
Acceleration of Computational Fluid Dynamics Analysis
by using Multiple GPUs

Hyungdo Lee1, Bongjae Kim2, Kyounghak Lee3, Hyedong Jung1

1Embedded and Software Research Center, Korea Electronics Technology Institute, Korea
2Department of Computer Science and Engineering, Sun Moon University, Korea

3IACF Namseoul University, Korea
joytop88@keti.re.kr1, bjkim@sunmoon.ac.kr2, khlee@nsu.ac.kr3, hudson@keti.re.kr1

Abstract - GPU-based computing is widely used in various
computing fields. In case of Computational Fluid Dynamics
(CFD), there are computation intensive iterative solvers.
Iterative solvers are bottlenecks of CFD. Recently, CFDs
require high-accuracy and high-resolution than before. By
above reason, the problem size of CFDs continues to grow
and the performance of CFDs is also falling in terms of
execution time. One of the solutions is to use GPU which
support many cores than typical CPU. GPU can be used to
accelerate the computation of CFDs like matrix multiplication.
The improvement of GPU depends on how to use GPU due to
the complexity of its architecture. In this paper, we propose a
scheme to improve the performance of CFD applications
based on multi-GPUs. In our approaches, we adjust GPU-
based SpMV (Sparse Matrix Vector multiplication) and use
multi-GPUs by considering characteristics of input matrix. We
have changed the matrix multiplication method from scalar-
based scheme to enhanced vector-based scheme. In addition,
we used direct memory access (DMA) scheme among multi-
GPUs to reduce the latency. Based on the performance
evaluation result, the overall performance was improved 4.6
times when compare to previous CPU-based scheme.

Keywords: Computational Fluid Dynamics, Multi-GPUs,
CUDA

1 Introduction
 Computational Fluid Dynamics (CFD) is a computer-
based numerical analysis or simulation such as fluid flow and
heat transfer [1]. Recently, CFDs requires high-accuracy and
high-resolution. By above requirements, the size of problems
is also increased continuously. For example, mesh structures
for CFD analysis or simulation are getting fine-grained to
obtain a more accurate result.

 HPC (High Performance Computing) systems are
essential and a good choice to deal with this problem.
Because, HPC system supports massive computing power. In
addition, GPUs can be applied to HPC systems to accelerate
the computation. Typically, a GPU support more cores than

typical CPU. For example, there are 2496 cores on each Tesla
K20M GPU card. For these reasons, many studies have been
performed in an effort to realize a high-performance
computing environment based on GPU. Molecular dynamics
[2][3], quantum chemistry [4], financial engineering [5][6],
data mining [7] are some representative fields which use
GPU-based HPC system.

 In this paper, we focus on CFD application. Typically,
there are many iterative solvers in CFD applications. iterative
solvers is a dominant part of CFD application in terms of
execution time. Iterative solvers are bottleneck of CFD
simulation. Therefore, iterative solver is key point to increase
the performance of CFDs. An iterative solver is mainly
consisted of SpMV (Sparse Matrix Vector multiplication).
GPU is one of the best solutions to accelerate SpMV
computation. However, GPU architecture is very complex and
it is hard to obtain relatively good performance based on GPU.
In this paper, we propose some scheme and approaches to
increase the performance in terms of execution time and
latency. To increase the performance of CFDs, we adjust
GPU-based SpMV method and use multi-GPUs by
considering characteristics of input matrix. In our SpMV
scheme, a warp (32 GPU threads) are assigned to multiple
rows of a sparse matrix to calculate matrix vector
multiplication. Because, a warp is a scheduling unit of GPU.
By using this manner, we can minimize the memory access of
GPUs when doing SpMV. In addition, we use direct memory
access scheme to reduce the data transfer latency among
multi-GPUs. Our enhanced SpMV scheme is applied to
BiCGStab and CG solver. BiCGStab and CG solver are two
representative iterative solver algorithms which are widely
used in CFDs. Based on the performance evaluation result, the
overall performance was improved 4.6 times when compare to
previous CPU-based approach.

 The rest of this paper as follows. In section 2, some
related works are discussed. In section 3, we will explain our
approach to improve the performance based on the computing
environment with multi-GPUs. Performance evaluation.
Finally, we conclude this paper with future works in section 5.

