
Scalability of Parallel Applications: An approach to predict the
computational behavior

Javier Panadero1, Alvaro Wong1, Dolores Rexachs1 and Emilio Luque1
1Department of Computer Architecture and Operating System (CAOS),

University Autonoma of Barcelona, Spain

javier.panadero@caos.uab.es, alvaro.wong@caos.uab.es, dolores.rexachs@uab.es, emilio.luque@uab.es

Abstract— When a message-passing application is executed
many times over a long period of time, using an elevated
number of resources, it is critical to predict its behavior
before executing it. We propose a methodology to predict the
strong scalability behavior for message-passing applications
in specific systems. It is focused on characterizing and
analyzing the communication and computational application
patterns, from a set of executions in small scale, to project
their behavior when the number of processes increases. The
methodology strives to use a reduced number of resources.
This paper presents the general methodology, focusing on
validating the computational time model, which is a regres-
sion based approach. This model allows us to predict the
computation time with high accuracy for a large number
of processes. We executed from 16 to 256 processes and we
predicted the computation time up until 4,096 processes. For
the applications tested, we obtained an error of less than 9%.

Keywords: Performance Prediction, Scalability, MPI Applica-

tions, Computation time prediction

1. Introduction
In recent years, High Performance Computing clusters

have increased the number of cores significantly [1]. As

a consequence, the users of these systems want to get the

maximum benefit from this large number of cores, scaling

their applications [2] .

Due to the complex interaction between message-passing

applications and the HPC system, many applications may

suffer performance inefficiencies, when they scale to a large

number of processes. In order to achieve an efficient use of

the system, it is critical to know the application behavior in

the system before executing it, using an elevated number of

resources.

We propose a methodology to analyze and predict the

strong scalability [2] behavior for message-passing applica-

tions on a given system, by running representative phases

of the application, signatures, in small scale. Moreover, the

methodology could also be useful for scheduling and code

optimization.

Message-passing applications are composed of a set of

phases that are repeated throughout the application [3].

These phases were written in the application using specific

communication and computational patterns, which follow

behavior rules. To obtain these phases automatically, we

use the PAS2P tool [4]. PAS2P allows us to generate the

PAS2P signature, which contains only the relevant applica-

tion phases and their repetition rates (weights).

The methodology focuses on characterizing and analyzing

the communication and computational patterns of each phase

in a transparent way, from a set of signature executions in

small scale. By executing this set of signatures, we can ob-

tain quick information about the phases’s behavior, as the ap-

plication scales, to model the general behavior rules of each

phase. These rules specified the phase behavior and they

allow us to predict their behavior as the number of processes

increases. From these rules, the logical application trace is

generated for a specific number of processes. This Logical

trace has to be complemented with the communication and

computational time, to predict application performance.

To predict the computational time, we use a regression-

based model by phase, which uses as input data the compu-

tation time of each phase of the initial signatures. In many

cases, the regression models are limited by the scope of

prediction, obtaining a high prediction error when a distant

point of the points used to generate the model is predicted.

In order to improve the prediction quality of the model,

allowing us to predict distant points with high accuracy, we

carry out a change of workload domain, using a workload

much less than the original, to emulate the computation time

for the original workload with a large number of processes.

In this way, we are able to measure a distant point without

executing for that large number of processes, to fit the model.

Once the computation time has been predicted for all the

application phases, the physical trace is generated, which

will be used to predict the communication time and obtain

the performance prediction of the application.

In order to validate the method to predict the computa-

tional time, we executed from 16 to 256 processes and we

predict the computational time 4,096 processes. For all the

applications tested, the prediction error is less than 9%.

There are similar works which are related to predicting

the computation time based on regression models, from

executions for a small number of processes. Barnes et al

[5] [6] propose studying the scalability using linear and

398 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

logarithmic regression functions, isolating computation and

communication to predict the application performance. They

use black models, where the internal application behavior is

unknown. Calotoiu et al [7] present a tool to find scalability

bugs. This tool automatically generates asymptotic scaling

models for each part (kernel) of the application. The model

is based on regression models, to fit the performance data

from a set of small-scale performance experiments. Another

similar work, presented by L. Carrington et at [8], offers

a methodology for extrapolating the computational time of

large scale applications by capturing the details of compu-

tational behavior at a series of smaller core counts. Unlike

these works, our method proposes measuring a distant point

using a reduced set of resources, in order to fit the compu-

tation regression model, improving the quality of prediction

for far points.

