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Abstract - GPU-based computing is widely used in various 
computing fields. In case of Computational Fluid Dynamics 
(CFD), there are computation intensive iterative solvers.
Iterative solvers are bottlenecks of CFD. Recently, CFDs 
require high-accuracy and high-resolution than before. By 
above reason, the problem size of CFDs continues to grow 
and the performance of CFDs is also falling in terms of 
execution time. One of the solutions is to use GPU which 
support many cores than typical CPU. GPU can be used to 
accelerate the computation of CFDs like matrix multiplication. 
The improvement of GPU depends on how to use GPU due to 
the complexity of its architecture. In this paper, we propose a 
scheme to improve the performance of CFD applications 
based on multi-GPUs. In our approaches, we adjust GPU-
based SpMV (Sparse Matrix Vector multiplication) and use 
multi-GPUs by considering characteristics of input matrix. We 
have changed the matrix multiplication method from scalar-
based scheme to enhanced vector-based scheme. In addition, 
we used direct memory access (DMA) scheme among multi-
GPUs to reduce the latency. Based on the performance 
evaluation result, the overall performance was improved 4.6 
times when compare to previous CPU-based scheme. 

Keywords: Computational Fluid Dynamics, Multi-GPUs, 
CUDA

1 Introduction 
  Computational Fluid Dynamics (CFD) is a computer-
based numerical analysis or simulation such as fluid flow and 
heat transfer [1]. Recently, CFDs requires high-accuracy and 
high-resolution. By above requirements, the size of problems 
is also increased continuously. For example, mesh structures 
for CFD analysis or simulation are getting fine-grained to 
obtain a more accurate result. 

 HPC (High Performance Computing) systems are 
essential and a good choice to deal with this problem. 
Because, HPC system supports massive computing power. In 
addition, GPUs can be applied to HPC systems to accelerate 
the computation. Typically, a GPU support more cores than 

typical CPU. For example, there are 2496 cores on each Tesla 
K20M GPU card. For these reasons, many studies have been 
performed in an effort to realize a high-performance 
computing environment based on GPU. Molecular dynamics 
[2][3], quantum chemistry [4], financial engineering [5][6], 
data mining [7] are some representative fields which use 
GPU-based HPC system. 

 In this paper, we focus on CFD application. Typically, 
there are many iterative solvers in CFD applications. iterative 
solvers is a dominant part of CFD application in terms of 
execution time. Iterative solvers are bottleneck of CFD 
simulation. Therefore, iterative solver is key point to increase 
the performance of CFDs. An iterative solver is mainly 
consisted of SpMV (Sparse Matrix Vector multiplication). 
GPU is one of the best solutions to accelerate SpMV 
computation. However, GPU architecture is very complex and 
it is hard to obtain relatively good performance based on GPU. 
In this paper, we propose some scheme and approaches to 
increase the performance in terms of execution time and 
latency. To increase the performance of CFDs, we adjust 
GPU-based SpMV method and use multi-GPUs by 
considering characteristics of input matrix. In our SpMV 
scheme, a warp (32 GPU threads) are assigned to multiple 
rows of a sparse matrix to calculate matrix vector 
multiplication. Because, a warp is a scheduling unit of GPU. 
By using this manner, we can minimize the memory access of 
GPUs when doing SpMV. In addition, we use direct memory 
access scheme to reduce the data transfer latency among 
multi-GPUs. Our enhanced SpMV scheme is applied to 
BiCGStab and CG solver. BiCGStab and CG solver are two 
representative iterative solver algorithms which are widely 
used in CFDs. Based on the performance evaluation result, the 
overall performance was improved 4.6 times when compare to 
previous CPU-based approach. 

