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Abstract- The Support Vector Machine (SVM) is one of the most 

effective machine learning algorithms for data classification, 

which have a significant area of research. Since the training 

process of large datasets is computationally intensive, there is a 

need to improve its efficiency using high performance computing 

techniques. In this paper, we developed an efficient parallel 

algorithm, SMC-PBC-SVM, which combines a Parallel Binary 

Class with Serial Multi-class Support Vector Machines for 

classification. The SMC-PBC-SVM algorithm was implemented 

using the object-oriented C++ programming language and 

standard Message passing Interface (MPI) communication 

routines. The parallel code was executed on an ALBACORE 

Linux cluster, and then tested with four datasets with different 

sizes: Earthworm, Protein, Mnist, and Mnist8m. The results 

show that the SMC-PBC-SVM implementation can significantly 

improve the performance of data classification without the loss of 

accuracy. The results also demonstrated a form of 

proportionality between the size of the dataset and the SMC-

PBC-SVM efficiency. As the dataset becomes larger, the SMC-

PBC-SVM achieves a higher efficiency. 
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I.  INTRODUCTION 

Classifying different categories among large datasets has 
become one of the most important computing problems. The 
main objective in classification is to identify patterns in a data 
set, which helps to analyze the data in order to make decisions. 
Support Vector Machines (SVMs) are a class of machine 
learning algorithms based on statistical learning theory, which 
has received wide attention for classification problems because 
of its accuracy and generalization property.  

SVM classification involves three stages. The first one 
involves training the model for the classification with the 
training dataset. The second stage is the testing stage where the 
model is tested with a combination of the training data and 
similar unseen data. The third stage involves the actual 
prediction with unseen data. The training stage is the most 
computationally expensive process of SVMs. 

The main idea behind the SVM classification algorithm is 
to separate two point classes of a training dataset, 

 

                              
                             

, with a surface that maximizes the margin between them [1]. 
This separating surface is obtained by solving a convex 
quadratic problem (QP) of the form [2] 

         
 

 
              

 

   

                                                    

          

 

   

                                                          

, where the entries of the symmetric positive semi-definite 
matrix G are defined as  

                                                                              

                                                      

SVM has been modified to handle non-linear classification. 
Since the complexity of training of non-linear SVMs has been 
estimated to be quadratic in the number of training examples 
[3], it is computationally expensive when large datasets with 
tens of thousands of training examples are used. To reduce the 
training time, the optimization problem can be broken into 
smaller QP problems [4]. Originally, SVM was introduced for 
binary classification, and then it was extended for multi-class 
classification. It was improved by caching the kernel 
calculations [5]. Because of the wide use of the Internet, a large 
amount of data is being collected. Hence, the importance of 
using an efficient SVM that utilizes parallel computing 
facilities and multi-core processing elements for (multi-class) 
classification of large datasets grows even larger.  Therefore, a 
lot of research efforts were directed to find the optimal parallel 
algorithm for the different kinds of datasets. For large binary 
classification problems, there is a need to break it down into 
smaller pieces, so that the smaller partitions can be computed 
concurrently. Research has been conducted in this area, and 
some progress has been made in [6], [7], and [8]. On the other 
hand, for large multi-class classification problems, progress has 
been made in [3] and [9]. Also, a lot of work has been done in 
[5] and [10] to develop kernel computation costs. Some other 
efforts have been achieved in [11], [12], [13] and [14] to 
optimize working set size selection. Additionally, other tries 
have been done in [15], and [16] to develop SVM training by 
quickly removing most of non-support vectors. 

The LIBSVM [17] software is developed for a working set 
of size two, which tends to minimize the computational cost 
per iteration. In this case, the inner QP subproblem can be 
systematically solved without requiring a numerical QP solver 
and the updating of the objective gradient only involves the 
two Hessian columns corresponding to the two updated 
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variables. On the other hand, if few variables are updated per 
iteration, slow convergence is normally implied. The SVM

light
 

[18] algorithm uses a more general decomposition strategy, 
also by common sense it can exploit working sets of sizes 
larger than two. By updating more variables per iteration, such 
an approach is more suitable for a faster convergence, but it 
introduces additional difficulties and costs. A generalized 
maximal-violating pair strategy for the working set selection 
and a numerical solver for the inner QP subproblems are 
required. Moreover, as more variables are updated per iteration, 
the objective gradient updating is more expensive. While 
SVM

light
 can run with any working set size, numerical 

experiences prove that it effectively faces the above difficulties 
only in the case of small sized working sets,          , 

where it often exhibits comparable performance with LIBSVM.  

Following the SVM
light

 decomposition techniques, another 
effort to strike a balance between the convergence rate and cost 
per iteration was introduced in [6]. Unlike SVM

light
, it is 

medium or large sized working sets, (                  

      , that allow the method to converge in a small number 
of iterations where the most costly tasks are. For example, 
subproblem solving and gradient updating can be simply and 
effectively distributed between the available processors. Based 
on this idea, a new parallel gradient projection-based 
decomposition technique (PGPDT) is developed and 
implemented in software to train support vector machines for 
binary classification problems in parallel as in [8].  