This paper is organized as follows: Section II presents the

proposed methodology to predict the scalability behavior,

Section III presents the computation time prediction model,

Section IV presents the experimental validation and finally

Section V, the conclusions and future work.

2. Proposed methodology
The main goal of the methodology is to model the parallel

application to analyze and predict the strong scalability

behavior on a given system, by executing a limited set of

application signatures in small scale, as is shown in Fig. 1.

Parallel applications are typically composed of patterns of

computation and communication that are repeated through-

out the application. These patterns are grouped in phases,

which compose the application signature. If we execute the

signature for different number of processes, we can observe

that the number of phases remains constant, but their patterns

change their behavior following behavior rules.

Analyzing the behavior of the phases, we know that the

communications, the communication volume, the number of

instructions and the computational and communication time

can change, modifying their behavior, but the work to be

carried out will still be the same, distributed among more

processes, because we are working with strong scalability. In

order to model the general behavior rules of communication,

computation and weight of each phase, to project their

behaviors as the number of processes increases, the phases

of the signature for a different number of processes will be

related by functional similarity.

Once these general rules have been modeled, we can

generate the logical trace for any number of processes. This

trace is composed of the communication events, the number

of instructions and the weight of each phase. The trace is

generated per process instead of a global trace with the

objective being to model each process indepently.

To predict the application performance, the logical trace

has to be complemented with the communication and com-

putational time. To predict the computation time, we use

Application Characterization

Computation Communication

Computational
Time

Prediction

S16 S8 SX . . .

Parallel Application

Communication
Model

Computational
Model

Generate the Logical
Trace

W

PAS2P Tool

Relevant Phases

Logical
Trace

 Ts8 Ts16 Tsx

Mapping

Logical Model

Weight Model
S32

 T32

Weight

Computational
Pattern

Communication
Pattern

Weight Pattern

Computational
Time Phasei

Scaled

Physical
Trace

Scalability Prediction

Communication
Time Prediction

Performance Prediction

Fig. 1: Proposed Methodology

a regression-based model by phase, which uses the com-

putation time of each phase of the initial set of signatures

as input data. In order to improve the prediction quality of

the regression computation model, allowing us to predict

points for a large number of processes with a high accuracy,

we use a method based on a change of workload. This

method allows us to measure the phase computation time for

an elevated number of processes (distant point), executing

the signature for a reduced number processes and a small

workload. In this way, we introduce a new distant point in

the model, which allows us to fit the initial computation

regression model, improving its quality of prediction.

Once the computation times have been provided to the

logical trace, the physical trace is generated, which will be

executed by pieces in a small number of cores, in a iterative

way, until all the process has been measured, to predict the

application performance.

In the next subsections, the steps of the methodology are

presented.

2.1 Application Characterization
This step consists of characterizing the application behav-

ior (communication and computation) to obtain information

to build its logical trace. In order to do that, we carry out a

set of signature executions for a small and different number

of processes, which will be analyzed to extract information

from each phase. The application signature extracts infor-

mation of the application phases, which will be saved in a

trace file per process. Fig. 2 shows an example of trace file

obtained with the signature. The trace provides information

#Process Phase Type of
primitive

Source Dest. Comm.
Volume

#Inst. Comm. Time
(ns)

Comp. Time
(ns)

Fig. 2: Trace file of the phase 1 for the process 4.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 399

about the phase id, the type of MPI primitive, the source

and destination of the communication, the communication

volume in bytes, the communication time in nanoseconds

and the computational time in nanoseconds.

It is noteworthy that the signature execution time is about

1% of the application execution time, covering approxi-

mately 95% of the whole application.

2.2 Logical Model
Once the phases have been characterized, the communi-

cation and computation patterns and the phase weight have

to be analyzed and modeled to generate the general behavior

rules of each phase. These rules will be used to generate the

logical application trace for a greater number of processes.

2.2.1 Communication pattern modeling
The communication pattern comprises the general behav-

ior equations and the data volume equations for each com-

munication of each phase. The general behavior equations

calculate the message destination from the source, while the

data volume equations calculate the size of the message.