 The rest of this paper as follows. In section 2, some 
related works are discussed. In section 3, we will explain our 
approach to improve the performance based on the computing 
environment with multi-GPUs. Performance evaluation. 
Finally, we conclude this paper with future works in section 5. 
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2 Related Works 
2.1 3D Coronary Artery Blood Flow Dynamics 

 CFD is commonly used in scientific and engineering 
fields to investigate fluid flow and its interactions in a 
particular domain. In order to applying our multi-GPU 
accelerating scheme, we use 3D coronary blood fluid-
dynamics simulation application which investigates flow of 
blood and its interactions to diagnose cardiovascular disease. 
This application is constructed using 3D unsteady Navier-
Stokes equations which describe how the velocity, pressure of 
a moving fluid is related. And our 3D unsteady Navier-Stokes 
equations use Finite Element Method (FEM). FEM subdivides 
a large problem into smaller, simpler, parts, called finite 
element. So it can make discretized domain from physical 
space. Many studies have shown that finite element methods 
can be successfully applied to the analysis of the unsteady 
Navier-Stokes equations [8]. and this application use Uzawa 
iteration to solve the Navier-Stokes equation by using FEM. 
Uzawa Iteration consist of outer iteration to update the 
pressure and an elliptic inner iteration for velocity. In 
computing 3D unsteady Navier-Stokes equations, we should 
consider time as a fourth coordinate direction. As space 
coordinates are discretized, time must be discretized. And 
explicit method is used for time integration. It is computed 
before executing Uzawa iteration [9]. In this way, the 3D 
coronary blood fluid-dynamics is analyzed. Uzawa iteration 
and explicit method has linear system problems. So Conjugate 
Gradient (CG) and Bi-Conjugate Gradient Stabilized 
(BiCGStab) solvers can solve the problems. 

2.2 Preconditioned Iterative Solver 
 The size of modeling of engineering, physics and 

economics is increasing. So solving the large-scale linear 
systems is essential. For solving the large-scale linear systems, 
direct method is no effective. Because it has a heavy memory 
load and the computing overhead. From the past, iterative 
solver like CG, GMERS, BiCGStab were designed to 
overcome direct method problems in terms of performance. 
And preconditioning techniques also were designed to 
improve accuracy and performance of iterative solver [10]. As
other studies to improve the iterative solver in progress, many 
solvers were proposed like Bi-Conjugates Gradient (BiCG), 
Conjugate Gradients-Squared (CG-S), Bi-Conjugate 
Gradients Stabilized (BiCGStab) solver [11]. CG-S is a 
variant of the BiCG solver. But, it has been observed that CG-
S may lead to a rather irregular convergence behaviour, so 
that in some cases rounding errors can even result in severe 
cancellation effects in the solution. So, another variant of 
BiCG or BiCGStab which is more stabilized and efficient. In 
this paper, explicit method uses BiCGStab solver and Uzawa 
iteration use CG solver to solve linear system at unsteady 
Navier-Stokes equation.   

When solving a linear equation of the form A x = b for 
x, where matrix A is large and b is a vector, time of obtaining 
x should be a long time. Because computational complexity of 
matrix inversion. In this case, the iterative solver is used. 
Furthermore, after substitute the form A x = b to ri = b – A

x, the iterative solver repeat until ri becomes sufficiently 
small. This allows to obtain the similar approximations as x.
and preconditioner make it fast and accurate.

In recent years, the iterative solver has been applied to 
HPC with GPU [12]. also the preconditioner has been applied 
[13]. Furthermore, study of improving CG solver using 
texture memory and shader function of GPU are in progress 
[14].  

2.3 Compute Unified Device Architecture 
 Single core of CPU has some limitation in terms of it 
performance like computing power. So multi-core architecture 
like dual or octa cores has been applied to CPU architecture 
to improve the performance. However, there is also a limit 
that increasing the number of CPU cores in a single chip.  In 
order to overcome this problem and achieve HPC, many-core 
architecture with GPU can used to general purposes. The 
reason why GPU has many cores is that common graphics 
applications handle large 3D rendering and multi-textures and 
these require huge computing power. Formerly, general 
purpose programming in the GPU-based computing 
environment was not possible. However, the needs of HPC 
equipped with a lot of GPU devices has been increasing 
continuously. So GPU vendors are developing GPU platform 
including GPU programming language and programming 
tools. The latest released GPU’s performance has the 
minimum 1 TFLOPS/s of computation performance and 
160GB/s of off-chip memory bandwidth. By above reasons, 
many GPU-based HPC system are widely used for various 
computing fields. There are two major GPU platforms. First 
one is OpenCL(Open Computing Language) which is used 
universally today, Second one is CUDA (Compute Unified 
Device Architecture) which can be used over only NVIDA 
GPUs or architecture. In this paper, we use NVIDIA GPUs 
and CUDA programming model to improve the performance 
of CFD applications. 