Int'l Conf. Bioinformatics and Computational Biology | BIOCOMP'16 | 103

ISBN: 1-60132-428-6, CSREA Press ©

2 Related Works
2.1 3D Coronary Artery Blood Flow Dynamics

 CFD is commonly used in scientific and engineering
fields to investigate fluid flow and its interactions in a
particular domain. In order to applying our multi-GPU
accelerating scheme, we use 3D coronary blood fluid-
dynamics simulation application which investigates flow of
blood and its interactions to diagnose cardiovascular disease.
This application is constructed using 3D unsteady Navier-
Stokes equations which describe how the velocity, pressure of
a moving fluid is related. And our 3D unsteady Navier-Stokes
equations use Finite Element Method (FEM). FEM subdivides
a large problem into smaller, simpler, parts, called finite
element. So it can make discretized domain from physical
space. Many studies have shown that finite element methods
can be successfully applied to the analysis of the unsteady
Navier-Stokes equations [8]. and this application use Uzawa
iteration to solve the Navier-Stokes equation by using FEM.
Uzawa Iteration consist of outer iteration to update the
pressure and an elliptic inner iteration for velocity. In
computing 3D unsteady Navier-Stokes equations, we should
consider time as a fourth coordinate direction. As space
coordinates are discretized, time must be discretized. And
explicit method is used for time integration. It is computed
before executing Uzawa iteration [9]. In this way, the 3D
coronary blood fluid-dynamics is analyzed. Uzawa iteration
and explicit method has linear system problems. So Conjugate
Gradient (CG) and Bi-Conjugate Gradient Stabilized
(BiCGStab) solvers can solve the problems.

2.2 Preconditioned Iterative Solver
 The size of modeling of engineering, physics and

economics is increasing. So solving the large-scale linear
systems is essential. For solving the large-scale linear systems,
direct method is no effective. Because it has a heavy memory
load and the computing overhead. From the past, iterative
solver like CG, GMERS, BiCGStab were designed to
overcome direct method problems in terms of performance.
And preconditioning techniques also were designed to
improve accuracy and performance of iterative solver [10]. As
other studies to improve the iterative solver in progress, many
solvers were proposed like Bi-Conjugates Gradient (BiCG),
Conjugate Gradients-Squared (CG-S), Bi-Conjugate
Gradients Stabilized (BiCGStab) solver [11]. CG-S is a
variant of the BiCG solver. But, it has been observed that CG-
S may lead to a rather irregular convergence behaviour, so
that in some cases rounding errors can even result in severe
cancellation effects in the solution. So, another variant of
BiCG or BiCGStab which is more stabilized and efficient. In
this paper, explicit method uses BiCGStab solver and Uzawa
iteration use CG solver to solve linear system at unsteady
Navier-Stokes equation.

When solving a linear equation of the form A x = b for
x, where matrix A is large and b is a vector, time of obtaining
x should be a long time. Because computational complexity of
matrix inversion. In this case, the iterative solver is used.
Furthermore, after substitute the form A x = b to ri = b – A

x, the iterative solver repeat until ri becomes sufficiently
small. This allows to obtain the similar approximations as x.
and preconditioner make it fast and accurate.

In recent years, the iterative solver has been applied to
HPC with GPU [12]. also the preconditioner has been applied
[13]. Furthermore, study of improving CG solver using
texture memory and shader function of GPU are in progress
[14].

2.3 Compute Unified Device Architecture
 Single core of CPU has some limitation in terms of it
performance like computing power. So multi-core architecture
like dual or octa cores has been applied to CPU architecture
to improve the performance. However, there is also a limit
that increasing the number of CPU cores in a single chip. In
order to overcome this problem and achieve HPC, many-core
architecture with GPU can used to general purposes. The
reason why GPU has many cores is that common graphics
applications handle large 3D rendering and multi-textures and
these require huge computing power. Formerly, general
purpose programming in the GPU-based computing
environment was not possible. However, the needs of HPC
equipped with a lot of GPU devices has been increasing
continuously. So GPU vendors are developing GPU platform
including GPU programming language and programming
tools. The latest released GPU’s performance has the
minimum 1 TFLOPS/s of computation performance and
160GB/s of off-chip memory bandwidth. By above reasons,
many GPU-based HPC system are widely used for various
computing fields. There are two major GPU platforms. First
one is OpenCL(Open Computing Language) which is used
universally today, Second one is CUDA (Compute Unified
Device Architecture) which can be used over only NVIDA
GPUs or architecture. In this paper, we use NVIDIA GPUs
and CUDA programming model to improve the performance
of CFD applications.