To model the behavior of each phase, all the phases of

the signature for a different number of processes will be

related by functional similarity. To relate the phases, we use

a method which is based on how the sequence of phases

occurs, since it does not depend on the number of processes,

only in the way in which the application was developed.

Once the phases have been related, the predicted data volume

equation of each communication will be obtained by math-

ematical regression models, while for obtaining the general

communication rules (Source-Destination), an algorithm has

been proposed. This algorithm is based on the fact that the

application is well-developed, and it executes a deterministic

communication pattern for all the processes, without non-

predictive conditional sentences as the number of processes

increases. Fig. 3 shows an overview of the procedure. This

algorithm is based on obtaining the communication equa-

tions (eq.processes) for each phase (local equations), which

represent its communication pattern. From these equations,

the general equation is modeled by each phase, which allows

us to predict the evolution of the communication pattern of

the phase for a greater number of processes.

2.2.2 Weight modeling
In order to model the weight behavior, regression models

are used. Due to the deterministic way of the weight behav-

ior as the application scales, there is a linear dependence

between the number of processes and the weight of the

phase. For this reason, linear regressions are initially more

appropriate to fit the weight, because it allows us to obtain

a prediction equation such as y = a + bx0, using as an

independent variable the number of processes to execute

the application, which represents exactly the phase weight

behavior, obtaining a R− square = 1.

Ph1

F(64) = eq64

f(16) = eq16

f(n) = GEN

f(32) = eq32

f(128) = eq128

Ph1

Ph1

Ph1

P16

P32

P64

P128

Fig. 3: Modeling the general equation of the communication

pattern from a set of application signatures

Scientific applications cannot be executed for any number

of processes, but they also follow execution rules. Depending

on the number of processes required to execute the appli-

cation, it can be possible that the linear regression does not

fit properly, obtaining a correlation index R-square distant

to 1. In this case, another kind of regression could be more

appropriate. This happens by the distance between the input

samples (Number of processes to execute the application)

used to fit the regression. In fig. 4 we show an example,

where through the limitations of the application (the users

can only execute the application using a square number of

processes), we use this to generate the model for the input

points: 16, 25, 36, 49 and 64 processes.

As we can see in the figure, the distance of the input points

used to model the regression is non-uniform, so, if we fit

the points by a linear regression, we obtain a R−square =
0.98253. Through the theory of statistical regression models,

we know that if we use an equation with this correlation

index, the prediction error will be considerable and it will

be higher as we move away from the executed points. In

order to use a linear regression with an R−square = 1, we

make a linealization process based on a change of domain,

where the objective is to obtain an uniform distance among

all the points. As we can see in the figure, we change the

number of processes by a sequential index (displacement),

making a distance of 1 for all the points. In this way, we

obtain a R− square = 1 using a linear regression.

16 1 753
25 2 1004
36 3 1255
49 4 1506
64 5 1757

Fig. 4: Modeling the weight of the phase

400 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

Total Phase1
Instructions

Total Phase2
Instructions

Total Phase3
Instructions

Total Phase4
Instructions

Ph2 Ph1 Ph3

Ph4

F1

Ph2 Ph1

Ph2 Ph1

Ph3 Ph4
Ph1 Ph2

Ph3 Ph4

Ph3 Ph4

Ph4

Constant

16

64

32

N

#Processes
Total application

instructions16

Total application
instructions32

Total application
instructions64

Total application
instructionsN

Fig. 5: Behavior of the strong scalability by phase.

2.2.3 Computational Pattern Modeling
In strong scalability, the application workload remains

constant as the application scales. The workload is dis-

tributed among all the processes, and the instructions exe-

cuted by each process decrease, as the number of processes

increases, being the total number of instructions practically

constant. We can extrapolate this concept to the application

phases, maintaining its total number of instructions constant,

as the application scales, as is shown in fig. 5.

To predict the number of instructions of each process

by phase, we model as the instructions are distributed in

the phase when the number of processes increases. To

model these equations, the processes with a similar behavior

in computation, that is a similar number of instructions

(95% similarity), are grouped in Instructions Groups (IGi).
The total number of instructions of each Instruction Group

remains constant. Then, each Instruction Group is modeled

as the instructions are distributed as the number of processes

increases. The sum of instructions of each group multiplied

by the weight of the phase is the total number of instructions

of the phase, as is shown in Eq. 1, where x is the total

number of groups.

