A Framework for Intrusion Deception on Web
Servers

Constantine Katsinis' and Brijesh Kumar?
'Computing and Security Technology, Goodwin College, Drexel University, Philadelphia, PA, USA
2Security Research Group, Rapidsoft Systems, Inc., Princeton, NJ, USA

Abstract - Threats against computer systems continue to
multiply, but existing security solutions that attempt to
keep the attacker out of the system are becoming unable
to keep pace with these challenges. In this paper we
discuss the application of military deception to defend
computer systems. Deception techniques enable the
defender to influence the attacker's selection of targets
and thus direct him to perform actions that reveal his
presence and intentions. We discuss techniques that
mislead attackers and cause them to take specific actions
that aid in the defense of a computer system. We then
focus on web servers, that are frequently attacked often as
a first step of a deeper intrusion into a computer network,
and present an architecture integrating deception into a
popular web server.

Keywords: Deception, Intrusion Detection, Intrusion
Response, Information Security, Information Warfare.

1 Introduction

Traditionally, security professionals have used two
strategies for defending against attacks in cyberspace:
identifying and fixing vulnerabilities and detecting attacks
before they inflict significant damage. They have focused
on keeping attackers from stealing data by actively
watching for intrusions, strengthening perimeter defenses,
blocking attacks with network technologies such as
firewalls, protecting against malicious software with
antivirus technology and relying on defensive signatures.

However, these techniques have their limits. In fact,
the Internet provides attackers with a common knowledge
base. They can research new vulnerabilities and find
systems that exhibit these vulnerabilities. Given enough
time and information an attacker can learn to circumvent
a firewall. An IDS will only provide information after the
attack has started, which often leaves little time to secure
all vulnerable systems, in effect forcing administrators to
wait until the damage is done. Then, their only option is
to make defensive changes and relaunch as quickly as
possible.

Recently, the thinking has evolved to the point where,
while keeping the enemy out is paramount, it is assumed
that attackers have gotten inside and will again. There is
growing sense that organizations need to be more
aggressive in fighting off intruders especially as the costs
of digital espionage keep increasing.

Web servers in particular are exposed to the public
and are easily examined by the outside world. An attacker
can take the time to traverse the site, understand how web
applications are coded and locate the defensive measures
that are in place which allows them to avoid being
profiled. This activity goes undetected because the server
sees it as the traffic of a legitimate user. The attacker may
continue the attack for example by locating dynamic
pages, especially those which accept form or query input,
derive boundary input cases and attempt to provoke an
unintended response from the server. By repeating this
process systematically, he obtains a list of all the
parameters that are either properly validated by the server
or not. He therefore obtains pages that are vulnerable
because boundary values of their parameters produce
calculation errors, fatal errors, or are injected into the
response without cleansing. He then attempts to exploit
these vulnerabilities by trying different attack vectors.
Being detected or blocked at this point is not an issue as
the attacker can continue the attack through another

proxy.

Among the most important web application
vulnerabilities, as they appear in the OWASP 2013 Top
10 project [17], are Cross-Site Scripting, Injection attacks
and Path Traversal. Injection attacks include attacks based
on input that may contain malicious code to be executed,
such as the SQL injection attack. They also include
Command injection, an attack that converts the
application into a system shell that executes the attacker's
commands on the operating system without even being
logged on. If the web application runs under root
permissions, then the attacker is able to run any possible
command. Path Traversal attacks rely on the "insecure
direct object reference” vulnerability which exposes a
reference to a file or directory without proper access
control check. The attacker can modify such a reference

to access a file outside the web root directory.

2 Intrusion Defense Evolution

Deception is invaluable in warfare and other conflicts
as it can be used to trick an adversary into taking actions
that waste his resources or move his resources to make
them easier to attack. Deception-based defenses in
information systems have been in use for a long time,
from simple techniques such as the login process asking
for a password even when the supplied user account does
not exist, to the extensive use of honeypots and decoys
since the early 1990s.

Intrusion Deception is an extension of intrusion
detection and prevention with a primary purpose to
confuse, misdirect and frustrate maliciously driven
attackers. Early forms of Intrusion Deception techniques
include spoofing service banners, labeling system services
deceptively, routing threatening traffic to honeypot
networks, integrating decoy systems within critical
resources and placing tracking beacons on decoy files.