3 CFD Acceleration by using Multi-GPUs 
3.1 Basic Iterative Solver based on CUDA 

Programming Model 
  First of all, in this sub-section, we explain an 

approach that accelerates BiCGStab and CG solver by using 
single GPU. GPU-based computing acceleration is a kind of 
data parallelization. Therefore, if there are data dependency in 
algorithms, it is hard to parallelize the algorithm with GPU. In 
case of BiCGStab and CG solver are mainly consisted of 
SpMV operation, addition and subtraction between vectors, 
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and inner product operation between vectors. These 
operations are very suitable to apply GPU-based computing 
acceleration because these operations do not have any data 
dependency. In addition, some preconditioner can be used to 
converge rapidly for BiCGStab and CG solver. There are 
many preconditioners such as diagonal, incomplete 
factorization, approximate inverse preconditioner. In our 
scheme, we choose the Jacobi preconditioner because it is 
very suitable to parallelize its operation. We use CUDA 
programming model like Figure 1 to parallelize those 
operations and those operations can be executed on the GPU 
in parallel.

Figure 1. An Example of Vector Addition Code (Left Side: 
Sequential(CPU), Right Size: Parallel(GPU)) 

Figure 1 shows an example of vector addition code. Left side 
code is a sequential version for CPU. Right side code is a 
parallel version which is followed CUDA programming 
model for GPU. In case of the sequential version, as shown in 
Figure 1, the addition process sequentially proceeds for
statement from first to last elements of the vector to calculate 
vector v [15]. In case for GPU, on the other hand, the addition 
process creates many threads as much as the size of vector, n
by using CUDA C like blockIdx, blockDim and threadIdx.
And the thread of the size of the vector is assigned to 
concurrently gId. A thread to process the addition take each 
element from two vectors. After proceeding the addition, a 
thread stores the added value in the vector v. This progress 
can be executed concurrently at the GPU.  

Figure 2.  GPU-based SpMV Code Using CSR Format 

  Figure 2 is an accelerated SpMV code using CUDA 
programming model. Similar to Figure 1, SpMV operation 
can be accelerated with GPU and CUDA programming model. 
A matrix used in the our SpMV is a form of sparse matrix. It
needs to be compressed to use memory efficiently and 
compute its related operation fast. There are many methods to 
compress a sparse matrix to a compressed form. For examples, 
there are Coordinate (COO), ELLPACK (ELL), Hybrid 
(HYD) and CSR (Compressed Storage Row) format. Those 
format is classified according to the nature of the sparse 
matrix. In short, the proper compress algorithm is different 
depending on the characteristic of a sparse matrix. DIA, ELL, 
CSR, HYB, COO format is sorted by usage of the nature of 
the matrix. The order is from structured matrix to unstructured 
matrix. For example, DIA format is very suitable for structure 

matrix form. COO format is very suitable for unstructured 
matrix form. The nature of sparse matrix of our blood fluid 
dynamics is middle of structured and unstructured matrix. 
Therefore, we use CSR matrix format when compress an 
original sparse matrix.

Val =

culm =

rowPtr =

Figure 3. An Example of Sparse Matrix and its CSR Format 

Figure 3 is an example of sparse matrix and its CSR format. 
As shown in Figure 3, the size of sparse matrix is 10 10.
First, non-zero values of sparse matrix sequentially store in 
the val. Second, val’s column position at the sparse matrix is 
stored in the culm per each non-zero value. At last, rowPtr 
stores the starting index of each row in Val.

3.2 Advanced Iterative Solver based on 
Memory Coalescing 

  In our basic iterative solver, we just use a scalar-based 
SpMV. One GPU thread is assigned per row of sparse matrix 
in case of the scalar-based SpMV. Typically, a warp is a 
scheduling unit of GPU. A warp is consisted of 32 GPU 
threads. In basic iterative solver, a warp cannot access to 
contiguous memory space in which non-zero elements are 
stored. By above reason, scalar-based SpMV could not utilize 
memory coalescing when access to memory. If we use 
memory coalescing, we can reduce the number of memory 
access operation for a warp to only one memory access 
operation. 