Fig. 6 shows an example of a phase with 4 processes

with a different number of instructions. Processes 0 and 1

have a similar number of instructions, and processes 2 and 3

another. Scaling the application for 8 processes, processes 0

and 1 distribute their instructions between processes 0 to 3,

while processes 2 and 3 distribute their instructions between

processes 4 to 7, following their computation rules. Then,

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

Fig. 6: Distribution of instructions as the number of pro-

cesses increases.

for this example, we have 2 different groups, IG1 and IG2,

where each group distributes its number of instructions in

a specific way, following a behavior rule of distribution. As

we show in the Eq. 2, which calculates the total number of

instructions of the set of processes of a group (n), the total

instructions of the group is the sum of the instructions of

each process (Pi) involved in the group, multiplied by the

weight of the phase.

If we focus on Eq. 2, the aim is to predict the term "Pi"

for a greater number of processes. We know that the term

TotalIG is constant, the weight of the phase is predicted

by linear regression methods, and the number of processes

between the instructions distributed in the group have been

modeled. Then, we can predict the instructions of each

process, isolating the term "Pi", as is shown in Eq 3.

TotalPhaseInstructions =
x∑

i=1

TotalIGi ∗ weight (1)

TotalIG =
n∑

i=0

(Pi) ∗ weight (2)

Pi =
TotalIG

n

weight
(3)

2.3 Performance prediction
The logical trace has to be complemented with the com-

putational time, in order to generate the physical trace. To

predict the computation time, we use a regression-based

model by phase. As this is the main point of this work, this

procedure will be explained in detail in the next section.

Once the physical trace has been generated, the communi-

cation time is predicted. To predict the communication time,

the physical trace will be executed by range of processes in

a reduced number of cores, in an iterative way, until all

the processes have been executed. Once the communication

time has been predicted, we will have the predicted execution

times of each phase and their weight. Then, we apply eq.

4 to obtain the application performance, where PET is the

Predicted application Execution Time, m is the number of

phases, TEPhasei is the Phase i Execution Time and Wi is

the weight of the phase i.

PET =
m∑

i=1

(TEPhasei)(Wi) (4)

3. Computational time prediction
To predict the computational time of each phase, we use a

regression-based approach named Computational Regression

Model (CRM), which uses as input data the computational

time of each phase for the initial set of signatures.

Despite predicting the computational time by phase in-

stead of the whole application, the prediction error improves

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 401

(a) Computation Regression Model (CRM) (b) Computation Regression Model (CRM) with
distant point

Fig. 7: Regression models used to predict the computation time

considerably, because each phase has a different computa-

tion behavior which has to be approximated by a specific

regression function, we know that the regression models are

limited by the scope of the prediction. If we predicted a

distant point from the real points used to generate the model,

we would obtain an elevated prediction error as we move

away from the measured points, as we can see in fig. 7a.

In order to avoid this problem, and therefore to improve

the quality of prediction for a large number of processes

(distant points) of the model, we propose a method which

consists of measuring a far point, without using a large

number of application processes and resources, to fit the

initial Computational Regression Model (CRM) with this

new point, as we can see in fig. 7b. Using this method, we

manage to improve the accuracy of the model, predicting far

points with a high level of accuracy.

The proposed method to measure this new point is based

on doing a change of workload domain, using a workload

much less than the original, to emulate the application

computation time of each process for the original workload

with a large number of processes.

A phase is a reduced segment of code, which executes

a specific function. We can select a new workload for the

phase, smaller than the original, which will be executed over

a small number of processes. The objective is to achieve a

similar number of instructions and cache misses by each

process, rather than the original workload executed over a

large number of processes, to emulate the computational

time by process of the phase. In fig. 8 we show an example.

We have an application, which is executed for 64 processes

with a workload W. This workload is distributed between the

application processes in a uniform way, with each process

receiving a work w’ . If we executed the same application

for 4 processes with a new workload M, which is w’ x 4, the

processes are carrying out the same work (same instruction

number and cache misses) as when executing the application

for 64 processes with a workload W .