Intrusion Deception can create an environment where
the attacker is uncertain if he has succeeded in intruding
into the network and whether he has extracted the data he
was searching for. Ultimately, though, the intruder should
not even be aware of the deception. The goals of Intrusion
Deception can be either to keep the attacker on the system
in order to trace him or to make him leave. If the goal is
to make him leave then he must be induced to lose interest
or believe that he was successful in his attack. In either
case, if he leaves on his own, he is unlikely to come back.
In the end, Intrusion Deception costs more time to the
attacker (in fruitless attacks and extraction of false
information) than the defender and gives the defender
information about the attacker's tools and motives to
prevent the attack from causing damage.

Honeypots

Honeypots were among the first deployments of
network deception. Honeypots appear to be a component
ofalarger network architecture. In reality, though, they do
not contain any useful data and are often separated from
regular network resources. They serve no purpose, except
collecting data about attacks on them, and have no
legitimate users and consequently can be deceptive all the
time. However, they offer no utility after a successful
attack has already occurred.

Low interaction honeypots like Honeyd [6] basically
simulate the network protocols and respond to network
probes. High interaction honeypots respond to network

probes and permit logins and access to resources.
Honeynets are groups of honeypots, imitating an actual or
fictitious network, used to study how attacks spread from
one computer to computer.

Honeypots can be recognized without deception,
since attackers can see a lack of normal file structure and
lack of temporary files. Several techniques are provided
in [4] that an attacker could use to detect honeypots.
There have been many proposals of deliberately deceptive
activities on honeypot networks to keep attackers busy.
Such activities include configuring the router to respond
to many fake IP addresses, and augmenting the honeypot
with a virtual storage system. These are a simple passive
form of deception. In addition, honeypots do not follow
an important principle of conventional warfare, that
deception should be integrated with genuine operations.
As argued in [14,15], deceptive tactics are more effective
on real systems.

Typical honeypot deployments include:

a) a minefield, where honeypots exist among regular
servers, possibly containing some of the real server data.
An example deployment is placing honeypots among
servers in the DMZ to capture attacks against the public
servers and also servers in the internal network. This
deployment can be effective against intruder stealth
scanning ("slow scans") which may not set off an IDS
system but will be detected by the honeypots.

b) a shield, where each regular server is paired with a
honeypot deployed in a DMZ. A firewall redirects the
network traffic according to the shielding policy: regular
traffic is directed to the server while any suspicious traffic
destined for the server is instead sent to the honeypot
shield. The honeypot typically mirrors some noncritical
content of the regular server to increase its deception.

Sticky Honeypot (LaBrea) is another deception
technique used to protect networks and some applications.
It takes over unused IP addresses, and creates virtual
servers that are attractive to worms, hackers, and other
denizens of the Internet. The program answers connection
attempts in such a way that the machine at the other end
gets "stuck", sometimes for a very long time [5].

3 Deception Strategies

Deception in computer systems relies heavily on the
principles of deception in military conflict settings.
Several types of military deception have direct application
in computer systems, such as feints, lies, disinformation,
ruses, concealment, camouflage, and manipulation of the
adversary by insight into their reasoning and goals [3]. In
a similar fashion, information systems can lie, cheat, and

mislead attackers to prevent them from succeeding [15].
Such deception can rely on minimal resources to be very
effective in creating deceptive delays (to allow setting up
a permanent defense to time-critical attacks) and
defensive lies (to manipulate attackers).

Just as in military conflict, deception in computer
systems is a way to foil attacks. Deception may convince
an enemy to go away without any fight most probably to
avoid an all out defeat. However, the ultimate success of
deception in computer systems occurs when the enemy
goes away thinking he has succeeded. A computer system
can achieve this by relying on intrusion detection to
monitor suspicious user behavior. As suspicious activity
increases, the system increases its deceptive measures,
keeping the attacker fooled as long as possible, tying up
his resources, and allowing him to believe he is successful
while reducing his chances of successful attack. Simple
excuses can be combined to create deception: the file
system has crashed, the required software has bugs,
network parameters are incorrect, security policy is in
effect, the attacker action caused the system to
malfunction.

Planning is essential to deception because most often
defensive lies and delays require consistency. The system
needs to maintain, and be able to reason about, what has
been presented to the attacker so far so it can decide what
deceptive action to take next. For example, once network
problems are used as an excuse to deny or delay some
request, the same excuse (or similar evidence of network
problems) should be given to following requests of the
same type by the attacker. In other situations, an earlier
excuse may not be sufficient for a subsequent refusal to a
new request by the attacker. For well-defined situations
resulting from known attacks a detailed plan may be
constructed [10]. Otherwise alternative excuses may be
ranked and selected [15]. [2] used attack graphs to guide
the activities of attackers based on situation-dependent
lies. The objective of the plan is to minimize damage to
the system and can be characterized by the probability that
the attacker goes away either having given up or thinking
he has succeeded in his attack. Figure 1 shows the basic
flow of engaging an attacker using a deception plan.