3 CFD Acceleration by using Multi-GPUs
3.1 Basic Iterative Solver based on CUDA

Programming Model
 First of all, in this sub-section, we explain an

approach that accelerates BiCGStab and CG solver by using
single GPU. GPU-based computing acceleration is a kind of
data parallelization. Therefore, if there are data dependency in
algorithms, it is hard to parallelize the algorithm with GPU. In
case of BiCGStab and CG solver are mainly consisted of
SpMV operation, addition and subtraction between vectors,

104 Int'l Conf. Bioinformatics and Computational Biology | BIOCOMP'16 |

ISBN: 1-60132-428-6, CSREA Press ©

and inner product operation between vectors. These
operations are very suitable to apply GPU-based computing
acceleration because these operations do not have any data
dependency. In addition, some preconditioner can be used to
converge rapidly for BiCGStab and CG solver. There are
many preconditioners such as diagonal, incomplete
factorization, approximate inverse preconditioner. In our
scheme, we choose the Jacobi preconditioner because it is
very suitable to parallelize its operation. We use CUDA
programming model like Figure 1 to parallelize those
operations and those operations can be executed on the GPU
in parallel.

Figure 1. An Example of Vector Addition Code (Left Side:
Sequential(CPU), Right Size: Parallel(GPU))

Figure 1 shows an example of vector addition code. Left side
code is a sequential version for CPU. Right side code is a
parallel version which is followed CUDA programming
model for GPU. In case of the sequential version, as shown in
Figure 1, the addition process sequentially proceeds for
statement from first to last elements of the vector to calculate
vector v [15]. In case for GPU, on the other hand, the addition
process creates many threads as much as the size of vector, n
by using CUDA C like blockIdx, blockDim and threadIdx.
And the thread of the size of the vector is assigned to
concurrently gId. A thread to process the addition take each
element from two vectors. After proceeding the addition, a
thread stores the added value in the vector v. This progress
can be executed concurrently at the GPU.

Figure 2. GPU-based SpMV Code Using CSR Format

 Figure 2 is an accelerated SpMV code using CUDA
programming model. Similar to Figure 1, SpMV operation
can be accelerated with GPU and CUDA programming model.
A matrix used in the our SpMV is a form of sparse matrix. It
needs to be compressed to use memory efficiently and
compute its related operation fast. There are many methods to
compress a sparse matrix to a compressed form. For examples,
there are Coordinate (COO), ELLPACK (ELL), Hybrid
(HYD) and CSR (Compressed Storage Row) format. Those
format is classified according to the nature of the sparse
matrix. In short, the proper compress algorithm is different
depending on the characteristic of a sparse matrix. DIA, ELL,
CSR, HYB, COO format is sorted by usage of the nature of
the matrix. The order is from structured matrix to unstructured
matrix. For example, DIA format is very suitable for structure

matrix form. COO format is very suitable for unstructured
matrix form. The nature of sparse matrix of our blood fluid
dynamics is middle of structured and unstructured matrix.
Therefore, we use CSR matrix format when compress an
original sparse matrix.

Val =

culm =

rowPtr =

Figure 3. An Example of Sparse Matrix and its CSR Format

Figure 3 is an example of sparse matrix and its CSR format.
As shown in Figure 3, the size of sparse matrix is 10 10.
First, non-zero values of sparse matrix sequentially store in
the val. Second, val’s column position at the sparse matrix is
stored in the culm per each non-zero value. At last, rowPtr
stores the starting index of each row in Val.

3.2 Advanced Iterative Solver based on
Memory Coalescing

 In our basic iterative solver, we just use a scalar-based
SpMV. One GPU thread is assigned per row of sparse matrix
in case of the scalar-based SpMV. Typically, a warp is a
scheduling unit of GPU. A warp is consisted of 32 GPU
threads. In basic iterative solver, a warp cannot access to
contiguous memory space in which non-zero elements are
stored. By above reason, scalar-based SpMV could not utilize
memory coalescing when access to memory. If we use
memory coalescing, we can reduce the number of memory
access operation for a warp to only one memory access
operation.