In fig. 9 we show a flowchart of the method used to predict

the computation time of a phase:

1) From the logical trace obtained in the modeling step,

we generate a new table, named Instruction Prediction Table

(IPT), which contains a computational global vision of each

phase. IPT contains the information about the number of

instructions by process, the number of processes, the weight

of the phase and its displacement, and finally the total

number of instructions, as the application scales. Moreover,

contains two different parts, a measured part and a predicted

part. The measured part is generated from the information

obtained during the execution of the initial set of signatures,

while the predicted part is generated from the equations of

computation generated in the logical trace. The measured

part allows us to validate the accuracy of the model.

In order to obtain more than one Instruction Group in

the computation pattern modeling, we generate as many

Instruction Prediction Tables as Instruction Groups. The total

number of instructions of each Instruction Prediction Table

will be the total number of instructions of the phase.

2) At the same time, to generate the IPT table, we

use the computation time of each phase of the initial set

of signatures, in order to generate the initial Computation

Regression Model (CRM), which will be used to predict the

computation time of each phase.

3) From the IPT, we check if the total number of in-

structions is practically constant, as the number of processes

increases. If this assumption is not met, the method is not

applicable and we cannot obtain a distant point to improve

the initial CRM model. In this case, we use the regression

equation obtained in the CRM model, generated in the last

step, to predict the computation time. Otherwise, we follow

on to the next step to obtain a distant point.

4) In order to measure this new point, we select a small

workload and we execute the signature with this workload

for a small number of processes. We start executing the

Application Workload (M)
Number of Processes (4)

W’ = W/ #Processes
M = w’ x 4

Application Workload (W)
Number of Processes (64)

Fig. 8: Emulating the computation time of a process chang-

ing the application workload

402 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

Fig. 9: Flowchart of the method used to predict the compu-

tation time

signature for 16 processes, and we increase the number of

processes following the application execution model, until

we find the minimum CPI of the phase. We select the

minimum CPI because of two main goals, the first being that

by using the minimum CPI we are sure that the workload is

small enough to obtain a sufficiently distant point to fit the

regression. The second reason is to avoid the effect of cache

misses, since if we predict the computation time between

the points of signatures used to generate the CRM model

and the distant point, the model considers the cache effects.

In addition, if we predict the computation time from the

distant point, the cache effects practically do not have any

influence in the model. Once we have executed the signature,

we save this number of instructions and the computational

time. We know that in some cases, because of limitations

of the parallel application, it is not feasible to generate a

different workload from the original. In these cases, it is not

possible to obtain the distant point.

5) Then, we relate the number of instructions obtained

in the previous step, with the number of processes for

the original workload. In order to obtain this number of

processes, we used the IPT generated in step 1. In the table,

we seek the number of instructions closest to the number

of instructions obtained by the small workload. Then, we

will obtain the number of processes for this number of

instructions.

6) Once we have the number of processes for the original

workload, and the computational time, measured in step 4,

we incorporate this new point to the the CRM model, to

generate a more accurate new regression function.

7) We use this new regression function to predict the

computation time.

4. Experimental Validation
In this section, the method to predict the computation time

has been validated. We used different benchmarks such as:

BT, CG, SP and LU from the NPB NAS [10] suite, using

Table 1: Instruction prediction table for phase 1 of BT

Number of Number of Weight Total inst.
Instructions Processes Weight Displacement Number

Measured Values (Initial Set of Signatures)
1539358893 16 1255 3 30910326571440
820993294 25 1506 4 30910397519100
488835328 36 1757 5 30919812166656
314154733 49 2008 6 30910312489336
213799791 64 2259 7 30910318583616
152035493 81 2510 8 30910336081830
111953973 100 2761 9 30910491945300

Predicted Values (Instruction Prediction Table)
1539358780 16 1255 3 30910324302400
.....
152035395 81 2510 8 30910316157450
111953349 100 2761 9 30910319658900
84813133 121 3012 10 30910315829644
65784545 144 3263 11 30910315829644
.....
1877266 1600 10291 39 30910315829644
1744266 1681 10542 40 30910315829644
1623539 1764 10793 41 30910315829644
1513701 1849 11044 42 30910315829644

as input class D. Moreover, we used two applications: QCM

[11] and N-Body. We predicted the computation time of each

phase for BT and SP for 1024 processes, CG, LU and N-

body for 4096 processes and QDIM for 2048 processes.

