
Modeling Parallel Applications for Scalability Analysis: An
approach to predict the communication pattern

Javier Panadero1, Alvaro Wong1, Dolores Rexachs1 and Emilio Luque1
1Department of Computer Architecture and Operating System (CAOS),

University Autonoma of Barcelona, Spain

javier.panadero@caos.uab.es, alvaro.wong@caos.uab.es, dolores.rexachs@uab.es, emilio.luque@uab.es

Abstract— The performance of message-passing applica-
tions varies depending on the parallel system, causing poten-
tial inefficiencies when its number of processes increases. By
this reason, it is critical to predict the application behavior
before executing it, in order to use the system efficiently. We
propose a methodology that allows us to predict the appli-
cation scalability behavior in a specific system, providing
information to select the most appropriate resources to run
the application. The methodology strives to use a bounded
analysis time, and a reduced set of resources. This paper
presents the general methodology, focusing on validating
the step of the methodology concerning to the generation
of scalability communication model. We can predict the
evolution of the communication pattern using a reduced set
of resources. Analyzing from 16 to 256 processes, we can
predict the communication pattern for 4,096 processes.

Keywords: Modeling MPI applications, Application Scalability,

Communication pattern

1. Introduction
With the advent of multicore and the constant hardware

evolution, High Performance Computing (HPC) clusters

have increased the number of cores significantly [1]. The

users of these systems want to get the maximum benefit

from this large number of cores, scaling their applications.

To achieve an efficient use of these HPC systems using a

large number of cores, a point to consider before executing

an application is to know its performance in the system. It

is known that using more resources does not always imply

a higher performance. The lack of this information may

produce an inefficient use, resulting in not achieving the

expected speedup.

Parallel applications are composed of a set of phases,

which are segments of code delimited by communications

events, that are repeated throughout the application [2].

These phases were written in the application code using

specific communicational and computational patterns, which

follow behavior rules. When the application increases the

number of processes, the number of phases remains con-

stant, but its patterns change their behavior following their

behavior rules, being functionally constant. To obtain these

phases, we use the PAS2P tool [3], which identifies the

application phases and allows us to create the application

signature. As is shown in fig. 1, the signature only contains

the relevant application phases and their repetition rates

(weights). Therefore, it allows us to cover approximately

97% of the total application code, in about 1% of the

application execution time.
We propose a methodology to analyze and predict the

strong scalability [4] behavior for message-passing applica-

tions on a given system, by running a set of small-scale

signatures. It strives to use a bounded analysis time, and a

reduced set of resources. Moreover, the methodology could

also be useful for scheduling and code optimization.
The methodology focuses on characterizing and ana-

lyzing the communication and computational patterns of

each phase, in a transparent way (without analyzing and

modifying the source code), from a set of executions for

a small-scale signatures, in order to model general behavior

rules, to build the Scalable Logical Trace (STL), which is

machine independent, depending on the way in which the

application was developed. The STL will be generated for a

N number of processes, and it will be used in the future, to

predict the communication and computational time, in order

to obtain the application execution time.
We present an overview of the methodology, focusing on

explain in detail the scalability communication model, to

predict the evolution of the communication pattern (spatial

and volume parameters) of each phase as the application

scales. In a previous paper [5], the key ideas of the method

were presented. In this study, the whole procedure and

its algorithms are explained in detail. In order to validate

the method, we executed from 16 to 256 processes and

we predict the communication pattern (Spatial and volume

parameters) for 4,096 processes, which is validated with the

real communication pattern obtained with PAS2P.
This paper is organized as follows: Section II presents the

related work, Section III presents the proposed methodology,

Section IV presents the scalability communication model,

Section V presents experimental validation and finally Sec-

tion VI, the conclusions and future work.

2. Related Work
Similar works to our approach have been presented in the

literature. Wu et al. [6] generate the application communi-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 191

Fig. 1: Relevant phases that represent the signature.

cation trace for a large number of nodes, by extrapolating

from a set of smaller traces. Their methodology is focused

on SPMD (Single Program, Multiple Data) applications

with stencil/mesh topology. Our proposal differs from this

work, because it covers a wide range of MPI application,

not only SMPD applications. Zhai et al [7] present the

tool FACT, which collect MPI communication traces and

extract application communication patterns through program

slicing. This tool uses a set of code analysis techniques to

generate a program slice that only contains the variables and

code sections related to MPI events, and then executes the

program slice to acquire communication traces. This tool

allows to predict the communication pattern for a specific

number of processes, our methodology differs because we

execute a set of small-scale signatures to predict evolution

of the communication pattern as the application scales.