 In the advanced iterative solver, we used enhanced
SpMV method to improve the performance more. In the
advance iterative solver, a warp (32 GPU threads) are
assigned to multiple rows of a sparse matrix to calculate
matrix vector related operations. A warp can access to
contiguous memory space by this manner. Therefore, multiple
memory access operations can be minimized. Figure 4 shows
an example of GPU thread assignment comparison between
scalar-based SpMV and enhaced SpMV.

Non-zero
Values of 2nd

row

val[] = [……]1 2 3 4 5 6 7 8 1 2 3 4 1 2 3 4 5 6 7 8

GPU Thread ID = 0 1 2

Non-zero Values of 1st row Non-zero Values of 3rd row

(a) GPU Thread Assignment of Scalar-based SpMV
(Basic Iterative Solver)

Int'l Conf. Bioinformatics and Computational Biology | BIOCOMP'16 | 105

ISBN: 1-60132-428-6, CSREA Press ©

GPU Thread ID = 0 81 2 3 4 5 6 7 9 1110 16 17 18 19 20 21 22 23

val[] = [……]

Non-zero
Values of 2nd

row

1 2 3 4 5 6 7 8 1 2 3 4 1 2 3 4 5 6 7 8

Non-zero Values of 1st row Non-zero Values of 3rd row

(b) GPU Thread Assignment of Enhanced SpMV
(Advance Iterative Solver)

Figure 4. An Example of GPU Thread Assignment
Comparison Between Scalar-based SpMV(Basic Iterative
Mode) and Enhanced SpMV (Advanced Iterative Solver)

3.3 Using Multi-GPUs with Domain
Decomposition and MPI Programming
Model

 If we use domain decomposition scheme, we can obtain
further acceleration with multi-GPUs. In our scheme, we
device main domain into multiple sub-domains. Each sub-
domain for CFDs is assigned to one GPU to simulate or
analyze the result [16]. Figure 5 show the concept of using
multi-GPUs with domain decomposition.

…
…
…

GPU
0

GPU
1

GPU
N-2

GPU
N-1

Figure 5. A Concept of Using Multi-GPUs with Domain
Decomposition

 If we use domain decomposition scheme, data
exchanged between two adjacent domains or GPUs because
intermediate result affect each adjacent domain. In our
approaches, we use MPI (Message Passing Interface)
programming model to communicate and exchange the
intermediate result between two adjacent domains or GPUs.

 In this situation, there are 2 step data copy operations.
For example, first step is one GPU memory to main memory,
and second step copy is required from main memory to
another GPU memory. Data communication overhead is
considerable. This communication is also bottleneck of GPU-
based computation. To reduce the data communication
overhead, we use DMA (Direct Memory Access) scheme
between two GPU memory. By using DMA, we can
communicate directly among multi-GPUs. In short, we can
improve the performance more by using DMA.

4 Performance Evaluation
4.1 Evaluation Environment
 Table 1 shows the computing environment used in the
performance evaluation. GPU and CUDA libraries are
necessary must be installed in the system to apply CUDA-
based programming model onto preconditioned iterative
solver for CFD simulation or analysis. As shown in Table 1,
CUDA 7.5 was installed in the computing system. GeForce
Titan Black and Tesla K20 are equipped. In case of MPI
library, MVAPICH2 2.2b was used to evaluate the
performance.

Table 1. Computing Environment

Features Descriptions

CPU 2 Intel Xeon CPU E5-2650 2.6 GHz v2

Memory 64 GB
OS CentOS 7.2

Kernel Version 3.10.0
CUDA Version CUDA 7.5
OFED Version MLNX_OFED_LINUX 3.2
MVAPICH2

Version
MVAPICH2-2.2b

GPU
GeForce Titan Black

Tesla K20
InfiniBand

Host Channel
Adapter

Mellanox ConnectX-3 VPI Adapter Dual-
Port QSFP, FDR IB(56 Gb/s)

4.2 Evaluation Results

4.2.1 Acceleration of Basic Iterative Solver based on
CUDA Programming Model

 Table 2 shows the result of acceleration of basic iterative
solver per one iteration. The row size of sparse matrix for CG
is 219,725 and non-zero elements are 2,710,418. In case of
the BiCGStab, the row size is 219.725 and its non-zero
elements are 5,201,235. As shown in Table 2, the maximum
speed up is 7.349 by GPU-based acceleration. Overall, GPU-
based acceleration is better than CPU-based solver. Titan
Black is better than Tesla K20 because the base clock speeds
of Titan Black and Tesla K20 are 889 MHz and 706 MHz,
respectively.