For the BT, we predicted the computational time of each

phase for 1,024 processes. We executed the signatures for

16, 36, 64, 81 and 100 processes, using the workload D, to

generate the initial Computation Regression Model (CRM).

We obtained 6 phases for this application.

For the case of phase 1, first of all, we modeled the

computation pattern and the weight pattern in the logical

model step. Through the modeling of the computation pat-

tern, we obtain that all the processes have the same number

of instructions, so we have only one Instruction Group,

therefore, one IPT. Regarding the weight modeling, we used

the linear regression equation y = 251 ∗ x+502, where "y"

is the predicted weight and "x" is the displacement, as we

increase the number of processes. This regression equation

has a R− square = 1 . From this information, we generate

the IPT table, which is shown in Table 1. As we can check

on the top of the table, the total number of instructions for

the phase is practically constant, as the number of processes

increases. For this reason, we look for a far point in order

to be provided to the CRM.

To obtain a far point, we executed the signature of the

BT using workload B (much less than workload D) for a

reduced number of processes, until we found the minimum

CPI. In table 2, we show the information of the different

signature executions for phase 1 for this workload. We

Table 2: Signature executions for BT using the CLASS B

Number of Number of. Number of LLC CPI Computation
Processes Instructions Cycles Misses time (nsec.)
16 34356426 27621512 20241 0.803 17263445
25 17836224 14324977 10275 0.803 8953111
36 9915863 7861580 5479 0.792 4913488
64 4027761 3104163 1467 0.770 1940102
81 2392021 1721033 865 0.719 1075646
100 1759558 1265527 695 0,719 790954

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 403

show the number of processes for which the signature was

executed, the number of instructions by process, the cycles,

the misses of Last Level of Cache (L2), the CPI and the

computation time in nanoseconds. As we can see in the table,

from 81 processes we obtain the minimum CPI (0.719).

We know what the minimum CPI is because for the next

execution (100 processes), we obtain the same CPI and

the number of misses is insignificant. Then, we select the

number of instructions for the last execution of 100 processes

(1759558) and its computation time (790954 ns).

The next step is to relate the instructions obtained for

workload B with the number of processes of workload D. In

order to do that, we seek the number of instructions obtained

(1759558) in the Instruction Prediction Table for this phase.

As we can see in table 1, the closest number of instruc-

tions is 1744266, which has a difference of 0.87% with

the number of instructions of workload B (1759558). This

number of instructions corresponds to the execution of class

D with 1681 processes. Thus, we select this number of

processes to improve our model.

We introduce this new point in our model (number of

processes and execution time), obtaining the regression

equation y = 9 ∗ 109 ∗ x−1.547 , where the variable y is

the computation time and the variable x is the number of

processes to be predicted. We used this equation to predict

the computation time for the phase for 1024 processes. As

we can see in table 3, we obtain a prediction error of 2.11%.

In the same table, we show both the prediction error

for the other phases of BT and the other applications

tested, which were predicted to carry on with the same

procedure. For the CG, LU, N-body and QDIM, we execute

the signatures from 16 to 256 processes, while for SP, we

execute the same number of signatures as for BT. All the

phases of the application fulfilled the condition that the total

Table 3: Summary of error prediction for the application

phases

Summary of phases of BT (prediction for 1024 processes)
Phase Real Predicted Prediction Regression
Num. time(ns) Time(ns) Error (%) Equation

Phase 1 1941784 1982934 2.11% y = 9 ∗ 109 ∗ x−1.547

Phase 2 35960361 39114740 8.77% y = 1 ∗ 1011 ∗ x−1.132

Phase 3 165862020 160857620 3.01% y = 2 ∗ 1011 ∗ x−1.028

Phase 4 451140 480522 6.51% y = 3 ∗ 1010 ∗ x−1,593

Phase 5 2214673 2096107 5.35% y = 8 ∗ 1010 ∗ x−1,522

Phase 6 36062311 39114740 8.46 % y = 1 ∗ 1011 ∗ x−1.132

Summary of phases of CG (prediction for 4096 processes)

Phase 1 2698523 2796674 3.63% y = 2 ∗ 1010 ∗ x−1.067

Phase 2 137928 149985 8.74% y = 3 ∗ 107 ∗ x−0.637

Phase 3 344297 375251 8.99% y = 2 ∗ 107 ∗ x−0.478

Phase 4 601238 562501 6.44% y = 8 ∗ 107 ∗ x−0.596

Summary of phases of LU (prediction for 4096 processes)

