
A Novel Control-flow based Intrusion Detection Technique for Big Data Systems

Santosh Aditham

Dept of Computer Science and Engineering
University of South Florida

Tampa, USA.

Nagarajan Ranganathan

Dept of Computer Science and Engineering
University of South Florida

Tampa, USA.

Abstract— Security and distributed infrastructure are two of
the most common requirements for big data software. But the
security features of the big data platforms are still premature.
It is critical to identify, modify, test and execute some of the
existing security mechanisms before using them in the big data
world. In this paper, we propose a novel intrusion detection
technique that understands and works according to the needs
of big data systems. Our proposed technique identifies program
level anomalies using two methods - a profiling method that
models application behavior by creating process signatures from
control-flow graphs; and a matching method that checks for
coherence among the replica nodes of a big data system by
matching the process signatures. The profiling method creates a
process signature by reducing the control-flow graph of a process
to a set of minimum spanning trees and then creates a hash
of that set. The matching method first checks for similarity in
process behavior by matching the received process signature with
the local signature and then shares the result with all replica
datanodes for consensus. Experimental results show only 0.8%
overhead due to the proposed technique when tested on the
hadoop map-reduce examples in real-time.

Keywords-big data; intrusion detection; control-flow graph;

I. INTRODUCTION

The architectures for big data systems rely on parallel

execution techniques like mapreduce [1] for fast processing.

With the growing popularity of real-time data processing

in big data environments, there is a pressing need to re-

imagine the traditional computing techniques. For example,

data locality in popular big data system distributions like

hadoop [2] and spark [3] is redefined as bringing compute

to data instead of the traditional approach of the moving the

data that needs to get processed. This trend of re-inventing

the traditional methods do not necessarily transform to the

security needs of big data. The security features imple-

mented in big data systems are still based on traditional

methods for systems based on general purpose machines.

User authentication, multi-level data access control and

logging are typically used for security in big data [4]. Data

encryption is slowly being adopted in the big data field, but

it is limited by big data properties like volume and velocity.

As we covered in our previous work [5], big data security

is premature and there is a lot of scope for improvement in

this area. For instance, the current security standards for big

data systems assume system-level consistency which is not

necessarily true always. We demonstrated in our previous

work [5] that big data platforms can be affected by insider

attacks. In this work, we concentrate on detecting process-

level intrusions within big data systems.

Intrusion detection systems (IDS) can identify malicious

use based on their knowledge of possible threats or by

learning from the behavior of programs. Knowledge-based

IDS usually search a program for known threat signatures

that are stored in a database. With new and zero-day attacks

emerging regularly, it is impractical to have a pre-populated

database of all possible threats. Even if it is assumed to

have such a database, maintaining it would require a lot of

resources and running search queries against it would be

expensive. Behavior based IDS tries to model, analyze and

compare application behavior to identify anomalies. This

technique needs more resources and is more complex than

signature-based IDS but it is more effective in a dynamically

changing threat environment. Behavior based IDS generally

use statistics and rules to detect anomalies. Figure 1 gives a

taxonomy of the different types of IDS.

In today’s internet age, a distributed implementation of

IDS is needed for which aggregation, communication and

cooperation are key factors of success. Distributed IDS gives

centralized control and detects behavioral patterns even in

large networks but it has to be employed at multiple levels:

host, network and data [6]. Hence, using big data in general-

purpose distributed IDS implementations is recommended

for faster processing. In this work, we concentrate on IDS

that can be used for security within big data systems. IDS

within a big data system favors anamoly-based IDS when

compared to knowledge-based IDS because of the naturally

large and ever increasing scope of threats.

Using control-flow graphs for logic level intrusion detec-

tion is a commonly known idea [7], [8], [9]. For example,

control-flow integrity [10] is a security mechanism that

can identify misuse of application logic bugs, like buffer-

overflow attacks. Though CFGs are generally sparse graphs,

they can grow very big in size. Hence, it is important

to design IDS techniques that can work with a reduced

representation of CFGs. A Minimum Spanning Tree (MST)

contains all vertices and only some paths of its source graph

and the number of MSTs for sparse graphs is generally less.