There are other works based on analytical regression

and machine learning methods, from executions for small-

cores. Barnes et al [8] propose studying the scalability using

regression models, isolating computation and communica-

tion to predict the application performance. Ipek et al [9]

present a different approach based on multilayer neural

networks. From a training set of the application executions,

the application model is created automatically. This approach

is interesting for its ease of use and its obliviousness to

details of application internals. These works are based on the

input parameter space to obtain the regression models and

extrapolate its behavior. Our methodology focuses on obtain-

ing the general behavior rules for each relevant application

phase, to extrapolate its behavior to predict the application

performance.

3. Proposed methodology
The main goal of the methodology is to analyze and pre-

dict the strong scalability behavior for parallel applications

on a given system, using as input a limited set of small-scale

signatures, as is shown in fig. 2.

The methodology is made up of three steps: Application

characterization, Generation of the logical application model

and Performance prediction.

As we mentioned before, the parallel applications are

typically composed of patterns of computation and com-

munication that are repeated throughout the application.

These patterns are grouped in phases, which compose the

application signature. The number of phases remains con-

stant when the number of processes increases, but their

patterns change their behavior following behavior rules. The

objective of the characterization step is to obtain information

about the communication and the computation patterns of

each phase, to model the general behavior rules, which

will be used to predict their behavior, as the number of

the application processes increases. The methodology is

restricted to applications where the communication pattern

follows deterministic behavior rules.

To obtain the predicted application execution time, we

carry out a set of signature executions for small-scale, which

will be analyzed to obtain information from each phase.

When the signature is executed in the system, it generates

a trace file per process, which contains information of each

phase. The trace provides information about the phase id,

the type of MPI primitive, the source and destination of

the communication, the communication volume in bytes, the

computational time in nanoseconds and finally, the number

of instructions for the computational time.

Once the phases have been characterized, their commu-

nication pattern, the computational pattern and the weight

of each phase are analyzed and modeled to generate the

general behavior rules, in order to construct the Scalable

Logical Trace (STL) for a N number of processes. The

input parameters of the general behavior rules will project

the STL for a specific number of processes. The STL is

composed of the intrinsic parameters for each phase needed

to model the scalability of the parallel application, which are:

the phase ID, communication pattern (spatial and volume

parameters), number of instructions of the computational

time and phase weight. The STL is generated per process

instead of a global trace, with the objective being to model

each process independently.

The STL has to be complemented with the computational

time, in order to generate the physical trace, which is

dependent of the machine, because contains the information

Application Characterization

Computation Communication

Computational
Time

Prediction

S16 S8 SX . . .

Parallel Application

Communication
Model

Computational
Model

Generate the Logical
Trace

W

PAS2P Tool

Relevant Phases

Scalable
Logical
Trace
(STL)

 Ts8 Ts16 Tsx

Mapping

Logical Model

Weight Model
S32

 T32

Weight

Computational
Pattern

Communication
Pattern

Weight Pattern

Computational
Time Phasei

 Physical
Trace

Scalability Prediction

Communication
Time Prediction

Performance Prediction

Fig. 2: Proposed Methodology

192 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

of the STL more the computational times for each phase for a

N number of processes. To predict the computational time,

we use a regression-based model by phase. The physical

trace will be used to predict the communication time and

obtaining the application performance.

To predict the communication time, the physical trace will

be executed by segments of processes in a reduced number

of resources, in an iterative way, until all the processes

have been executed. Once the communication time has been

predicted, the predicted execution time of each phase will be

obtained. Then, we apply eq. 1 to obtain the application per-

formance, where PET is the Predicted application Execution

Time, m is the number of phases, PhaseETi is the Phase i

Execution Time and Wi is the predicted weight of the phase

i. As the objetive of this paper is to focus on explaining the

computation method, we do not explain this step in detail.

PET =
m∑

i=1

(PhaseETi)(Wi) (1)

In the next section, we explain in detail the scalability

communication model, which predicts the evolution of the

communication pattern for a large number of processes.

4. Scalability Communication Model
The scalability communication model comprises the gen-

eral behavior equations and the data volume equations for

each communication of each phase. The general behavior

equations calculate the message destination from the source,

while the data volume equations calculate the size of the

message.