While planning of consistent deception actions is
essential, inconsistent deceptions are also useful [13]. A
consistent deception builds a fake reality that still
functions under the rules of reality so the attacker does not
see the deception. An inconsistent deception attempts to
disorient the attacker. He will realize the inconsistency,
even the deception, but will not know which of his
observations relate to the real system and which to the
deceptions. One possible outcome is that the attacker will
leave without causing any damage to the system.

4 Decoys

Deployment of decoys in computer systems follows
the basic idea of filling the attacker's search space with
decoys so that detection of real targets becomes difficult.
One common deployment of decoys is to defeat
penetration testing tools used by attackers that probe
target servers looking for vulnerabilities. Penetration
testing tools identify operating system and server types
and versions and provide facilities to perform attack
sequences against identified vulnerabilities in the target
system. However, these tools have characteristic
behaviors which make them readily identifiable by the
targets of their attacks. The defender can then simulate a
variety of server characteristics and services (decoys) so
that the attacker makes errors differentiating between real
and fake targets, and is lead by the defender down
defender-designed attack graphs that cause the attacker to
waste resources or deceive him into thinking he is
succeeding.

PLAN
DECEPTION

l

DEPLOY
DECEPTION
|
)

ENGAGE
ATTACKER

!

N /ATTACKER
DECEIVED ?

CONTINUE
DECEPTION

END DECEPTION

BLOCK
ATTACKER

Figure 1. Deception plan deployment

In general, decoys are constructs which contain data
that appears valuable but is in fact fake. They may be
files, web page elements, fake data flows injected into a
network, or fake but believable user activity on a server
[1]. Figure 2 shows the basic network architecture.
Decoys may contain random data or bait information
which the attacker may attempt to use at a later time. They
are effective because attackers lack the thorough

knowledge of the target system which authentic users
have. Authentic users can distinguish or remember which
resources are real and which are fake, and have no reason
to access inauthentic decoys with no useful data, while an
attacker will have difficulty differentiating decoys from
desirable data. Decoys are able to defeat low quality
attackers without interfering with normal users and can
quickly indicate the presence of an attack. The target can
respond by increasing security measures against the
attacker including escalating its deception profile.

with name, content and attributes that are realistic; but it
also must be variable, exhibiting as much variability as
normal documents in the system, so that they are not
easily detected by simple pattern-recognition processes.
Decoys must be conspicuous and enticing so that they are
located in places where the attacker will most probably
search; but they also must avoid confusing the normal
users or obstructing regular activities on the system. The
operating system must be configured to make any decoy
access detectable; use of decoy contents by the attacker

FIREWALL
IDS a
bl SWITCH
ALARMS
I

1 | |
WITCH HosT| | | FAKE
SwiTe S HOST

I I

HOST| | | FAKE

ALARMS WEB

HOST —| SERVER
VIRTUAL FAKE L ALARMS
HOSTS PORTS

Figure 2. Deception architecture

Intelligent software decoys are special type of decoys
or agents that protect objects from unauthorized access
[11,12]. If an attacker attempts to access an object in a
way that does not conform to the interface specification of
the object, then the object changes its behavior from its
normal operating mode to a deception mode. In deception
mode the object attempts to deceive the attacker into
concluding that its violation of the interface specification
has been successful. In general, responses of such
software decoys include maintaining the interaction with
the attacker to learn about the nature of such interactions,
terminating the interaction or even treating the attacker as
a cybercombatant.

Effective decoys have certain characteristics [16]
which enable them to maintain deception against attackers
without affecting normal users. Decoys must be believable

can also serve as an alarm. Finally, decoys must be
updated regularly to keep them believable, conspicuous
and enticing.

5 The role of deception in Web attacks

There are many reasons why web servers are
frequently attacked:
* Most of the application code (with vulnerabilities) is
public on the website.
*+ The web server offers the quickest pathway to
infiltrate the company network.
* The web server is largely undefended, reducing the
possibility that the attacker will be detected.
» The skill level required to exploit known web server
vulnerabilities is low because attack scripts are available

to download.

It is challenging to respond to Web application abuse
because attacker probing is mostly invisible to intrusion
detection systems, and cannot be easily distinguished from
normal user behavior. Organizations maintain a layered
defense in the form of network firewalls, intrusion
protection systems and web application firewalls primarily
based on signatures and anomaly detection. These security
technologies are useful in blocking the known attacks but
are not sufficient to prevent intrusions from unknown
attacks for which no pattern exists.