  In the advanced iterative solver, we used enhanced 
SpMV method to improve the performance more. In the 
advance iterative solver, a warp (32 GPU threads) are 
assigned to multiple rows of a sparse matrix to calculate 
matrix vector related operations. A warp can access to 
contiguous memory space by this manner. Therefore, multiple 
memory access operations can be minimized. Figure 4 shows 
an example of GPU thread assignment comparison between 
scalar-based SpMV and enhaced SpMV. 

Non-zero 
Values of 2nd

row

val[] = [                                                                              …… ]1 2 3 4 5 6 7 8 1 2 3 4 1 2 3 4 5 6 7 8

GPU Thread ID = 0 1 2

Non-zero Values of 1st row Non-zero Values of 3rd row

(a) GPU Thread Assignment of Scalar-based SpMV 
(Basic Iterative Solver) 
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GPU Thread ID = 0 81 2 3 4 5 6 7 9 1110 16 17 18 19 20 21 22 23

val[] = [ …… ]

Non-zero 
Values of 2nd

row

1 2 3 4 5 6 7 8 1 2 3 4 1 2 3 4 5 6 7 8

Non-zero Values of 1st row Non-zero Values of 3rd row

(b) GPU Thread Assignment of Enhanced SpMV 
(Advance Iterative Solver) 

Figure 4. An Example of GPU Thread Assignment 
Comparison Between Scalar-based SpMV(Basic Iterative 
Mode) and Enhanced SpMV (Advanced Iterative Solver) 

3.3 Using Multi-GPUs with Domain 
Decomposition and MPI Programming 
Model 

  If we use domain decomposition scheme, we can obtain 
further acceleration with multi-GPUs. In our scheme, we 
device main domain into multiple sub-domains. Each sub-
domain for CFDs is assigned to one GPU to simulate or 
analyze the result [16]. Figure 5 show the concept of using 
multi-GPUs with domain decomposition. 

…
…
…

GPU
0

GPU  
1

GPU 
N-2

GPU 
N-1

Figure 5. A Concept of Using Multi-GPUs with Domain 
Decomposition 

  If we use domain decomposition scheme, data 
exchanged between two adjacent domains or GPUs because 
intermediate result affect each adjacent domain. In our 
approaches, we use MPI (Message Passing Interface) 
programming model to communicate and exchange the 
intermediate result between two adjacent domains or GPUs. 

 In this situation, there are 2 step data copy operations.
For example, first step is one GPU memory to main memory, 
and second step copy is required from main memory to 
another GPU memory. Data communication overhead is 
considerable. This communication is also bottleneck of GPU-
based computation. To reduce the data communication 
overhead, we use DMA (Direct Memory Access) scheme 
between two GPU memory. By using DMA, we can 
communicate directly among multi-GPUs. In short, we can 
improve the performance more by using DMA. 

4 Performance Evaluation 
4.1 Evaluation Environment 
  Table 1 shows the computing environment used in the 
performance evaluation. GPU and CUDA libraries are 
necessary must be installed in the system to apply CUDA-
based programming model onto preconditioned iterative 
solver for CFD simulation or analysis. As shown in Table 1, 
CUDA 7.5 was installed in the computing system. GeForce 
Titan Black and Tesla K20 are equipped. In case of MPI 
library, MVAPICH2 2.2b was used to evaluate the 
performance. 

Table 1. Computing Environment 

Features Descriptions

CPU 2 Intel Xeon CPU E5-2650 2.6 GHz v2

Memory 64 GB
OS CentOS 7.2

Kernel Version 3.10.0
CUDA Version CUDA 7.5
OFED Version MLNX_OFED_LINUX 3.2
MVAPICH2 

Version
MVAPICH2-2.2b

GPU
GeForce Titan Black

Tesla K20
InfiniBand

Host Channel 
Adapter

Mellanox ConnectX-3 VPI Adapter Dual-
Port QSFP, FDR IB(56 Gb/s)

4.2 Evaluation Results 

4.2.1 Acceleration of Basic Iterative Solver based on 
CUDA Programming Model 

 Table 2 shows the result of acceleration of basic iterative 
solver per one iteration. The row size of sparse matrix for CG 
is 219,725 and non-zero elements are 2,710,418. In case of 
the BiCGStab, the row size is 219.725 and its non-zero 
elements are 5,201,235. As shown in Table 2, the maximum 
speed up is 7.349 by GPU-based acceleration. Overall, GPU-
based acceleration is better than CPU-based solver. Titan 
Black is better than Tesla K20 because the base clock speeds 
of Titan Black and Tesla K20 are 889 MHz and 706 MHz, 
respectively. 