Even though all previous results were encouraging, more 
research was needed to improve the performance of the 
process. In this paper, we introduce a new classification 
algorithm which merges parallel binary classification with 
serial multi-class classification to produce an efficient parallel 
algorithm for classification. We named the new algorithm 
SMC-PBC-SVM.  

II. SMC-PBC-SVM ALGORITHM 

The SMC-PBC-SVM algorithm combines Parallel Binary 
Class with Serial Multi Class Support Vector Machines for 
classification. It includes seven steps and works as follows: 1) 
Reads a dataset from an input file, 2) Groups samples of the 
same class together, 3) Collects each two classes into one task, 

4) Sorts  
      

 
  tasks based on its size, 5) Divides processes 

group into two subgroups, mulgroup and bingroup, such that 

mulgroup is used to build  
      

 
  binary tasks where K is the 

number of classes in the dataset, and bingroup is used to solve 

each binary task from  
      

 
  tasks in parallel, 6) Builds SVM 

model after solving all binary tasks, and 7) Writes the SVM 
model into an output model file which is used to predict testing 
dataset file.   The algorithm flowchart is illustrated in Figure 1.   

Since the SMC-PBC-SVM is based on the Parallel Binary 
Class algorithm implemented by PGPDT, we briefly explain 
here the fundamental principles and decomposition technique 
used in [8]. We start that by stating some fundamental 
principles. At each decomposition iteration, the indices of the 
variables                   are split into the set B of basic 
variables, usually called the working set, and the set N = 
{1,2,…,n} \ B of nonbasic variables. In consequence, the 

kernel matrix G, the vectors                
 , and the 

vector                
  can be arranged with respect to B 

and N as follows: 
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Then, suppose that     is the size of the working set, where 

       and     is a solution of QP (2), and    is the number 

of processes which are used for solving that QP, and each of 
them has a local copy of the training set D (1), where the 
entries of  G are defined by G(3). The decomposition technique 
used by the PGPDT falls within the general idea stated in 
PGPDT algorithm, which is shown in Figure 2. Label 
“Distributed task” in A2 and A3 of PGPDT algorithm refers to 
the steps where the    processors cooperate together to 

perform the required computation. In these steps, 
communications and synchronization are needed. In the other 
steps, the processors asynchronously perform the same 
computations on the same input data to obtain a local copy of 
the expected output data. 

 

 

 

Figure 1. Serial Multi Class Parallel Binary Class Support Vector Machines 



 

Figure 2. Parallel Gradient Projection Decomposition Technique Algorithm 

 

III. SMC-PBC-SVM RESULTS ANALYSIS 

The SMC-PBC-SVM algorithm was implemented using the 
object-oriented C++ programming language and the standard 
MPI communication routines [19]. The experiments are carried 
out on two different parallel platforms at the Mississippi Center 
for Supercomputing Research (MCSR) [20], and ALBACORE 
Linux clusters [21]. The performance analysis was visualized 
using Jumpshot software [22]. The best performance was 
achieved with ALBACORE, which contains 12 compute 
nodes, each node has 2 chips, and each chip has 4 cores. Each 
core is an Intel(R) Xeon(R) CPU X5570 with 2.93 GHZ and 
8192 KB Cache. Each node of node0 and node1 has 16 GB, 
and node2 to node11 has 12 GB.  

The SMC_PBC_SVM has been tested using different size 
datasets, Earthworm, Protein, Mnist, and Mnist8m, which are 
small, medium, large, and very large datasets respectively. 
Table I includes the description of these datasets. The results 
show that SMC-PBC-SVM is very efficient with very large 
datasets as Mnist8m dataset, highly efficient with large datasets 
as Mnist dataset, reasonably efficient in medium datasets as 
Protein dataset, and less efficient with small datasets as 
Earthworm dataset. For more details, see Table II, which shows 

the training run time when number of processes 1, 2, 4, 9, 16, 
25, and 36 are used. 

TABLE I.  DATASETS DESCRIPTION 

Dataset 

Name 
Earthworm Protein Mnist Mnist8m 

Reference [23] LY10 [24] JW02 [25] YL98 [26] GL07 

Classes 

Number 
3 3 10 10 

Features 

Number 
869 357 780 784 

Training 

Samples 

Number 
248 17766 60000 8100000 

Testing 

Samples 

Number 
30 662 10000 10000 

Best 

C 
32.0 32.0 32.0 32.0 

Best 

ɤ 
0.001953 0.001953 0.001953 0.001953 

Accuracy 

% 
100 69.55 98.21 98.73 

 

TABLE II.  TRAINING RUN TIME IN SECONDS 

Processes 

Number  
Earthworm Protein Mnist Mnist8m 

NP = 1 460.000 2427.840 4118.800 5111.370 

NP = 2 454.031 2299.361 3915.277 4641.645 

NP = 4 421.053 1618.583 2187.881 2961.146 

NP = 9 398.174 933.000 1409.055 1824.251 

NP = 16 367.177 732.000 986.758 1252.153 

NP = 25 347.444 516.617 814.520 945.837 

NP = 36 334.620 431.059 701.696 768.011 

 

The complexity for the multi-class classification 
is           , where K is the number of classes, M is the 
number of features, and N is the number of training samples 
[3]. This serial complexity is the worst case scenario for 
multiclass classification using binary classifiers. But when this 
job is distributed among P processors, the parallel complexity 

becomes    
      

 
       where    is the complexity due to 

communication for task scheduling and combining the results.  