While organizations can continue to rely on layered
defenses, embedding deceptive technology into the web
server can be used to block and misdirect attackers before
they succeed in their attacks. Most web server attacks start
with a malicious user or automated tool probing the
website for information leakage or potential
vulnerabilities. Subsequently, any attacker attempt to
exploit a vulnerability activates an alarm that intercepts
the attacker's communications and transmits back
misleading information. For example an attempt by the
attacker to use boundary input cases on forms and
provoke an unintended response from the server causes an
embedded code fragment (a code landmine) to fire and
activate an alarm.

Deception in the web server relies on several
components:
e The application can contain fake code, fake form
fields and fake files.
¢ Landmine code which generates alarms when any
attempt is made to access it.
* Spoofing network data sent to attackers
* Dynamic rerouting of attacker traffic for asset
protection
* Identifying the attacker's actions based on his
interaction with landmine code.
* Recording the attacker's actions after an alarm is
activated.
* Interaction with other deployed security technologies.
* The ability to tag attacker's browser so he can be
identified in future attacks.

Deceptive activities must attempt to control the attack
by sending the attacker fake information such as fake file
containing incorrect data, worthless password files or
incorrect application responses. Furthermore, deception
can be enhanced by increasing the investment in time and
effort the attacker need to make to continue the attack. For
example, a typical account lockout policy that blocks an
attacker after five failed login attempts can be replaced by
a deceptive one whereby the attacker is presented with a
higher-level authentication after three failed attempts. If

he attempts to defeat the authentication, the server
assumes that it is under attack and slows down the
response to the login attempts. Finally the server allows
the attacker to login even with an incorrect password and
redirects all traffic to a honeypot. As a further example, an
attacker may attempt to manipulate form fields that are
protected by landmine code. When unusual behavior
generates an alarm, all attacker traffic is redirected to a
virtual sandbox created dynamically for the attacker and
presenting a fake but believable web site. Similarly,
landmine code can cause an alarm when an attacker is
attempting to exploit an SQL injection vulnerability. At
that point, deceptive code can start leaking other fake
database-related data, possibly encrypted but appearing
enticing to the attacker, such as password hashes which
when broken reveal passwords that either do not work or
are associated with fake accounts that feed more fake
information.

Decoys can be put to effective use in the protection of
a web server through deception [7,8]. Decoys exist as a
large collection of fake virtual machines, and detection
points: fake server files, fake parameters, fake functions,
fake inputs and fake configuration files that appear to end
users and attackers as part of the application itself. If an
attacker attempts to communicate with a decoy virtual
machine the suspicious activity causes an alarm.
Similarly, if while probing a web site an attacker touches
a detection point an alarm is generated. Detection points
include link traversal, such as searching the application
for links to hidden resources; attempts to search protected
directories; header abuse; illegal request method such as
non-standard HTTP methods; input parameter
manipulation such as form inputs, injection and cross-site
scripting attacks; attempts to manipulate application
behavior through query parameter abuse; error codes such
as suspicious application errors or unexpected response
codes; suspicious file requests such as filenames with
known suspicious extensions, prefixes, and tokens;
requests for directory configurations, passwords, and
protected resources; login attempts with invalid
credentials; attempts to crack authentication; and cookie
abuse.

For example, in a directory traversal attack, an
attacker uses a automated custom spider tool to create a
map of all the hidden files and directories that are present
on the web server, with the intention of discovering and
mining sensitive information such as passwords and
configuration settings. These hidden files are not linked
from anywhere in the site because they are intended to be
accessed by the public, but spider tools can attempt to
discover them using a list of common names of these files.
A decoy that triggers an alarm when a directory traversal
attack is detected can respond that the requested files do

exist and can cause an arbitrary number of fake files and
directories to be presented to the attacker, essentially
creating a loop for the attacker that can last forever.

Deception in a web server creates a layer of code that
forces attackers to reveal themselves but remains invisible
to normal users. Once an attacker is identified, he can be
tracked or slowed down or blocked. The ultimate effect is
supplying the attacker with misinformation, a sequence of
fake responses and data to exploit that gives the attacker
the impression that he is successful while he is attacking
a deceptive server.