When we analyze the behavior of the phases, we know

that as the application scales, the communications (number

of messages and destinations), the communication volume,

the computational time and the number of instructions of

computation of a phase can change, but the work to be

carried out will still be the same, distributed among more

processes.

To model the communication behavior of each phase, it

is necessary to recognize and relate the phases of the small-

scale signatures. In order to relate the phases for a different

number of processes, we use functional similarity. Two

phases will have functional similarity, when the computation

work to be carried out for both phases is the same, because

is the same code segment, distributed between different

number of processes, changing only the structure of the

communication pattern.

To relate the phases, we use a method which is based

on how the sequence of phases occurs, since it does not

depend on the number of processes, only the way in which

the application was developed. Fig 3 shown an example. As

we can see in the fig. 3.a, the number of phases remains

constant as the application increases from 4 processes to 8

processes. If we focus on the fig. 3.b, where the phases 1

(a) Logical sequence of the application phases during
the execution time for 4 and 8 processes

(b) Behavior of the phases for 4 and 8 processes

Fig. 3: The functional similarity relates the phases for

different number of processes

and 2 are showed in detail, we can see that the behavior

is different from 4 processes to 8 processes, because the

phases have different communication pattern and different

computational time between them, but the work carried out

by the phases is the same, distributed between different

number of processes, because they are in the same logical

position in the application.

Once the phases have been related, the predicted data

volume of each communication will be obtained by math-

ematical regression models, while for obtaining the general

communication rules (Source-Destination), an algorithm has

been proposed. This algorithm is based on obtaining the

communication equations (eq.processes.phase.comm) for each

phase (Local Equations) of the set of small-scale signatures

executed, which identifies the communication pattern for

each phase. From these Local Equations, the General Equa-

tions are modeled, which are used to predict the communi-

cation pattern for a N number of processes. Fig. 4 shows an

example, where it has been considered that each phase has

only one communication, and therefore one local equation.

Once the local equations have been obtained for each phase

of each signature, they are analyzed to model the General

Equations (GEPhi
), as is shown in the figure for phase

1. The algorithm converts the source and destination of the

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 193

Ph2

Ph1

Ph3

Ph4

F1 eq16.1.1 eq32.1.1
eq64.1.1 eq128.1.1

eq16.2.1

eq16.3.1

eq16.4.1

eq32.2.1

eq32.3.1

eq32.4.1

eq64.2.1

eq64.3.1

eq64.4.1

eq128.2.1

eq128.3.1

eq128.4.1

Ph2

Ph1

Ph2

Ph1

Ph3

Ph4

Ph1

Ph2

Ph3

Ph4

Ph3

Ph4

Fig. 4: Obtaining the General Equations from the Local

Equations

communications from decimal to binary to work at bit level.

4.1 Generating the Local Equations
This stage is composed of two steps: a first step of

analysis, in which the information obtained in the charac-

terization stage is analyzed to obtain information about the

communication pattern of each phase, and a second step

of modeling, where the Local Equations for each phase are

generated. The Local Equations are a representation of the

communication pattern of a phase for a specific number

of processes. During the analysis step, the dependencies

between processes, the pattern type: Static (Mesh, Ring, etc.)

or Dynamic (Exchange, Permutation, etc.), and the distance

matrix between processes are obtained for each phase. All

this information is provided to the second step to generate

the Local Equations. In this second step, the Local Equation

of each communication of the phase is obtained using an

algorithm of identification. This algorithm is based on the

fact that the application is well developed, and it executes

a deterministic communication pattern for all the processes,

without non-predictive conditional sentences as the number

of processes increases. The algorithm compares the source-

destination of each send primitive for all the processes of the

phase, to identify the specific rule to obtain the destination

from the source for that number of processes. Moreover, the

repeatability of a set of communications is sought to generate

easier equations and simplify the analysis and modeling for

the General Equations. Finally, the Local Equations for each

communication are generated.

The algorithm uses two different structures to generate the

Local Equations, because the way to predict the communi-

cation pattern is different, depending on the pattern type.

