
Simulating Spatial Correlation for Catastrophic Events

Georg Hofmann
Validus Research∗, Waterloo, Ontario, Canada

Abstract— Catastrophe models calculate the stochastic dis-
tributions of loss originating from events like hurricanes
and earthquakes. These models are typically based on a
stochastic event catalog. For each event spatial correlation
needs to be simulated. The standard approach is based on
the evaluation of a copula. However the complexity of the
corresponding algorithm is O(n3) and it becomes difficult
to execute for n in the thousands. So as the number n of
locations in the footprint of the event grows, this approach
quickly becomes infeasible. We propose a slight modification
of the well-know Kriging technique, in order to solve this
problem. With our solution the creation of simulation data
for catastrophe models becomes manageable with the use of
Big Data techniques.

Keywords: Simulation, Spatial Correlation, Copula, Catastrophe

Model, Kriging

1. Introduction
Catastrophe models are very common tools in the insur-

ance industry. They are used, among other things, to predict

distributions for financial loss originating from events like

hurricanes and earthquakes. These models are usually based

on a stochastic event catalog. For each simulated event in

this catalog it is important to quantify uncertainty in the

hazard and the vulnerability of structures affected. For this

so-called secondary uncertainty it is important to understand

spatial correlation. Claims data for historic earthquake losses

show that there is a relationship between the distance of two

locations and their loss correlation.

In this paper we start from the assumption that such a

spatial relationship is given and provide a methodology to

simulate secondary uncertainty with the prescribed correla-

tion. The traditional approach to this simulation would be

to compute a copula directly. However, this approach does

not scale well computationally as the number of locations

increases. Instead we propose using a copula on a coarser

subset of locations and to interpolate for the finer set using

a technique similar to the well-known method of Kriging.

As this is an approximation of the intended correlation, its

accuracy needs to be investigated. We prove results that

provide upper and lower bounds for the accuracy of the

simulated correlation.

∗ At the time of the preliminary research, Kai Cui was a member of
the Validus Research team. Thanks go to him for adding the Krigging
methodology to the mix of interpolation methods initially investigated.

With the proposed approach simulating single events be-

comes computationally feasible. A code example is provided

in the appendix. However, catastrophe models often simulate

many events in order to capture the full stochastic nature

of a peril. Simulating as many as 1 million events is

not uncommon. Implementing our approach in Big Data

framework with increased computational resources allows

this to be accomplished.

2. A normalized Kriging approach
In this section we define the necessary details for the

proposed normalized Kriging approach. The problem at

hand can be summarized in the following way: For a set

of locations (referred to in the introduction as the coarser

set) random variables are defined. They follow a covariance

structure. The objective is the following: For a new location

define a random variable as a linear combination of the

given ones, such that the covariance structure is closely

approximated.

The following special case is instructive: If the locations in

the coarser set have normally distributed random variables,

then so does a linear combination of them. If in addition to

that the covariance structure c(·, ·) satisfies c(x∗, x∗) = 1
for all locations x∗, then all random variables will follow

the standard normal distribution. In this case the covariance

structure can equivalently be expressed by a correlation

structure.

This case is particularly relevant for simulations. The

locations in the coarser set can be simulated using a Gaussian

copula. The simulation can be extended to any location out-

side of the coarser set while maintaining a standard normal

distribution and approximating the desired correlation. The

code presented in the appendix implements this particular

simulation.

We use the variable x with subscripts to refer to locations.

For any pair of locations (x∗, x∗∗) we denote by c(x∗, x∗∗)
the target covariance of the two locations. Suppose the n
locations x1, x2, . . . , xn in the coarser set have the random

variables f(x1), f(x2), . . . , f(xn). Further, suppose they

satisfy

Cov
(
f(xi), f(xj

)
) = c(xi, xj)

for i and j = 1, 2, . . . , n.

For every location x∗ the objective is to define the

random variable f(x∗) as a linear combination of the

98 Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

ISBN: 1-60132-427-8, CSREA Press ©

f(x1), f(x2), . . . , f(xn) in a way such that

Var(f(x∗) = c(x∗, x∗) and

Cov(f(x∗), f(xi)) ≈ c(x∗, xi)

for all i.
Set

C =

⎛
⎜⎝c(x1, x1) · · · c(x1, xn)

...
. . .

...
...

c(xn, x1) · · · c(xn, xn)

⎞
⎟⎠

We use the notation

f(x) =

⎛
⎜⎝f(x1)

...

f(xn)

⎞
⎟⎠ and c(x∗, x) =

⎛
⎜⎝c(x∗, x1)

...

c(x∗, xn)

⎞
⎟⎠ .

The well-known Kriging estimator f̂ is defined in the

following way:

f̂(x∗) =
(
f(x)

)T
C−1c(x∗, x)

It immediately follows that f̂(xi) = f(xi) for each i =
1, . . . , n. It also can be calculated that

Cov(f̂(x∗), f̂(xi)) = c(x∗, xi).