Figure 3 shows the architecture of a web server
integrated with deception modules. The basic web server
functionality draws from the Apache design as described
in [9]. Apache is using a modular approach to process an
HTTP request allowing a module to handle a particular
task but ignore other aspects of the request that are not
relevant. At its core is the content generator. Modules
register content generators by defining a function

deception module communication with the decoys and the
IPS to receive alarms and modify the content sent as part
of the server's response to the attacker. The deception
module may also decide to redirect the attacker traffic to
a honeypot when it is determined that the deception has
not been successful. For even finer deception control,
some of the decoy functionality could become part of the
content generator in the form of additional modules.

6 Conclusion

Defense techniques based on deception can be
beneficial if the deception is maintained successfully for
the proper amount of time, leading the adversary to
conclude that he has been successful, when in fact he is
not. In this paper we examine the architecture of a
deceptive web server that integrates intrusion detection,
decoys, virtual honeypots and a deceptive content
generator that detect the attack, trap the attacker and keep
supplying him with misinformation, a sequence of fake

VIRTUAL VIRTUAL
HONEYPOT HONEYPOT
i)
| WEB SERVER
]
>—
ATTACK q [REQ| | METADATA DECEPTION |__| CONTENT RESP
sTREAM | PROCESSOR| | MODULE GENERATOR
|
IPS LOGS

Figure 3. Deceptive web server architecture

referenced by a handler configured by directives in the
configuration file httpd.conf. A request goes through
several phases in the metadata processor before being
processed by the content generator. These phases examine
and change the headers of the request to verify access
rules, map the request to a file or script, and determine the
proper content generator. The logging phase takes place
after the content generator has sent the response back. In
Apache, new modules can be developed and inserted into
any of the processing phases described above. A module
defines a function and, through the proper hook, tells
Apache to call the function at the appropriate processing
phase. Figure 3 shows a single deception module inserted
between the metadata processor and the content generator.
However, it is possible to create multiple deception
modules and insert them between different Apache phases
for even finer control of the deception. Figure 3 shows the

responses and data to exploit. Deception technology is
thus an additional, increasingly effective, layer of defense
against ever more sophisticated attacks that succeed in
bypassing the traditional defense layers of firewalls and
intrusion prevention systems.

7 References

[1] Bowen, B., et. al., "Botswindler: Tamper resistant
injection of believable decoys in vm-based hosts for
crimeware detection", Recent Advances in Intrusion
Detection, 118-137, 2010.

[2] Cohen, F., Koike, D., "Leading attackers through
attack graphs with deceptions", Computers & Security,
Volume 22, Issue 5, pp. 402-411, July 2003

[3] Dunnigan , J., & Nofi, A. "Victory and Deceit",

Deception and Trickery in War, 2nd Ed., San Jose,
California: Writers Club Press, 2001.

[4] Holz T., Raynal F., "Detecting honeypots and other
suspicious environments", Proc. 6th IEEE Information
Assurance Workshop, United States Military Academy,
West Point, NY, USA, 2005.

[5] http://labrea.sourceforge.net/labrea-info.html

[6] http://www.honeyd.org

[7] http://www.mykonossoftware.com/

[8] http://www.projectnova.org/

[9] Kew, N., "The Apache Modules Book: Application
Development with Apache", Prentice Hall, 2007.

[10] Michael J. B., Fragkos G., & Auguston M., "An
experiment in software decoy design: intrusion detection
and countermeasures via system call instrumentation”,
Proc. IFIP 18th International [Information Security
Conference, Athens, Greece, 2003, 253-264.

[11] Michael, J. B, "On the Response Policy of Software
Decoys: Conducting Software-based Deception in the
Cyber Battlespace," Proc. 26th Annual International
Computer Software and Applications Conference, pp.
957- 962, Aug. 2002.

[12] Michael, J. B., Riehle, R. D., "Intelligent Software
Decoys", Proc. Monterey Workshop on Engin.
Automation for Software-Intensive Syst. Integration,
June 2001, pp. 178-187.

[13] Neagoe, V. , Bishop, M., "Inconsistency in
Deception for Defense," Proc. New Security Paradigms
Workshop, pp. 31-38, Sep. 2006.

[14] Rowe, N. C., "Deception in defense of computer
systems from cyber-attack", in Cyber War and Cyber
Terrorism, ed. A. Colarik and L. Janczewski, Hershey,
PA: The Idea Group, 2007

[15] Rowe, N. C., Rothstein H., "Two taxonomies of
deception for attacks on information systems", Journal of
Information Warfare 3 (2) (2004) 27-39.

[16] Voris, J., et. al, "Bait and Snitch: Defending
Computer Systems with Decoys", Proc. 3rd Cyber
Infrastructure Protection Conference (CIP), Sep. 2012.
[17] https://www.owasp.org/index.php/Category:OWAS
P Top Ten Project