Hence, a set of MSTs extracted from a CFG can be used

for IDS that detects program level anomalies.

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 45

ISBN: 1-60132-427-8, CSREA Press ©

Figure 1: A taxonomy of Intrusion Detection Techniques

In this paper, we propose a control-flow based intrusion

detection technique for big data systems. The proposed

technique checks for program level anomalies in big data

applications by analyzing and comparing the control-flow

behavior of all processes running inside a big data system.

The proposed intrusion detection technique is divided into

two parts. First, the control-flow of each process running on

a data node in the big data cluster is locally analyzed. This is

done by extracting a set of MSTs from the instruction level

CFG of a compiled program. The extracted set of MSTs are

hashed and stored in an array called the program signature.

Then, the stored program signature is encrypted and shared

with other replica nodes that run the same program. In

the second step, the received encrypted program signature

is decrypted and matched with the local version to check

for coherence. Matching two program signatures involves

finding a perfect match for every MST in a signature within

the set of MSTs of the other. The result of the matching

step is then shared with replica nodes for consensus. Our

technique is designed to be simple, scalable and efficient in

identifying both control-flow and brute-force attacks.

The rest of this paper is organized as follows. Section

II gives some background about big data systems, control-

flow graphs and IDS. The various related works are also

discussed here. Section III explains the proposed intrusion

detection technique in detail. Experimental setup and results

are thoroughly discussed in Section IV. Finally, Section V

gives the conclusion and future work.

II. BACKGROUND AND RELATED WORK

In this section, background about the three topics - big

data systems, control-flow graphs and intrusion detection is

provided. The related works are briefly outlined here.

A. Big Data Systems

Big data systems are data driven and their work can

be classified into 2 major tasks - writing user data to

the disk for storage and; reading stored data when user

requests for it. Typically, this data is quantified in units called

blocks. For fast and fault-tolerant service, big data systems

rely on replication of data blocks which in turn demands

data consistency. Big data systems cannot afford to have

read or write service-level inconsistency. The motivation for

this work comes from a weak assumption in the big data

community that the services used by a big data system

to maintain data consistency are never attacked. It is our

knowledge that this problem has not been widely addressed

before.

To propose an IDS for big data services, it is important

to understand how the services work. For this, we picked 2

popular big data services - reads and writes. When a client

(or user) wants to write a block, the namenode picks n data

nodes from the big data cluster to complete this task where

n is the replication factor of the cluster. First the namenode

checks if the datanodes are ready. It sends a ready request

to datanode1 which when ready, forwards that request to

datanode2 and so on. When the namenode knows that all

n datanodes are ready, it asks the client to start writing.

The client only writes to datanode1 which is subsequently

written on to datanode2, datanode3 and so on. In case of any

failure, namenode orders a new datanode to maintain block

replicas. When the client wants to read a block, namenode

gives the client a list of all datanodes that have the block and

the client picks first datanode. If there is a problem reading

from datanode1, the client request gets forwarded to the next

datanode that has a copy of the same block.

B. Control-flow Graphs

A control-flow graph (CFG) is a directed graph repre-

sentation of a program and usually a sparse graph. CFGs

include all possible control paths in a program. This makes

CFG a great tool to obtain control-flow behavior of its

process. Vertices in a CFG give the level of detail, such as

instruction-level or basic block level, that cannot be further

divided. Edges in CFG represent control jumps and are

classified into two types - forward and backward. Branch

instructions, function calls, conditional and unconditional

jumps account for forward edges. Virtual calls and indirect

function calls are also considered as forward edges but their

destinations are difficult to determine. Loops and returns

generally account for backward edges. The integrity among

duplicate processes that run on replica nodes of a big data

system can be verified with the information available in a

CFG [11]. Similarity check between program logic of two

programs can be performed by comparing their CFGs for

isomorphism. There are many ways to check for such graph

isomorphism [24], [25] but analyzing the similarity of two

processes by conducting CFG level graph isomorphism is

hard and time consuming. Graph isomorphism is a complex

problem, sometimes known to be NP-complete as well [8].