If the pattern is dynamic, the way to obtain the destination

processes is based on the exchange of certain numbers of

source bits, which are called bits involved. For this type of

pattern, the EC1 structure is used. In case of static patterns,

to obtain the destination processes, the distance between

the processes and the repeteability of the communications

are identified. For this type of pattern the EC2 structure

is used. The EC1 structure has as parameters the phase

number (#Phase), the number of communication in the phase

(#Comm), the algorithm type (Exchange, Permutation) and

the list of bits involved, (EC1(p) = {#Phase, #Comm,
Type , List of bits involved }). The EC2 structure has

the number of phase, the number of communication in

the phase and the list of communication distances and its

number of repetitions (EC2(p) = {#Phase, #Comm, list[
communication distances{#repetition}] }).

Fig. 5 shows a brief example of the procedure. We have

a phase with 8 processes (p=8) and three communications.

These three communications compose the communication

pattern of the phase, which is static because it is a 4x2 mesh,

identified in the analysis phase. Then, the EC2 structure

will be used. If we focus on the first communication of the

pattern (Step 1), we generate the matrix distance between

the source and the destination (Step 2). Then, we search

for repetitions, in this case, the sequence {+1,+1,+1,-3} is

repeated two times (Step 3), once for processes from 0 to

3 and another for processes from 4 to 7. Once we have the

sequences and repeteability, we create the Local Equation

with the structure of communication EC2 (Step 4).

Depending of the communication pattern, it can be pos-

sible that the processes of the phase do not have the same

number of communications. With the aim of obtaining the

correct Local Equations, all the processes of the phase

must have the same number of communications for all

the processes, because the algorithm could not relate the

communications properly.

To solve this problem, the algorithm selects the pro-

cess with the maximum number of communications, and

it completes the phase structure for the other processes

with null communications, until all the processes have the

same number. To complete the phase structure with null

communications, the algorithm is based on the fact that

the application is written in a deterministic way and the

communication events follow a logical order with a specific

behavior.

S
S
S
S

S
S
S

S
S
S
S
S

S
S
S

S
S
S
S
S

S
S
S

S

P0

P2
P3

P1

P4
P5
P6

P7

Phase1

P0

P2
P3

P1

P4
P5
P6

P7

S

Fig. 5: Example of generating the Local Equations

194 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

4.2 Modeling the Global Equations
From the Local Equations, the General Equations of

each phase are modeled, which will be used to predict the

communication pattern for a N number of processes. To

generate the General Equations of each phase, the Local

Equations are analyzed in order to model the evolution of the

communication pattern. The method consists of comparing

the Local Equations to model by a function, as the parame-

ters change their values as the number of processes increases,

as is shown in fig. 6. The General Equations have the number

of processes to predict as input. The structure of these

equations is the same as the one for the Local Equations,

the difference is that the parameters have been modeled as a

function. Finally, this structure will be simplified to manage

easier equations to use.

In some applications, when the number of processes in-

creases, the communication pattern expands communicating

with new processes, and new communications appear. To

predict these communications, the algorithm models the

behavior of how these new communications will appear

(number of communications and their destination) for N

processes. Fig. 7 shows this procedure. The signature traces

of processes 2, 4, 8 and 16 were obtained by the signature ex-

ecutions, and we want to predict the communication pattern

for 64 processes. As we can observe, when the number of

processes is increased per two, a new communication appear.

To predict the communication pattern for 64 processes, first

of all, the algorithm models a function to predict the number

of communications of the phase as the application scales.

The function has as input parameter the number of processes

to predict the number of communications. When we the

number of communications of the phase has been obtained,

we apply the General Equations to predict the destination.

Once we have modeled the General Equations and the

communication volume equations, which are obtained by

regression models, we have evolution of the communication

pattern (spatial and volume) for each phase of the applica-

tion. These equations will be used to generate the STL.

5. Experimental validation
In this section, the scalability communication model has

been validated. Of all the experiments that we have made, we

present the BT and CG from the NPB NAS [10] suite, using

as input class D, and the applications: Sweep3D [11] and N-

Body. We have selected this set of applications because of

their distinctive behavior. As an experimental environment,

Fig. 6: Modeling the General Equation from Local Equations

Executed
Predicted

Processes

Communication
Events

Number of
Communications

Fig. 7: Generating new communications

a cluster of 8 nodes with 64 processors AMD Opteron 6262

(512 cores) was used.

To carry out the experimental validation, we follow this

workflow:

a) We executed five signatures for a small-scale and we

obtain their physical traces. Four signatures are used

to generate the model and the last one to validate our

model before predicting. We executed the signatures

with a 1:1 mapping (one process per core).

b) We generate the Local Equations for each phase of the

four signatures executed.

c) We model for each phase the General Equations from

the Local Equations, and the regression equations of

the communication volume.

d) To validate our model, we use the fifth signature to

compare whether the models that we predicted are

correct. If the predicted values are correct, we use these

models to predict for a greater number of processes.

