobile systems,
applications, and services (MobiSys '12). ACM, New
York, NY, USA, 29-42. 2012

[30] Shouling Ji, Jing (Selena) He, A. Selcuk Uluagac,
Raheem Beyah, and Yingshu Li. “Cell-based snapshot
and continuous data collection in wireless sensor
networks”. ACM Trans. Sen. Netw. 9, 4, Article 47 (July
2013), 29 pages. 2013

[31] Siyuan Chen, Shaojie Tang, Minsu Huang, Yu Wang.
“Capacity of Data Collection in Arbitrary Wireless
Sensor Networks” in INFOCOM, 2010 Proceedings
IEEE , vol., no., pp.1-5, 14-19. March 2010

[32] Balázs Hidasi and Domonkos Tikk. “Approximate
modeling of continuous context in factorization
algorithms”. In Proceedings of the 4th Workshop on
Context-Awareness in Retrieval and
Recommendation (CARR '14). ACM, New York, NY,
USA, 3-9. 2014

[33] Chang Xu, S.C. Cheung, Xiaoxing Ma, Chun Cao, Jian
Lu. “Adam: Identifying defects in context-aware
adaptation”. Journal of Systems and Software, Volume 85,
Issue 12, Pages 2812-2828, ISSN 0164-1212. December
2012

[34] Stefan Taranu and Jens Tiemann. “General method for
testing context aware applications”. In Proceedings of the
6th international workshop on Managing ubiquitous
communications and services (MUCS '09). ACM, New
York, NY, USA, 3-8. 2009

[35] Edwin J.Y. Wei, Alvin T.S. Chan. “CAMPUS: A
middleware for automated context-aware adaptation
decision making at run time”. Pervasive and Mobile
Computing, Volume 9, Issue 1, Pages 35-56, ISSN 1574-
1192. February 2013

[36] Paul Ammann and Jeff Offutt. “Introduction to software
testing”. Cambridge University Press. 2008

108 Int'l Conf. Software Eng. Research and Practice | SERP'16 |

ISBN: 1-60132-446-4, CSREA Press ©