To reduce the complexity of graph algorithms, CFGs can

be reduced to trees or subgraphs before performing any

46 Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

ISBN: 1-60132-427-8, CSREA Press ©

(a) Source code to basic blocks

(b) Basic-block CFG

(c) MSA of CFG (d) Another MSA of CFG

Figure 2: Multiple MSAs of same CFG

coherence or integrity checks [12]. A CFG can be converted

to a tree using methods such as Depth-first traversal. Several

tree structures like Dominator Tree, Minimumm Spanning

Tree (MST), Minimumm Spanning Arborescence (MSA)

can be extracted form CFGs [13], [14], [15]. For this work,

MST and MSA can be used interchangeably. CFGs can

be broken into subgraphs using methods like k sub-graph

matching and graph coloring. Some popular methods for

graph reduction and graph comparison that can be found

in the literature are given below (assume graphs to have n

vertices and m edges):

• Based on Edit Distance: Using Smith-Waterman algo-

rithm with Levenshtein distance to identify similarity

between two graphs represented as strings [16]. The

time complexity is O(nm).

• Based on Traversal: (a) A preorder traversal of a graph

G where each node is processed before its descendants.

(b) A reverse postorder in a DAG gives a topological

order of the nodes [17].

• Based on Dominator trees: A data structure built using

Depth First Search or using the method proposed by

Tarjan in [18]. Tarjan’s method has a time complexity

of O((n+m)log(n+m)).

• Based on Reachability: Transitive reduction of a sparse

graph to another graph with fewer edges but same

transitive closure [19]. The time complexity is O(nm).

In this work, we chose to reduce a CFG to a set of MSTs

because CFGs are generally sparse graphs and hence the

size of the set of MSTs will be finite and small. Edmond’s

algorithm can be used to extract MSTs from a digraph

[13], [14], [15]. Since an MST contains all vertices of its

graph, there will be no loss in the program instruction data.

Depending on the connectedness of the graph, the edge

count will defer between the CFG and MST representation

of a program. Figure 2 shows transformation of a line

of java code to basic blocks of bytecode to CFG to set

of MSAs. Vertices B1, B2, B3, B4 are the basic blocks

formed from java bytecode. There exists an O(m + n log

n) time algorithm to compute a min-cost arborescence [13].

Alternately, another approach for converting a CFG to MST

using union find is used by popular compilers like llvm and

gcc for security purposes [?]. One known disadvantage of

using CFGs and MSTs for security is that dynamic link

library calls cannot be verified.

C. Intrusion Detection Systems

Traditionally, IDS checks for known malware in programs

by performing signature matching on a threat database [20].

Signature match using exact string matching is limited in

its scope. This is because variants of same attack will have

different signatures. Recently, methods to detect new mal-

wares using statistical machine learning have been proposed.

Static analysis using CFG is another efficient way to detect

intrusions but it is very complex [21]. Converting a CFG

to a string and implementing string matching is another

way to deal with this problem but the solution will not

be polynomial. Also, CFG at basic block level can have

basic block variants that look different but perform the

same function. To deal with these shortcomings, many ap-

proximate matching techniques have been proposed. Tracing

applications to get their CFG is another approach that is

used in applications like xtrace, pivottrace etc [22], [23].

In case of big data systems, data nodes usually have the

same processor architecture. Hence it can be assumed that

there will be no variants when the CFG is constructed at

byte-level. It is then sufficient to verify similarity among the

CFGs of two processes to confirm coherence in the nodes

of a big data system.