We evaluate the parallel performance by the relative 
speedup (S), which is defined as the ratio of the time taken to 
solve a problem on a single processing element to the time 
required to solve the same problem on a parallel computer with 
p identical processing elements, then 



  
  

  
  

                                         

                                      
                       

Then, 
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Efficiency (E) is another way to analyze the parallel 
implementation, which is defined as the ratio of speedup to the 
number of processing elements, then 

   
 

 
  

       

                
                                                                                                                    

 Then, 
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Figures 3, 4, and 5 show the relationship between the 
number of processors and run time, speedup, and efficiency 
respectively. Also, Figures 6 and 7 show the output of 
Jumpshot, which is a visualization tool to study the 
performance of parallel programs using log files that are 
generated from the execution of the SMC-PBC-SVM 
implementation to Earthworm and Mnist datasets using 16 
processors.  

 

 

Figure 3. The relationship between Run Time and Number of Processors 

 

 

Figure 4. The relationship between Speedup and Number of Processors 

 

 

Figure 5. The relationship between Efficiency and Number of Processors 

 

In Figure 3, we can see that the training execution time 
goes down as the number of processors is increased. It shows 
that when there is a sufficient work to be done concurrently on 
an increasing set of processors, there is a related improvement 
in performance.  For small datasets, as Earthworm, there is not 



enough work to be done concurrently. Therefore, there is no 
significant improvement in performance in that case. On the 
other hand, for very large datasets, as Minst8m, there is a 
sufficient work to be done concurrently. Therefore, there is a 
significant improvement in performance with very large 
datasets. By the same concept, the performances of medium 
and large datasets, such as Protein and Mnist, fell between the 
performances of small datasets and very large datasets. We 
used a Portable batch system (PBS) script which allows us to 
choose number of processors which are needed for job 
execution.  

Referring to the speedup (5), we can see that, the size of 
datasets and the size of classes are significant factors in 
speedup. Therefore, it may not be possible to avoid the idling 
of some processes. Also, as the number of processes is  
increased, the speedup is less than linear, indicating idle time 
for few processors while waiting for other processors. In Figure 
4, we can observe that the speedup is closed to linear speedup 
from very large dataset to small dataset.  

Efficiency (7) is defined as the ratio of speedup to the 
number of processors. Therefore, a higher speedup ensures 
good efficiency, implying efficient use of the parallel 
resources. In Figure 5, we can see, the efficiency of SMC-
PBC-SVM is gradual from a very large dataset to a small 
dataset.  

In Figure 6, we can observe that there is a lot of lost time 
through idling especially with a large number of processes 
where the dataset size is small. Therefore, this explains the low 
efficiency with small datasets. While in Figure 7, we can see 
that there is no lost time because most time is spent in 
computation without idle time, where the dataset size is large. 
Therefore, this explains the high efficiency with large datasets. 

 

IV. CONCLUSION AND FUTURE WORK 

In this paper, the problem of solving multi-class 

classification using an efficient parallel support vector machine 

implementation was investigated. SMC-PBC-SVM is an 

efficient parallel algorithm, which combines Parallel Binary 

Class with Serial Multi-Class Support Vector Machines for 

classification. The SMC-PBC-SVM algorithm was 

implemented using the object-oriented C++ programming 

language and standard Message Passing Interface (MPI) 

communication routines. The parallel code was executed on an 

ALBACORE Linux cluster, and then tested with four datasets 

with difference sizes: Earthworm, Protein, Mnist, and 

Mnist8m. The results show that the SMC-PBC-SVM 

implementation can significantly improve the performance of 

data classification without loss of accuracy. As the dataset 

becomes larger, the SMC-PBC-SVM achieves a higher 

efficiency. In this paper, we used one processor in mulgroup 

which means SMC, and more than one processes in bingroup 

which means PBC.  

 
Figure 6. Jumpshot Timeline, Histogram and legend windows 

of Earthworm dataset using 16 processors 

 

 
Figure 7. Jumpshot Timeline, Histogram and legend windows 

of Mnist dataset using 16 processors 



In the future work, the scope of mulgroup will extend to 
include more than one processor, (Add comma) where each of 
which has its own bingroup. Therefore, these processes in 
mulgroup work in parallel, and then we will produce PMC-
PBC-SVM implementation which will improve the 
performance and will address the limitations of SMC-PBC-
SVM.  
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