Otherwise, we use the fifth signature to improve our

model and we create another signature with a greater

number of processes to validate the model. We consider

that the generated model is correct if we are able to

predict the communication pattern without error, and

the communication volume with an error less than 10%.

e) Finally, we use these models to generate the Scalability

Logical Trace (STL) for a N number of processes.

To validate the generated STL, we compared them with

the traces obtained through PAS2P tool. We are only in-

terested in their logical information, so for executing the

signatures, we allocate with an x:1 mapping (more than one

process by core). By lack of space, we focus on showing

the experimentation of process 0.

For BT, we executed the small-scale signatures for 16, 36,

64, 81 and 100 processes. We obtained 6 phases. We used the

signatures from 16 to 81 processes to generate the model and

the fifth signature to validate the results. Using the generated

model, we predicted the communication pattern (spatial and

volume) for 1024 processes.

Once we executed the signatures, we generated the com-

munication model for each phase of the application. The

predicted values of the communication pattern (Dest.) were

obtained by the General Equations, which are shown at

the left of Table 1. Due to the type of pattern (static), we

used the EC2 type structure to model the General Equations

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 195

Table 1: Generated Communication Model and predicted communication pattern from these equations

Communication Model Real Phases Predicted Phases
Prediction

Error

Phase Global Comm. Equations Comm. Volume Equations MPI Src- Comm MPI Src- Comm. Comm.

ID (Dest.) (Bytes) Prim. Dest. Volume Prim. Dest. Volume Volume

BT for process 0 with n = 1024 processes

1)f(n) = 1 y(n) = 4E + 07n(−0.997) 1)Isend 0-1 40,560 Isend 0-1 39,883 1.69%

2)f(n) =
√

(n)− 1 y(n) = 4E + 07n(−0.997) 2)Irecv 0 -31 40,560 Irecv 0-31 39,883 1.69%1

3)f(n) =
√

(n)− 1 y(n) = 4E + 07n(−0.997) 3)Wait 0-31 40,560 Wait 0-31 39,883 1.69%

1)f(n) = n−√
(n) + 1 y(n) = 7E + 06n(−0.997) 1)Isend 0-993 6,760 Isend 0-993 6,979 3.13%

2)f(n) = 17 + 2(
√
(n)− 9) y(n) = 7E + 06n(−0.997) 2)Irecv 0-63 6,760 Irecv 0-63 6,979 3.13%2

3)f(n) = 17 + 2(
√
(n)− 9) y(n) = 7E + 06n(−0.997) 3)Wait 0-63 6,760 Wait 0-63 6,979 3.13%

Sweep3D for process 0 with n = 4096 processes

y(n) = 6E + 07n(−1) 1)Send 0-64 15120 Send 0-64 14648 3.2%
1 1) if log2(n)mod2 = 0 →, f(n) =

√
(n)

if log2(n)mod2! = 0 →, f(n) =
√

(2 ∗ n)
2)f(n) = 1 y(n) = 6E + 07n(−1) 2)Recv 0-1 15120 Recv 0-1 14648 3.2%

2 1)f(n) = 1 y(n) = 6E + 07n(−1) 1)Send 0-1 15120 Send 0-1 14648 3.2%

2) if log2(n)mod2 = 0 →, f(n) =
√

(n) y(n) = 6E + 07n(−1) 2)Recv 0-64 15120 Recv 0 -64 14648 3.2%

if log2(n)mod2! = 0 →, f(n) =
√

(2 ∗ n)
CG for process 0 with n = 4096 processes

y(n) = 8E + 08n(−1) 1)Isend 0-1 187504 Isend 0-1 195312 4%
1..18)[#Comm., c(n) = log2(n)/2, y(n) = 8E + 08n(−1) 2)Irecv 0-1 187504 Irecv 0-1 195312 4%

f(y)y=1..#Comm.,c(n) = 2(y−1)], y(n) = 8E + 08n(−1) 3)Wait 0-1 187504 Wait 0-1 195312 4%

...