III. PROPOSED TECHNIQUE

In this section, we describe our proposed two-step intru-

sion detection technique for big data systems. The first step

involves capturing the control-flow of a process running on

a datanode of the big data system. The second step involves

process-level similarity check followed by consensus among

replica datanodes.

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 47

ISBN: 1-60132-427-8, CSREA Press ©

(a) Steps in Generating Process Signatures

(b) Steps in Matching Process Signatures

Figure 3: Proposed Algorithm for Intrusion Detection

A. Generating Process Signatures

In this work, we emphasize on process level intrusion

detection by observing coherence in the behavior of dupli-

cate processes running on replica datanodes of a distributed

big data system. To capture the program behavior, the first

step is to identify a representation of the program that has

the information we need and filters out all other data. We

call this representation as the program signature. Since our

goal is to identify intrusions from control-flow mismatch,

our program signatures should contain all possible control

flow information of a program.

Compiled source code of a program is generally used to

generate static CFG. Since most big data frameworks use

a virtual machine (like JVM), an instruction level CFG in

this context is generated from java byte code. In this work,

disassembled object code (DOC) from java byte code is

used as input to generate the CFG at instruction level. It

is important for the program signature to contain only the

information that is necessary. Hence, every CFG is converted

into a set of MSTs that are later used to generate the program

signature. In this work, we propose the idea of representing

a program by a set of MSTs/MSAs that can be extracted

from a byte-level CFG using Edmonds algorithm. This set

of MSTs that are extracted from a CFG are further filtered to

only the set of edge-disjoint MSTs. There are many versions

proposed for Edmonds algorithm [13], [14], [15] and for this

work we used a version from NetworkX graph library [31]

that generates edge disjoint spanning trees from the root

vertex of a given digraph. Once a minimal representation

of the logic in a program is obtained in the form of an

MSA, it is converted into a string by listing the node list

first followed by edge list, which is in accordance to the

DOT format representation.

The length of a MST string in DOT format is dependent

on program size. To make the comparison step faster, we

convert the variable length MST strings of a program to

fixed length strings using hashing. The extracted set of edge-

disjoint MSTs are hashed using popular hashing algorithms

like SHA or MD5 to generate a set of fixed-length hash

strings. Since a sparse graph like CFG can have multiple

MSAs, the program signature can be a single hash string

or a set of hash strings. Having all possible MSAs in the

program signature makes the graph similarity check more

reliable. In the end, a program signature is a set of fixed-

length strings.

Program signatures are encrypted before being shared

with replica datanodes for tighter security. The private key

for encryption is generated from a harcoded master key if we

use secure hardware like the one proposed in our previous

work [5]. Every datanode in a big data system runs the

proposed profiling method for every running process and

it includes all the steps involved in converting the compiled

binary of a program to its program signature. A pictorial

representation of the steps in profiling method is given in

Figure 3.

B. Matching Process Signatures

Replication property of big data systems opens scope for

new methods of implementing application logic level IDS

techniques. Process similarity check among duplicate nodes

of the cluster helps in checking for coherence among the

replica datanodes while performing a write or read operation.

When a process is scheduled to run on a datanode that hosts

the primary copy of a data, a signature for that process is

created by the profiling method (Step 1) of our proposed IDS

technique and that signature string is shared with all replica

datanodes. In the matching method (Step 2), these signatures

received from other datanodes are decrypted and matched

with the local versions of the same process. The results are

shared with all other replica datanodes for consensus. For

secure communication among datanodes, we intend to use

the same secure communication protocol that was proposed

in our previous work [5].

The most important part of the matching method is to

check for similarity (or dissimilarity) between two program

signatures. Generally, graph similarity check can be per-

formed by checking node similarity and edge similarity. The

following points are considered while comparing MSTs to

check for similarity among programs:

• MSTs are sparse graphs obtained from byte-level CFGs.

Hence, checking for path sensitivity is not exponential.

