
Data and Parity block Placement Policy
to enhance storage efficiency and utilization

Dayeon Kim1, and Dongryul Shin2

12Department of Electrical and Computer Engineering, SungKyunKwan University, Su-won, Korea

Abstract - HDFS which is known as Hadoop Storage
manages fault-tolerance by data block replication. Replicas of
data blocks are transmitted to other datanodes in a rack
awareness manner. However prior HDFS storage
management method wastes storage spaces and makes the
situation of unbalanced cluster state. Proposed solution in this
paper can save the storage space and maintain the balanced
state of the entire cluster.

Keywords: HDFS, Parity block, Balancer

1 Introduction
 HDFS(Hadoop Distributed File System) is a typical
storage of the Hadoop. Hadoop Storage is a block structured
file system. It splits each file into the block of a fixed size and
saves each block in the distributed storage node called “data
node.” Hadoop picks out the datanode to save the block at
random. HDFS maintains the fault-tolerance in a way that
makes a number of replica and saves them into the separate
datanodes[1]. For example, in case of a file that consists of 6
data blocks and the replica parameter that is set to 3,
additional storage spaces as much as 12 block sizes are
needed. In other words, maintaining fault-tolerance based on
replication makes storage waste. It is particularly inefficient
when approachless file is saved in the storage.

To save the storage space, It is possible to replace the block
replicas with parity block[2]. It is possible to save storage
space using parity block. But additional policy is needed to
maintain fault-tolerance characteristic of prior block replica
based method and balanced state of the entire cluster. Data
block and Parity block placement policy is proposed in this
paper to save the HDFS storage space efficiently and maintain
balanced state of the cluster.

2 Related Work
2.1 HDFS

 Data file is divided into fixed size(default 64MB) of data
blocks. HDFS maintains fault-tolerance by copying these data
blocks. Data block and block replicas are allocated at the
runtime instead of prior rule of block allocation. Hadoop
selects the data nodes to save each data blocks randomly. It

makes duplications of data block according to data block
replica parameter. HDFS block placement uses rack
awareness for fault-tolerance by placing one block replica on
a different rack. To maintain balanced state of the HDFS
cluster, It is essential to reassign the data blocks at the run
time.

2.2 Replacement of block replica with parity block.

 To maintain the fault-tolerance using parity block, stripe
configuration has to be preceded. A stripe is set using the data
blocks which is located in same datanode. This configuration
has the advantage and disadvantage. The advantage is that
low network costs are needed when encoding the data blocks
to make parity block. Because parity blocks are encoded using
data blocks which are located in same datanode, there is a
problem that all parity blocks have to be renewed when
updating or deleting the file. Hadoop is designed to process
the Write-only-Read-many jobs, so stripe is configured using
data blocks in the same data node. Figure 1 shows the stripe
configuration of each file A, file B, and file C.

Figure 1 Stripe configuration

Stripe is set of data blocks and parity blocks. Parity block is
encoded by data blcoks in same data nodes. It is possible to
restore the broken data blocks as many as the number of parity
blocks that consists same stripe.

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 117

ISBN: 1-60132-427-8, CSREA Press ©

3 Proposed solution
 When finishing the allocation of data blocks to the
HDFS, parity block is encoded using the data blocks in the
same node. After encoding, namenode transmit “Block Move”
instruction to datanode to distribute the blocks. To restore the
data blocks when node failure occurs, there are 3 block
placement policies[3]. Firstly, don’t allocate the original data
blocks that composes same stripe in the same data node.
Secondly, don’t allocate the original data block and parity
block that composes same stripe in the same data node. Lastly,
don’t allocate the parity blocks that composes same stripe in
the same data node.

When namenode gives “Move Block” command, it evaluates
the utilization of each data nodes as proposed in [4] to
overcome the uneven block distribution scenario. Proposed
solution is represented in a mathematical standpoint as
follows :

Assumptions

 and are used space and total capacity of a datanode
respectively.

 and are datanode and cluster utilization respectively.
 and are used space and total capacity of cluster.

 is Threshold value.
 Datanode and cluster utilization can respectively be
expressed as follows. If Data node is not the state of
overutilization, it is added to the target nodes. Distinction of
overutilization is decided using formula (3)

(1)

(2)

(3)

 Figure 2 depicts the flow of proposed solution. When
namenode gets the block encode command, namenode collects
the block list from each data nodes and construct the stripe.
Then it transmits the encode command with stripe information
to the datanodes. Datanode encodes each stripe and make a
parity block. When Encoding process is done, namenode
evaluates the utilization of each datanodes and select the target
nodes to move the blocks. And it order “Move block”
command according to block place policies.

Figure 2 flow of encoding and block reallocation

f
4 Conclusion
 When Parity block is used to maintain fault-tolerance, Only
(P/G)*100% of Additional space to save the parity block is
needed (G = the number of data blocks that composes the
stripe, P = the number of created parity blocks). In case of
HDFS, it needs 200% of additional space to save the
duplications of original data block. So it saves the storage
space efficiently. Also, proposed solution helps to keep the
cluster in a balanced state when an HDFS client is trying to
write data.

References

[1] Shvachko, K. et al. "The Hadoop Distributed File
System," IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pp.1-10, 2010

[2] Park, Chan-Ik. "Efficient placement of parity and data to
tolerate two disk failures in disk array systems." Parallel and
Distributed Systems, IEEE Transactions on 6.11 (1995):
1177-1184.

[3] , , , , , .

(2013). [] Hadoop

. :

, 19(3), 144-148.

[4] Nchimbi Edward Pius, Liu Qin, Fion Yang, Zhu Hong
Ming. “Optimizing Hadoop Block Placement Policy &
Cluster Blocks Distribution.” International Journal of
Computer, Electrical, Automation, Control and Information
Engineering Vol:6, No:10, 2012, 1282-1288

118 Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

ISBN: 1-60132-427-8, CSREA Press ©