Table 2. Basic Iterative Solver Results 

Features CPU (s) GPU (s) Speed Up

CG
Tesla 
K20 0.716

0.195 3.672

Titan 0.115 6.226
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Black

BiCGStab

Tesla 
K20

0.801
0.167 4.811

Titan 
Black

0.109 7.349

4.2.2 Acceleration of Advanced Iterative Solver based on 
CUDA Programming Model 

 Table 3 shows the result of acceleration of advanced 
iterative solver per one iteration. As shown in Table 3, the 
maximum speed up is 18.372 seconds. Maximum speed up is 
increased from 7.347 seconds to 18.372 seconds due to 
memory coalescing. Similar to Table 2, Titan Black is better 
than Tesla K20 in terms of the execution time. Based on the 
Table 2 and Table 3, we can improve the performance of CG 
and BiCGStab solver. As the result, we can reduce the overall 
execution time of CFD simulation or analysis application. 

Table 3. Advanced Iterative Solver Results 

Features CPU (s) GPU (s) Speed Up

CG

Tesla 
K20

0.716
0.107 6.692

Titan 
Black

0.073 9.808

BiCGStab

Tesla 
K20

0.801
0.062 12.919

Titan 
Black

0.044 18.372

4.2.3 Intra-node Data Transfer Latency between GPUs 
 Table 4 shows the result of intra-node data transfer 
latency between two GPUs. In the performance evaluation, we 
used Mellanox OFED 3.2, MVAPICH2 2.2b, and NVIDIA 
GeForce Titan Black. As shows in Table 4, In case of 32 KB 
data transfer, DMA is about 1.2 times better than No DMA. 
Similarly, in case of 64 KB data transfer, DMA is about 5.9 
times faster than No DMA. As we explained in Section 3, The 
overhead of data exchange or transfer is considerable between 
two intra GPUs. Therefore, if we use DMA, we can reduce the 
data transfer delay effectively. 

Table 4. Intra-node Data Transfer Latency Between GPUs 

Size (Byte) No DMA (us) DMA (us)
32 K 75.8 59.0
64 K 124.9 59.4

128 K 197.9 59.4
256 K 366.9 61.5

Acceleration of Blood Fluid Dynamics by using Multi-
GPUs and Advanced Iterative Solver 
 To evaluate the performance of our scheme, we used 
blood fluid simulation application. Advance iterative solver 
and DMA scheme were applied to our blood fluid simulation 
application. BiCGStab and CG solver were used. 

 Figure 6 shows the result of total execution time of 
blood fluid dynamics. In the performance evaluation, we used 
GeForce Titan Black GPU because Titan Black showed better 
performance than K20 GPU. Simulation areas are divided into 
4 areas. Each area is assign to one CPU core or one GPU 
device. As shown in Figure 6. We can reduce the total 
execution time of blood fluid dynamics by using multi-GPUs. 
The total execution time was reduced from 7113 seconds to 
1527 seconds. In short, the performance was improved about 
4.6 times in terms of speed up. 

7113

1997 1527
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Figure 6. Total Execution Time of Blood Fluid Dynamics 

5 Conclusions and Future Works 
 In this paper, we proposed a scheme to improve the 
performance of CFD application based on multi-GPUs. Our 
scheme used enhanced vector-based SpMV method with 
domain decomposition in order to reduce the SpMV time.
SpMV is a dominant part of CFD applications in terms of 
execution time. We reduced the SpMV time by using multi-
GPUs. In addition, DMA scheme are also used to reduce the 
latency among multi-GPUs. As the result, overall execution 
time decreased efficiently. Based on the performance 
evaluation results, the performance was improved 4.6 times 
when compared to the previous scheme which uses 4 CPU 
cores. In the future works, we will apply GPU-based 
computing to other computation-sensitive fields. 
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