• All edges are assumed to have the same weight of 1.

48 Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

ISBN: 1-60132-427-8, CSREA Press ©

• The total number of MSTs for a CFG is limited (by

Cayley’s formula [26]).

• By Edmonds theorem, a graph which is k-connected

always has k edge-disjoint arborescences.

• Two MSTs are a perfect match if their node sets and

edge sets match exactly.

• If edge set of one MST is a subset of the edge set of

another MST, the source graphs of these MSTs are not

similar.

• Two graphs are similar if for every MST in one graph

there exists a perfect match in the set of MSTs of the

other graph.

• Hashing algorithms like SHA1 or MD5 are quick and

efficient.

Based on the points listed above, the following method

is developed for graph similarity check. Let us consider 2

control-flow graphs G1 and G2. Let <N1, E1> represent

G1 where N1 is the node set of the graph G1 and E1 is

the edge set of the graph. Similarly, <N2, E2> represents

G2 where N2 is the node set of the graph G1 and E2 is

the edge set of the graph. After employing a variation of

Edmonds algorithm on these CFGs (such as finding all edge-

disjoint MSTs), lets us assume that M1 [<N1, E1′>] is the

set of MST/MSA for G1 and M2 [<N2, E2′>] is the set of

MST/MSA for G2. In order to check for similarity in both

graphs G1 and G2, we check if there is a perfect match

in M2 for all MSTs in M1. In order to simplify the match

function, we propose using a hash function on M1 and M2

that creates a unique hash for every MST. Let H1 be a set

of hashes generated from M1 and H2 be the set of hashes

from M2. If any hash in H1 does not exist in H2, we deduce

that the graphs are not equal.

IV. EXPERIMENTAL RESULTS

In this section, the experimental setup and experiments

used for testing the proposed technique are provided. The

results and some analysis are also provided.

A. Setup

An Amazon EC2 [27] m4.xlarge instance running Ubuntu

14.04 is used to generate MSTs (and their hashes) from

CFGs using SageMath. The proposed technique was imple-

mented and tested on an Amazon EC2 big data cluster of

5 t2.micro nodes - 1 master node, 1 secondary master node

and 3 datanodes with a replication factor of 3. The list of

softwares used in conducting our experiments are:

• SageMath [28] is a free open-source mathematics

software system for mathematical calculations.

• GraphML [29] is a popular graph representation for-

mat which can used to represent both CFG and MST.

• Graphviz [30] is open source graph visualization

software that takes input in DOT format and makes

diagrams in useful formats.

Table I: List of Hadoop Map Reduce Examples

E.No Name Description
1 wordmean A map/reduce program that counts the average

length of the words in the input files.
2 pentomino A map/reduce tile laying program to find

solutions to pentomino problems.
3 distbbp A map/reduce program that uses a BBP type

formula to compute the exact bits of pi.
4 aggregate-

wordcount
An Aggregate based map/reduce program that
counts the words in the input files.

5 sec-
ondarysort

An example defining a secondary sort to the
reduce.

6 aggregate-
wordhist

An Aggregate based map/reduce program that
computes the histogram of the words in the
input files.

7 ran-
domwriter

A map/reduce program that writes 10 GB of
random data per node.

8 teravali-
date

Check the results of the terasort.

9 qmc A map/reduce program that estimates the value
of Pi using a quasi-Monte Carlo (qMC) method.

10 wordstan-
darddevia-

tion

A map/reduce program that counts the standard
deviation of the length of the words in the input
files.

11 wordme-
dian

A map/reduce program that counts the median
length of the words in the input files.

12 bbp A map/reduce program that uses Bailey Borwein
Plouffe to compute the exact digits of pi.

13 teragen Generate data for the terasort.
14 sudoku A Sudoku solver.
15 wordcount A map/reduce program that counts the words in

the input files.
16 multi-

filewc
A job that counts words from several files.