Table 2. Basic Iterative Solver Results

Features CPU (s) GPU (s) Speed Up

CG
Tesla
K20 0.716

0.195 3.672

Titan 0.115 6.226

106 Int'l Conf. Bioinformatics and Computational Biology | BIOCOMP'16 |

ISBN: 1-60132-428-6, CSREA Press ©

Black

BiCGStab

Tesla
K20

0.801
0.167 4.811

Titan
Black

0.109 7.349

4.2.2 Acceleration of Advanced Iterative Solver based on
CUDA Programming Model

 Table 3 shows the result of acceleration of advanced
iterative solver per one iteration. As shown in Table 3, the
maximum speed up is 18.372 seconds. Maximum speed up is
increased from 7.347 seconds to 18.372 seconds due to
memory coalescing. Similar to Table 2, Titan Black is better
than Tesla K20 in terms of the execution time. Based on the
Table 2 and Table 3, we can improve the performance of CG
and BiCGStab solver. As the result, we can reduce the overall
execution time of CFD simulation or analysis application.

Table 3. Advanced Iterative Solver Results

Features CPU (s) GPU (s) Speed Up

CG

Tesla
K20

0.716
0.107 6.692

Titan
Black

0.073 9.808

BiCGStab

Tesla
K20

0.801
0.062 12.919

Titan
Black

0.044 18.372

4.2.3 Intra-node Data Transfer Latency between GPUs
 Table 4 shows the result of intra-node data transfer
latency between two GPUs. In the performance evaluation, we
used Mellanox OFED 3.2, MVAPICH2 2.2b, and NVIDIA
GeForce Titan Black. As shows in Table 4, In case of 32 KB
data transfer, DMA is about 1.2 times better than No DMA.
Similarly, in case of 64 KB data transfer, DMA is about 5.9
times faster than No DMA. As we explained in Section 3, The
overhead of data exchange or transfer is considerable between
two intra GPUs. Therefore, if we use DMA, we can reduce the
data transfer delay effectively.

Table 4. Intra-node Data Transfer Latency Between GPUs

Size (Byte) No DMA (us) DMA (us)
32 K 75.8 59.0
64 K 124.9 59.4

128 K 197.9 59.4
256 K 366.9 61.5

Acceleration of Blood Fluid Dynamics by using Multi-
GPUs and Advanced Iterative Solver
 To evaluate the performance of our scheme, we used
blood fluid simulation application. Advance iterative solver
and DMA scheme were applied to our blood fluid simulation
application. BiCGStab and CG solver were used.

 Figure 6 shows the result of total execution time of
blood fluid dynamics. In the performance evaluation, we used
GeForce Titan Black GPU because Titan Black showed better
performance than K20 GPU. Simulation areas are divided into
4 areas. Each area is assign to one CPU core or one GPU
device. As shown in Figure 6. We can reduce the total
execution time of blood fluid dynamics by using multi-GPUs.
The total execution time was reduced from 7113 seconds to
1527 seconds. In short, the performance was improved about
4.6 times in terms of speed up.

7113

1997 1527

0

1000

2000

3000

4000

5000

6000

7000

8000

CPU
(4 Partitions, 4 cores)

Multi-GPUs
(4 Partitions, 4
GPUs)- Basic

Multi-GPUs
(4 Partitions, 4

GPUs)- Advanced

To
ta

l
Ex

ec
ut

io
n

Ti
m

e
(s

)

Figure 6. Total Execution Time of Blood Fluid Dynamics

5 Conclusions and Future Works
 In this paper, we proposed a scheme to improve the
performance of CFD application based on multi-GPUs. Our
scheme used enhanced vector-based SpMV method with
domain decomposition in order to reduce the SpMV time.
SpMV is a dominant part of CFD applications in terms of
execution time. We reduced the SpMV time by using multi-
GPUs. In addition, DMA scheme are also used to reduce the
latency among multi-GPUs. As the result, overall execution
time decreased efficiently. Based on the performance
evaluation results, the performance was improved 4.6 times
when compared to the previous scheme which uses 4 CPU
cores. In the future works, we will apply GPU-based
computing to other computation-sensitive fields.