y(n) = 8E + 08n(−1) 16)Isend 0-32 187504 Isend 0-32 195312 4%

y(n) = 8E + 08n(−1) 17)Irecv 0-32 187504 Irecv 0-32 195312 4%

1

y(n) = 8E + 08n(−1) 18)Wait 0-32 187504 Wait 0-32 195312 4%

N-Body for process 0 with n = 4096 processes

1)f(n) = 1 y(n) = 1E + 07n(−1) 1)ISend 0-1 2342 ISend 0-1 2441 4.0%

2)f(n) = n− 1 y(n) = 1E + 07n(−1) 2)IRecv 0-4095 2342 IRecv 0-4095 2441 4.0%

2)f(n) = n− 1 y(n) = 1E + 07n(−1) 3)WaitAll 0-4095 2342 WaitAll 0-4095 2441 4.0%
1

4)f(n) = 0 y(n) = 1E + 07n(−1) 4)WaitAll 0-0 2342 WaitAll 0-0 2441 4.0%

to predict the communication pattern. This structure has

been simplified and specified for process 0 for readability.

Moreover, in this table, we show the communication volume

regression equations. All these equations have the number

of processes to predict as their input parameter.

At the right of Table 1, we show the real and predicted

communication patterns of phase 1 and 2 for the process

0. The predicted communication pattern was predicted by

means of providing the parameter 1024 (number of pro-

cesses) to the General Equations.

The predicted communication pattern corresponds with

the real one for both phases. The communication volume

was predicted with an error of about 2% for the first phase

and 3% for the second phase. For the other four phases

of the application, the communication pattern was predicted

without error for all of them. In the top of Table 2, we

present a summary of these phases with the predicted error

of communication volume. We show the maximum error of

all the communications of the phase. As we can see, the

communication volume was predicted with a maximum error

of about 4% (phase 5).

For CG, we executed the small-scale signatures for 16,

32, 64, 128 and 256 processes. This application has 3

phases. We used the signatures from 16 to 128 processes

to generate the model and the fifth signature to validate

the results. We predicted the communication pattern for

4096 processes. At the right of Table 1, we show the real

and predicted trace of process 0 for phase 1. Due to the

similarity between the phases, we only show phase 1. At

the left of Table 1, we show the generated equations of

communication for this phase. Due to the type of pattern

(dynamic), we used the EC1 structure to model the General

Equations. For this application, the communication pattern

expands, communicating with more processes as the ap-

plication scales. For this reason, we also have to model

an equation to predict the number of communications of

the phase. The general equation calculates the number of

communications of the phase and their destinations. First

of all, the number of communications is predicted using

the equation #Comm.c(n) = log2(n)/2, this equation

calculates the number of times that the sequence Isend, Irecv

and Wait repeats in the phase. Applying this equation for

4096 processes, the sequence is repeated 6 times. Then,

we apply the equation f(y)y=1..#Comm.c(n) = 2(y−1) to

calculate the destination of the sequence, obtaining a desti-

nation sequence of 1, 2, 4, 8, 16 and 32. The communication

volume was predicted with an error of about 4% for all the

communications of the phase.

For the other two phases of the application, the com-

munication pattern was predicted without error for all of

196 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

them. In Table 2, we present a summary of these phases.

The communication volume was predicted with a maximum

error of about 6% (phase 2).

For Sweep3D, we executed the signatures for 16, 32, 64,

128 and 256 processes. This application has 4 phases. The

fifth signature was used to validate the model. We predicted

the communication pattern for 4096 processes. At the right

of Table 1, we show the real and predicted trace of process

0 for phases 1 and 2. The generated equations are shown in

the left of Table 1. Due to the type of pattern (static), we

used EC2 type structure. The pattern obtained by the General

Equations corresponds to a pipeline wavefront. As we can

see, the predicted pattern corresponds with the real one for

both phases. The communication volume was predicted with

an error of about 3.2% for both phases.

For the other two phases of the application, the communi-

cation pattern was predicted without error for all of them. At

the bottom of table 2, we present a summary of these two

phases. As in phases 1 and 2, the communication volume

was predicted with an error of about 3.2%. This is because

the application sends in its messages the same volume of

bytes in all its phases.

For N-Body, we executed the signatures for 16, 32, 64,

128 and 256 processes. This application has 1 phase. We

used the signatures from 16 to 128 processes to generate

our model and the fifth signature to validate the results. We

predicted the logical trace for 4096 processes. At the left of

Table 1 we show the generated equations for this phase for

process 0. Due to the type of pattern (static), we used the

EC2 structure to model the general equations.