• NetworkX [31] is a Python language software package

that provides graph algorithms like Edmonds and VF2.

• Control-flow graph factory [32] is a software that

generates CFGs from java bytecode (class file) and

exports them to GraphML or DOT formats.

B. Experiments

The proposed intrusion detection technique was tested

using 16 hadoop map-reduce examples that can be found

in all hadoop distributions. These examples cover a wide

range of big data applications as listed in Table I. The

class files of these examples are readily available in the

hadoop distributions. First, control-flow graph factory [32]

was used to generate control flow graphs from the class files.

These graphs are stored in graphml format and given as

input to a simple SageMath [28] script that uses NetworkX

library [31] and computes the edge-disjoint MSAs and

hashes them using MD5. A C++ application was used to

implement encryption and secure communication needed for

the proposed IDS technique. The implementation was based

on framework from [5]. The hashes are fixed length strings

and so we restrained to using a basic numeric key based

left/right shift for encryption/decryption of messages. Since

there are no benchmarks for some of these examples, we

executed them with minimum input requirements.

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 49

ISBN: 1-60132-427-8, CSREA Press ©

Table II: Hadoop Map Reduce Examples - Program level time metrics in seconds

E.No Example Profiling
method

CFG to
MSA
set

Hashing Matching
method

Avg
Hash
Match

Consensus Proposed Exec
Time % Time

1 wordmean 0.0216 0.0216 7.89E-05 0.0190 0.0002 0.0187 0.0407 6.988 0.58%

2 pentomino 0.0288 0.0288 8.70E-05 0.0196 0.0013 0.0182 0.0485 4.914 0.99%

3 distbbp* 0.0567 0.0567 6.29E-05 0.0150 0.0019 0.0130 0.0718 28.58 0.25%

4 aggregatewordcount 0.0070 0.007 5.70E-05 0.0145 0.0002 0.0143 0.0215 19.002 0.11%

5 secondarysort* 0.0199 0.0199 5.10E-05 0.0072 0.0018 0.0054 0.0272 11.657 0.23%

6 aggregatewordhist 0.0066 0.0066 4.20E-05 0.0135 0.0012 0.0122 0.0201 18.024 0.11%

7 randomwriter 0.2561 0.2561 8.58E-05 0.0217 0.0025 0.0191 0.2779 29.111 0.95%

8 teravalidate 0.0181 0.0181 5.20E-05 0.0169 0.0001 0.0168 0.0351 5.958 0.59%

9 qmc* 0.0238 0.0238 7.39E-05 0.0202 0.0015 0.0186 0.0440 11.657 0.38%

10 wordstandarddeviation 0.0193 0.0193 7.89E-05 0.0098 0.0021 0.0076 0.0292 7.112 0.41%