In other words, Kriging models the prescribed covariance.

On the other hand we will prove in this article that

Var(f̂(x∗)) ≤ c(x∗, x∗)

and in general, equality does not hold.

In other words, Kriging does not preserve variance in the

same way that it preserves covariance. For the application

that we have in mind, the preservation of variance is more

important than that of covariance. That is why it is stated

as an objective. This leads us to using a normalization: We

define the normalized estimator:

f(x∗) =

√
c(x∗, x∗)

Var(f̂(x∗))
f̂(x∗)

This estimator preserves variance:

Var(f(x∗)) = c(x∗, x∗).

But as a consequence, covariance will be overestimated:

Cov(f(x∗), f(xi)) =
c(x∗, x∗)

Var(f̂(x∗))
Cov(f̂(x∗), f̂(xi))

≥ c(x∗, xi)

In this article we will derive an upper bound for this

overestimation.

3. Upper bound for variance
As promised in the previous section, we prove a propo-

sition about the lower bound of the estimator variance. The

proof is necessary for the foundation of the proposed bound.

But it is not indispensable for the further understanding of

the applications in later sections.

Proposition 3.1:

Var(f̂(x∗)) ≤ c(x∗, x∗)
Proof: The matrix

C ′ =

⎛
⎜⎜⎜⎝
c(x1, x1) · · · c(x1, xn) c(x1, x

∗)
...

. . .
...

...

c(xn, x1) · · · c(xn, xn) c(xn, x
∗)

c(x∗, x1) · · · c(x∗, xn) c(x∗, x∗)

⎞
⎟⎟⎟⎠

is positive semi-definite, in particular its determinant is non-

negative.

We will denote the minors of the matrix C by Mi,j and

the minors of the matrix C ′ by M ′
i,j . We compute this

determinant by expanding along the last column:

det(C ′) =
n∑

i=1

c(xi, x
∗) det(M ′

i,n+1)(−1)i+n+1

+ c(x∗, x∗) det(M ′
n+1,n+1︸ ︷︷ ︸
=C

) (−1)2n+2︸ ︷︷ ︸
=1

. (1)

Now compute det(M ′
i,m+1) by expanding along the last row:

det(M ′
i,m+1) =

n∑
j=1

c(x∗, xj) det(Mi,j)(−1)j+n (2)

By reinserting (2) into (1), we obtain:

det(C ′)

=
n∑

i=1

n∑
j=1

c(xi, x
∗) det(Mi,j)(−1)i+j+2n+1c(x∗, xj)

+ c(x∗, x∗) det(C) (3)

Now note that

det(C)C−1 =
(
det(Mi,j)(−1)i+j

)
ij
.

Using this in (3), we obtain

det(C ′)

= − det(C)c(x∗, x)C−1c(x, x∗) + det(C)c(x∗, x∗)

= det(C)(c(x∗, x∗)−Var(f̂(x∗)))

Rearranging this leads to

Var(f̂(x∗)) = c(x∗, x∗)− detC ′

detC
≤ c(x∗, x∗)

This completes the proof.

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 99

ISBN: 1-60132-427-8, CSREA Press ©

4. Lower bound for variance
Similar to the upper bound in the previous section, we

provide a lower bound in this section.

Proposition 4.1: For every i = 1, 2, . . . , n the following

inequality holds:

Var(f̂(x∗)) ≥
(
c(x∗, xi)

)2
c(xi, xi)

.

In other words,

Var(f̂(x∗)) ≥ max
i=1,2,...,n

(
c(x∗, xi)

)2
c(xi, xi)

.

Proof: Define

〈·, ·〉 R
n × R

n → R, 〈a, b〉 = aTC−1b.

This is a scalar product. So the Cauchy-Schwartz inequality

holds:

〈a, b〉2 ≤ 〈a, a〉〈b, b〉
By setting a = c(x, x∗) and b = c(x, xi), we obtain((

c(x, x∗)
)T

C−1c(x, xi)︸ ︷︷ ︸
=ei

)2

≤ (
c(xi, xi)

)T
c(x, x∗)C−1c(x, x∗)︸ ︷︷ ︸

Var(f̂(x∗))

where ei denotes the ith unit vector. This can be simplified

to (
c(xi, x

∗)
)2 ≤ c(xi, xi)Var(f̂(x

∗))

That completes the proof.

5. Correlation bounds
We bring the upper and lower bounds derived in the

previous two sections together in a form that can be directly

applied in examples.