Phase 1 51549 49647 3.83% y = 2 ∗ 108 ∗ x−0.998

Phase 2 34645 32573 6.36% y = 4 ∗ 108 ∗ x−1.132

Summary of phases of SP (prediction for 1024 processes)

Phase 1 165110327 163103109 1.21% y = 4 ∗ 1011 ∗ x−0.926

Phase 2 561715 598590 6.56% y = 4 ∗ 1010 ∗ x−1.635

Phase 3 240359 260203 8.25 % y = 2 ∗ 1010 ∗ x−1.623

Summary of phases of N-BODY (prediction for 4096 processes)

Phase 1 449150 430921 4.23% y = 2 ∗ 1010 ∗ x−0.975

Summary of phases of QDIM (prediction for 2048 processes)

Phase 1 16428976 17724522 7.88% y = 3 ∗ 1013 ∗ x−2.039

Phase 2 26478907 25170124 4.94% y = 5 ∗ 1010 ∗ x−0.996

number of instructions is constant. Therefore, the method to

find the distant point was applied. For all the phases of the

applications, the prediction error is below 9%.

5. Conclusions and future work
In this paper, we have presented a methodology that allows

us to analyze and predict strong scalability for message-

passing applications on a given system, by executing a

limited set of application signatures in small scale. The

methodology has been explained focusing on validating the

method to predict the computational time of each applica-

tion phase. The proposed method allows us to predict the

computation time for a large number of processes with a

high accuracy using a reduced number of processes. For all

the applications tested, the prediction error is less than 9%.
As future work, we are working on extending the com-

putation model to measure far points of phases which do

not have a similar number of instructions, as the number of

processes increases.

Acknowledgment
This research has been supported by the MINECO

(MICINN) Spain under contract TIN2011-24384

References
[1] N. Attig, P. Gibbon, and T. Lippert, “Trends in supercomputing: The

european path to exascale,” Computer Physics Communications, vol.
182, no. 9, pp. 2041 – 2046, 2011.

[2] R. Nishtala, P. Hargrove, D. Bonachea, and K. Yelick, “Scaling
communication-intensive applications on bluegene/p using one-sided
communication and overlap,” in Parallel Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, May 2009, pp. 1–12.

[3] A. Wong, D. Rexachs, and E. Luque, “Parallel application signature
for performance analysis and prediction,” in IEEE Transactions on
Parallel and Distributed Systems (TPDS), 2014 (Acepted).

[4] J. Panadero, A. Wong, D. Rexachs, and E. Luque, “A tool for selecting
the right target machine for parallel scientific applications,” in ICCS,
2013, pp. 1824–1833.

[5] B. J. Barnes, J. Garren, D. K. Lowenthal, J. Reeves, B. R. de Supinski,
M. Schulz, and B. Rountree, “Using focused regression for accurate
time-constrained scaling of scientific applications,” in IPDPS, 2010,
pp. 1–12.

[6] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,
and M. Schulz, “A regression-based approach to scalability predic-
tion,” in Proceedings of the 22Nd Annual International Conference
on Supercomputing, ser. ICS ’08, 2008, pp. 368–377.

[7] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated
performance modeling to find scalability bugs in complex codes,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13, 2013, pp.
45:1–45:12.

[8] L. Carrington, M. Laurenzano, and A. Tiwari, “Characterizing large-
scale hpc applications through trace extrapolation,” Parallel Process-
ing Letters, vol. 23, no. 4, 2013.

[9] J. Dongarra, A. D. Malony, S. Moore, P. Mucci, and S. Shende, “Per-
formance instrumentation and measurement for terascale systems,” in
European Center for Parallelism of Barcelona, 2003, pp. 53–62.

[10] D. Bailey, E. Barszcz, J. Barton, and D. Browning, “The NAS Parallel
Benchmarks,” International Journal of Supercomputer Applications,
vol. 5, no. 3, pp. 66–73, Jan 1991.

[11] S. Hioki, “QCDMPI—pure QCD monte carlo simulation code with
mpi,” Nuclear Physics B-Proceedings Supplements, vol. 63, pp. 1000–
1002, Apr. 1998.

404 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