11 wordmedian 0.0312 0.0312 6.20E-05 0.0208 0.0020 0.0187 0.0520 7.028 0.73%

12 bbp 0.0415 0.0415 9.08E-05 0.0118 0.0003 0.0115 0.0534 6.865 0.78%

13 teragen 0.0169 0.0169 5.51E-05 0.0131 0.0023 0.0108 0.0301 4.905 0.61%

14 sudoku* 0.0177 0.0177 5.60E-05 0.0156 0.0006 0.0150 0.0334 11.657 0.29%

15 wordcount 0.3672 0.3672 6.99E-05 0.0221 0.0023 0.0197 0.3893 7.034 5.54%

16 multifilewc 0.0159 0.0159 5.20E-05 0.0118 0.0001 0.0116 0.0277 5.963 0.47%

Average Values 0.0593 0.0592 6.59E-05 0.0158 0.0013 0.0144 0.07516 11.657 0.81%

C. Results

Table II, Figures 4a and 4b show the results of our

experiments. Figure 4a shows the comparison between the

time taken to run the hadoop map-reduce examples on a

big data cluster and the time taken to run the proposed

intrusion detection technique. The execution times for some

examples (represented by * in table II) are inconsistent

among multiple runs. We can notice from table II that only

0.81% of time taken to execute an example is needed to

analyze it for intrusion detection. The time needed to run

the proposed detection technique includes (a) time taken to

create CFG for the main method from the class file; (b) time

taken to extract MST set from CFG; (c) time taken to hash

the MSTs and encrypt them and; (d) time taken to check

for similarity among duplicate processes by comparing the

program signatures. All of these values can be found in table

II. The last row of this table gives the average values. It can

be noticed from Figure 4b that the time required by the

proposed technique is influenced by the profiling method

trying to extract MSAs from CFG, particularly when there

are more than one MSAs for a CFG. Though the matching

method performance is directly proportional to the square of

the size of the number of edge-disjoint MSAs in a CFG i.e.

O(n2) worst case complexity, we observed that it is rare to

have more than a couple of edge-disjoint MSAs in a CFG

because of the sparse nature of CFG.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel approach to detect

program level intrusions in big data systems with help of

control flow analysis. The main idea is to use the replication

property of big data systems and check for coherence in

program behavior among replica datanodes. Behavior of a

program is modeled by extracting a MSA set representation

(a)

(b)

Figure 4: A time comparison between (a) Proposed IDS

technique and run-time for map-reduce examples. (b) Profil-

ing and matching methods of the proposed IDS technique.

of its CFG. Similarity check among duplicate programs is

performed by a complete matching among hashed sets of

MSAs. Experiments were conducted on real-world hadoop

map-reduce examples and it is observed that the proposed

technique takes only 0.8% of execution time to identify

intrusions. The naturally sparse nature of CFGs helps in

achieving this low overhead. For future work, we would like

to explore graph string matching and compare the proposed

50 Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

ISBN: 1-60132-427-8, CSREA Press ©

matching method (step2) with other graph isomorphism

techniques.

REFERENCES

[1] Dean, Jeffrey, and Sanjay Ghemawat. ”MapReduce: simplified
data processing on large clusters.” Communications of the
ACM 51.1 (2008): 107-113.

[2] White, Tom. ”Hadoop: The definitive guide.” O’Reilly Media,
Inc., 2012.

[3] Zaharia, Matei, et al. ”Spark: cluster computing with working
sets.” Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing. 2010.

[4] OMalley, Owen. ”Integrating kerberos into apache hadoop.”
Kerberos Conference. 2010.

[5] Aditham, Santosh, and Nagarajan Ranganathan. ”A novel
framework for mitigating insider attacks in big data systems.”
Big Data (Big Data), 2015 IEEE International Conference on.
IEEE, 2015.

[6] Tan, Zhiyuan, et al. ”Enhancing big data security with collabo-
rative intrusion detection.” Cloud Computing, IEEE 1.3 (2014):
27-33.

[7] Bruschi, Danilo, Lorenzo Martignoni, and Mattia Monga. ”De-
tecting self-mutating malware using control-flow graph match-
ing.” Detection of Intrusions and Malware & Vulnerability
Assessment. Springer Berlin Heidelberg, 2006. 129-143.

[8] Nagarajan, Vijay, et al. ”Matching control flow of program
versions.” Software Maintenance, 2007. ICSM 2007. IEEE
International Conference on. IEEE, 2007.

[9] Dullien, Thomas, and Rolf Rolles. ”Graph-based comparison
of executable objects (english version).” SSTIC 5 (2005): 1-3.

[10] Abadi, Martn, et al. ”Control-flow integrity principles, imple-
mentations, and applications.” ACM Transactions on Informa-
tion and System Security (TISSEC) 13.1 (2009): 4.

[11] Amighi, Afshin, et al. ”Provably correct control flow graphs
from Java bytecode programs with exceptions.” International
Journal on Software Tools for Technology Transfer (2015): 1-
32.