Consider the ratio of the achieved to the intended corre-

lations

Ri(x
∗) =

ρ
(
f(x∗), f(xi)

)
ρ
(
f(x∗), f(xi)

) =
Cov

(
f(x∗), f(xi)

)
Cov

(
f(x∗), f(xi)

)
=

c(x∗, x∗)

Var
(
f̂(x∗)

) .
Since we want to measure, how closely ρ

(
f(x∗), f(xi)

)
is approximated by ρ

(
f(x∗), f(xi)

)
, we want to understand,

how close Ri(x
∗) is to 1. We can apply the bounds found

for Var(f̂(x∗)) to the ratio above to obtain:

min
j=1,2,...,n

c(xj , xj)c(x
∗, x∗)(

c(x∗, xj)
)2 ≥ Ri(x

∗) ≥ 1

This implies that the technique proposed in this article

generally overstates correlation. This can be understood

intuitively by considering the extreme case where the coarser

set consists of only one location. In that case pairs of

locations from the finer set will receive full correlation,

regardless of the intended correlation.

The inequality above, however, provides an upper bound

to the correlation overstatement. In the next section we will

show in an example that the deviation of the correlation from

the desired value can be reduced by increasing the resolution

of the coarser location set.

6. Controlling the approximation error
in the simulation example

We return to the example of simulating standard normal

variates for each location. In particular the variances of the

variates is 1, so we have c(x∗, x∗) = 1 for ever location x∗.

As an example of a target correlation assume that c(·, ·) be

given by

c(x∗, x∗∗) = exp(−0.002 dist(x∗, x∗∗)),

where dist stands for the distance of two locations on the

earth measured in kilometers.

We require that the ratio R = Ri(x
∗) is between 0.95 and

1.05, which amounts to allowing a 5% error in the simulation

of correlation. In other words, we need to make sure that

R < 1.05. This can be accomplished by assuring that

min
j=1,2,...,n

1(
c(x∗, xj)

)2 ≤ 1.05

This is equivalent to

min
j=1,2,...,n

exp
(
0.004 dist(x∗, xj)

) ≤ 1.05

min
j=1,2,...,n

dist(x∗, xj) ≤ ln(1.05)

0.004
� 12.2

In other words, as long as the location x∗ is less than 12.2

kilometers from the nearest location in the coarser location

set, the desired accuracy is achieved.

7. Conclusion
Advanced catastrophe models simulate the correlation

observed among the losses originating from a catastrophic

event. The traditional copula approach is computationally in-

feasible due to the large number of locations to be considered

in the event footprint. We provide an alternative approach to

approximating the correlation and show how the accuracy of

the approximation can be controlled. This allows catastrophe

models with millions of simulated events to be implemented.

100 Int'l Conf. on Advances in Big Data Analytics | ABDA'16 |

ISBN: 1-60132-427-8, CSREA Press ©

Fig. 1: Output from the R code. Visualization of the copulas with a coarse grid (left) and a finer grid (right).

Appendix
The code below runs in R version 3.1.0 once the MASS

package is loaded. Its output can be viewed in Figure 1.

This code is part of the article
"Simulating Spatial Correlation

for Catastrophic Events"

Preset constants.
m1.nrow <- 12
m1.ncol <- 10
m1.num <- m1.nrow * m1.ncol
m2.nrow <- 720
m2.ncol <- 500
m2.num <- m2.nrow * m2.ncol

Functions
target.cor <- function(x1, y1, x2, y2){
dist <- sqrt((x1 - x2) ^ 2 + (y1 - y2) ^ 2)
return(exp(- 0.01 * dist))

}

Main Code
i1 <- rep(1:m1.nrow, times = m1.ncol)
j1 <- rep(1:m1.ncol, each = m1.nrow)

x1 <- i1 * m2.nrow / m1.nrow
y1 <- j1 * m2.ncol / m1.ncol

x2 <- rep(1:m2.nrow, times = m2.ncol)
y2 <- rep(1:m2.ncol, each = m2.nrow)

covar.mat <- outer(X = 1:m1.num, Y =
1:m1.num, FUN = function(i, j)

target.cor(x1 = x1[i], x2 = x1[j], y1 =
y1[i], y2 = y1[j]))

covar.mat2 <- outer(X = 1:m1.num, Y =
1:m2.num, FUN = function(i, j)

target.cor(x1 = x1[i], x2 = x2[j], y1 =
y1[i], y2 = y2[j]))

require(MASS)
set.seed(606)
sim.1 <- mvrnorm(mu = rep(0, m1.num), Sigma

= covar.mat)
covar.mat.inv <- solve(covar.mat)
tmp.stdev <- sqrt(colSums((covar.mat.inv %*%

covar.mat2) * covar.mat2))
sim.2 <- as.vector((t(sim.1) %*%

covar.mat.inv) %*% covar.mat2) /
tmp.stdev

layout(matrix(c(1,2), ncol = 2))
par(mar=c(0,1,0,1))
image(pnorm(matrix(sim.1, ncol = m1.nrow,

byrow = TRUE)),
xaxt="n", yaxt="n", bty = "n")

image(pnorm(matrix(sim.2, ncol = m2.nrow,
byrow = TRUE)),
xaxt="n", yaxt="n", bty = "n")

Int'l Conf. on Advances in Big Data Analytics | ABDA'16 | 101

ISBN: 1-60132-427-8, CSREA Press ©