6 Acknowledgement
 This work was supported by Institute for Information &
communications Technology Promotion(IITP) grant funded
by the Korea government(MSIP) (No.R0101-15-0171,
Development of Multi-modality Imaging and 3D Simulation-

Int'l Conf. Bioinformatics and Computational Biology | BIOCOMP'16 | 107

ISBN: 1-60132-428-6, CSREA Press ©

Based Integrative Diagnosis-Treatment Support Software
System for Cardiovascular Diseases)

7 References
[1] Ferziger, Joel H., and Milovan Peric. Computational
methods for fluid dynamics. Springer Science & Business
Media, 2012.

[2] Anderson, Joshua A., Chris D. Lorenz, and Alex
Travesset. "General purpose molecular dynamics simulations
fully implemented on graphics processing units." Journal of
Computational Physics 227.10 (2008): 5342-5359.

[3] Anderson, Joshua A., Chris D. Lorenz, and Alex
Travesset. "General purpose molecular dynamics simulations
fully implemented on graphics processing units." Journal of
Computational Physics 227.10 (2008): 5342-5359.

[4] Olivares-Amaya, Roberto, et al. "Accelerating correlated
quantum chemistry calculations using graphical processing
units and a mixed precision matrix multiplication library."
Journal of chemical theory and computation 6.1 (2009): 135-
144.

[5] Fatone, Lorella, et al. "Parallel option pricing on GPU:
barrier options and realized variance options." The Journal of
Supercomputing 62.3 (2012): 1480-1501.

[6] Surkov, Vladimir. "Parallel option pricing with Fourier
space time-stepping method on graphics processing units."
Parallel Computing 36.7 (2010): 372-380.

[7] Jian, Liheng, et al. "Parallel data mining techniques on
graphics processing unit with compute unified device
architecture (CUDA)." The Journal of Supercomputing 64.3
(2013): 942-967.

[8] Taylor, Cedric, and P. Hood. "A numerical solution of
the Navier-Stokes equations using the finite element
technique." Computers & Fluids 1.1 (1973): 73-100.

[9] Ferziger, Joel H., and Milovan Peric. Computational
methods for fluid dynamics. Springer Science & Business
Media, 2012.

[10] Elman, Howard C. Iterative methods for large, sparse,
nonsymmetric systems of linear equations. Diss. Yale
University, 1982.

[11] Van der Vorst, Henk A. "Bi-CGSTAB: A fast and
smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems." SIAM Journal on scientific
and Statistical Computing 13.2 (1992): 631-644.

[12] Oancea, Bogdan, Tudorel Andrei, and Andreea Iluzia
Iacob. "CUDA based iterative methods for linear systems."
Computer Science 1 (2012): 228-232.

[13] Dehnavi, Maryam Mehri, et al. "Parallel sparse
approximate inverse preconditioning on graphic processing
units." Parallel and Distributed Systems, IEEE Transactions
on 24.9 (2013): 1852-1862.

[14] Bolz, Jeff, et al. "Sparse matrix solvers on the GPU:
conjugate gradients and multigrid." ACM Transactions on
Graphics (TOG). Vol. 22. No. 3. ACM, 2003.

[15] Cormie-Bowins, Elise. "A comparison of sequential and
GPU implementations of iterative methods to compute
reachability probabilities." arXiv preprint arXiv:1210.6412
(2012).

[16] Jacobsen, Dana A., Julien C. Thibault, and Inanc
Senocak. "An MPI-CUDA implementation for massively
parallel incompressible flow computations on multi-GPU
clusters." 48th AIAA aerospace sciences meeting and exhibit.
Vol. 16. 2010.

108 Int'l Conf. Bioinformatics and Computational Biology | BIOCOMP'16 |

ISBN: 1-60132-428-6, CSREA Press ©