The communication pattern corresponds to a pipeline. The

process ’x’ communicates with the process ’x+1’ until the

last process, which communicates with the first process. At

the right of Table 1, we show the real and predicted trace

of process 0 for the phase 1. The phase has two WaitAll

primitives. The first WaitAll primitive waits until the Irecv

releases its request, while the second WaitAll waits until the

Isend releases its request. This second WaitAll is written in

the application in order to synchronize the application. The

communication volume was predicted with an error of about

4%.

Table 2: Summary of prediction error for the rest of phases

Phase Comm. volume equation Comm. volume
Number (Bytes) (Error %)

Summary of phases of BT (from 3 to 6)

Phase 3 y(n) = 4E + 07n(−0.996) 2.7%

Phase 4 y(n) = 4E + 07n(−0.997) 3.1%

Phase 5 y(n) = 5E + 07n(−0.997) 3.6%

Phase 6 y(n) = 4E + 07n(−0.996) 2.7%
Summary of phases of CG (from 2 to 3)

Phase 2 y(n) = 8E + 08n(−0.995) 5.8%
Phase 3 y(n) = 8 0%

Summary of phases of Sweep3D (from 3 to 4)

Phase 3 y(n) = 6E + 07n(−1) 3.2%

Phase 4 y(n) = 6E + 07n(−1) 3.2%

6. Conclusions and future work
We propose a methodology to analyze and predict strong

scalability behavior for MPI applications on a given system.

It strives to use a bounded analysis time, and a reduced set of

resources. The methodology has been explained focusing on

presenting the scalability communication model, to predict

the evolution of the communication pattern of each phase as

the application scales.

As future work, we are analyzing the internal behavior of

the collective MPI primitives. Internally, the collective MPI

primitives make point-to-point communications to exchange

information between all the processes. We are analyzing

this kind of primitives, to expand the model to consider the

evolution of the internal communications of the Collective

MPI primitives.

Acknowledgment
This research has been supported by the MINECO

(MICINN) Spain under contract TIN2011-24384

References
[1] N. Attig, P. Gibbon, and T. Lippert, “Trends in supercomputing: The

european path to exascale,” Computer Physics Communications, vol.
182, no. 9, pp. 2041 – 2046, 2011.

[2] A. Wong, D. Rexachs, and E. Luque, “Parallel application signature
for performance analysis and prediction,” in IEEE Transactions on
Parallel and Distributed Systems (TPDS), 2014 (Accepted).

[3] J. Panadero, A. Wong, D. Rexachs, and E. Luque, “A tool for selecting
the right target machine for parallel scientific applications,” in ICCS,
2013, pp. 1824–1833.

[4] R. Nishtala, P. Hargrove, D. Bonachea, and K. Yelick, “Scaling
communication-intensive applications on bluegene/p using one-sided
communication and overlap,” in IPDPS 2009, 2009, pp. 1–12.

[5] J. Panadero, A. Wong, D. Rexachs, and E. Luque, “Analysis of
scalability: A parallel model approachâĂİ,” in CLUSTER, 2014, pp.
294–295.

[6] X. Wu and F. Mueller, “Scalaextrap: Trace-based communication
extrapolation for spmd programs,” ACM Trans. Program. Lang. Syst.
Article 5, vol. 34, no. 1, 2012.

[7] J. Zhai, T. Sheng, J. He, W. Chen, and W. Zheng, “Fact: fast com-
munication trace collection for parallel applications through program
slicing,” in SC, 2009.

[8] B. J. Barnes, J. Garren, D. K. Lowenthal, J. Reeves, B. R. de Supinski,
M. Schulz, and B. Rountree, “Using focused regression for accurate
time-constrained scaling of scientific applications,” in IPDPS, 2010,
pp. 1–12.

[9] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An
approach to performance prediction for parallel applications,” in Euro-
Par, 2005, pp. 196–205.

[10] D. Bailey, E. Barszcz, J. Barton, and D. Browning, “The NAS Parallel
Benchmarks,” International Journal of Supercomputer Applications,
vol. 5, no. 3, pp. 66–73, Jan 1991.

[11] A. Hoisie, O. Lubeck, and H. Wasserman, “Performance and scal-
ability analysis of teraflop-scale parallel architectures using multidi-
mensional,” Journal of High Performance Computing Applications,
vol. 14, pp. 330–346, Jan 2000.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 197