[12] Gold, Robert. ”Reductions of Control Flow Graphs.” World
Academy of Science, Engineering and Technology, Interna-
tional Journal of Computer, Electrical, Automation, Control
and Information Engineering 8.3 (2014): 417-424.

[13] Gabow, Harold N., et al. ”Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs.”
Combinatorica 6.2 (1986): 109-122.

[14] Uno, Takeaki. An algorithm for enumerating all directed
spanning trees in a directed graph. Springer Berlin Heidelberg,
1996.

[15] J. Edmonds, Optimum branchings, J. Res. Natl. Bur. Stan-
dards 71B (1967), 233240.

[16] Bunke, Horst. ”On a relation between graph edit distance
and maximum common subgraph.” Pattern Recognition Letters
18.8 (1997): 689-694.

[17] Sharir, Micha. ”A strong-connectivity algorithm and its ap-
plications in data flow analysis.” Computers & Mathematics
with Applications 7.1 (1981): 67-72.

[18] Georgiadis, Loukas, Robert Endre Tarjan, and Renato Fon-
seca F. Werneck. ”Finding Dominators in Practice.” J. Graph
Algorithms Appl. 10.1 (2006): 69-94.

[19] Tarjan, Robert E., and Mihalis Yannakakis. ”Simple linear-
time algorithms to test chordality of graphs, test acyclicity
of hypergraphs, and selectively reduce acyclic hypergraphs.”
SIAM Journal on computing 13.3 (1984): 566-579.

[20] Pathan, Al-Sakib Khan, ed. The state of the art in intrusion
prevention and detection. CRC press, 2014.

[21] Wagner, David, and Drew Dean. ”Intrusion detection via static
analysis.” Security and Privacy, 2001. S&P 2001. Proceedings.
2001 IEEE Symposium on. IEEE, 2001.

[22] Wang, William. End-to-end Tracing in HDFS. Diss. Carnegie
Mellon University Pittsburgh, PA, 2011.

[23] Mace, Jonathan, Ryan Roelke, and Rodrigo Fonseca. ”Pivot
tracing: dynamic causal monitoring for distributed systems.”
Proceedings of the 25th Symposium on Operating Systems
Principles. ACM, 2015.

[24] Koutra, Danai, et al. Algorithms for graph similarity and
subgraph matching. Technical Report of Carnegie-Mellon-
University, 2011.

[25] Cordella, Luigi P., et al. ”A (sub) graph isomorphism al-
gorithm for matching large graphs.” Pattern Analysis and
Machine Intelligence, IEEE Transactions on 26.10 (2004):
1367-1372.

[26] Shor, Peter W. ”A new proof of Cayley’s formula for counting
labeled trees.” Journal of Combinatorial Theory, Series A 71.1
(1995): 154-158.

[27] Amazon, E. C. ”Amazon elastic compute cloud (Amazon
EC2).” Amazon Elastic Compute Cloud (Amazon EC2) (2010).

[28] Sage Mathematics Software (Version 4.0), The Sage Devel-
opers, 2016, http://www.sagemath.org.

[29] Brandes, Ulrik et al. Graph Markup Language (GraphML).
CRC (2013).

[30] Emden R. Gansner and Stephen C. North. ”An open graph
visualization system and its applications to software engineer-
ing.” SOFTWARE - PRACTICE AND EXPERIENCE 30.11
(2000): 1203-1233.

[31] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart,
Exploring network structure, dynamics, and function using
NetworkX, in Proceedings of the 7th Python in Science Confer-
ence (SciPy2008), Gel Varoquaux, Travis Vaught, and Jarrod
Millman (Eds), (Pasadena, CA USA), pp. 1115, Aug 2008

[32] Alekseev, Sergej, Peter Palaga, and Sebastian Reschke. ”Byte-
code Visualizer.” Control Flow Graph Factory. N.p., 2008.
Web. 24 Mar. 2016.

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 51

ISBN: 1-60132-427-8, CSREA Press ©

