

*Correspondence: USM, School of Computing, Chaoyang.Zhang@usm.edu.
§Permanent address: Beni Suef University, Faculty of Science, Beni Suef, Egypt.

SMC-PBC-SVM: A Parallel Pmplementation

 of Support Vector Machines for Data Classification

Rabie Ahmed
§
, Adel Ali, Chaoyang Zhang

*

School of computing, University of Southern Mississippi, Hattiesburg, USA

Rabie.Ahmed@eagles.usm.edu, Adel.Ali@usm.edu, Chaoyang.Zhang@usm.edu

Abstract- The Support Vector Machine (SVM) is one of the most

effective machine learning algorithms for data classification,

which have a significant area of research. Since the training

process of large datasets is computationally intensive, there is a

need to improve its efficiency using high performance computing

techniques. In this paper, we developed an efficient parallel

algorithm, SMC-PBC-SVM, which combines a Parallel Binary

Class with Serial Multi-class Support Vector Machines for

classification. The SMC-PBC-SVM algorithm was implemented

using the object-oriented C++ programming language and

standard Message passing Interface (MPI) communication

routines. The parallel code was executed on an ALBACORE

Linux cluster, and then tested with four datasets with different

sizes: Earthworm, Protein, Mnist, and Mnist8m. The results

show that the SMC-PBC-SVM implementation can significantly

improve the performance of data classification without the loss of

accuracy. The results also demonstrated a form of

proportionality between the size of the dataset and the SMC-

PBC-SVM efficiency. As the dataset becomes larger, the SMC-

PBC-SVM achieves a higher efficiency.

Keywords- Classification; SVM; parallel computing.

I. INTRODUCTION

Classifying different categories among large datasets has
become one of the most important computing problems. The
main objective in classification is to identify patterns in a data
set, which helps to analyze the data in order to make decisions.
Support Vector Machines (SVMs) are a class of machine
learning algorithms based on statistical learning theory, which
has received wide attention for classification problems because
of its accuracy and generalization property.

SVM classification involves three stages. The first one
involves training the model for the classification with the
training dataset. The second stage is the testing stage where the
model is tested with a combination of the training data and
similar unseen data. The third stage involves the actual
prediction with unseen data. The training stage is the most
computationally expensive process of SVMs.

The main idea behind the SVM classification algorithm is
to separate two point classes of a training dataset,

, with a surface that maximizes the margin between them [1].
This separating surface is obtained by solving a convex
quadratic problem (QP) of the form [2]

, where the entries of the symmetric positive semi-definite
matrix G are defined as

SVM has been modified to handle non-linear classification.
Since the complexity of training of non-linear SVMs has been
estimated to be quadratic in the number of training examples
[3], it is computationally expensive when large datasets with
tens of thousands of training examples are used. To reduce the
training time, the optimization problem can be broken into
smaller QP problems [4]. Originally, SVM was introduced for
binary classification, and then it was extended for multi-class
classification. It was improved by caching the kernel
calculations [5]. Because of the wide use of the Internet, a large
amount of data is being collected. Hence, the importance of
using an efficient SVM that utilizes parallel computing
facilities and multi-core processing elements for (multi-class)
classification of large datasets grows even larger. Therefore, a
lot of research efforts were directed to find the optimal parallel
algorithm for the different kinds of datasets. For large binary
classification problems, there is a need to break it down into
smaller pieces, so that the smaller partitions can be computed
concurrently. Research has been conducted in this area, and
some progress has been made in [6], [7], and [8]. On the other
hand, for large multi-class classification problems, progress has
been made in [3] and [9]. Also, a lot of work has been done in
[5] and [10] to develop kernel computation costs. Some other
efforts have been achieved in [11], [12], [13] and [14] to
optimize working set size selection. Additionally, other tries
have been done in [15], and [16] to develop SVM training by
quickly removing most of non-support vectors.

The LIBSVM [17] software is developed for a working set
of size two, which tends to minimize the computational cost
per iteration. In this case, the inner QP subproblem can be
systematically solved without requiring a numerical QP solver
and the updating of the objective gradient only involves the
two Hessian columns corresponding to the two updated

mailto:Rabie.Ahmed@eagles.usm.edu
mailto:Adel.Ali@usm.edu
mailto:Chaoyang.Zhang@usm.edu

variables. On the other hand, if few variables are updated per
iteration, slow convergence is normally implied. The SVM

light

[18] algorithm uses a more general decomposition strategy,
also by common sense it can exploit working sets of sizes
larger than two. By updating more variables per iteration, such
an approach is more suitable for a faster convergence, but it
introduces additional difficulties and costs. A generalized
maximal-violating pair strategy for the working set selection
and a numerical solver for the inner QP subproblems are
required. Moreover, as more variables are updated per iteration,
the objective gradient updating is more expensive. While
SVM

light
 can run with any working set size, numerical

experiences prove that it effectively faces the above difficulties
only in the case of small sized working sets, ,

where it often exhibits comparable performance with LIBSVM.

Following the SVM
light

 decomposition techniques, another
effort to strike a balance between the convergence rate and cost
per iteration was introduced in [6]. Unlike SVM

light
, it is

medium or large sized working sets, (

 , that allow the method to converge in a small number
of iterations where the most costly tasks are. For example,
subproblem solving and gradient updating can be simply and
effectively distributed between the available processors. Based
on this idea, a new parallel gradient projection-based
decomposition technique (PGPDT) is developed and
implemented in software to train support vector machines for
binary classification problems in parallel as in [8].

Even though all previous results were encouraging, more
research was needed to improve the performance of the
process. In this paper, we introduce a new classification
algorithm which merges parallel binary classification with
serial multi-class classification to produce an efficient parallel
algorithm for classification. We named the new algorithm
SMC-PBC-SVM.

II. SMC-PBC-SVM ALGORITHM

The SMC-PBC-SVM algorithm combines Parallel Binary
Class with Serial Multi Class Support Vector Machines for
classification. It includes seven steps and works as follows: 1)
Reads a dataset from an input file, 2) Groups samples of the
same class together, 3) Collects each two classes into one task,

4) Sorts

 tasks based on its size, 5) Divides processes

group into two subgroups, mulgroup and bingroup, such that

mulgroup is used to build

 binary tasks where K is the

number of classes in the dataset, and bingroup is used to solve

each binary task from

 tasks in parallel, 6) Builds SVM

model after solving all binary tasks, and 7) Writes the SVM
model into an output model file which is used to predict testing
dataset file. The algorithm flowchart is illustrated in Figure 1.

Since the SMC-PBC-SVM is based on the Parallel Binary
Class algorithm implemented by PGPDT, we briefly explain
here the fundamental principles and decomposition technique
used in [8]. We start that by stating some fundamental
principles. At each decomposition iteration, the indices of the
variables are split into the set B of basic
variables, usually called the working set, and the set N =
{1,2,…,n} \ B of nonbasic variables. In consequence, the

kernel matrix G, the vectors
 , and the

vector
 can be arranged with respect to B

and N as follows:

 ,

 ,

Then, suppose that is the size of the working set, where

 and is a solution of QP (2), and is the number

of processes which are used for solving that QP, and each of
them has a local copy of the training set D (1), where the
entries of G are defined by G(3). The decomposition technique
used by the PGPDT falls within the general idea stated in
PGPDT algorithm, which is shown in Figure 2. Label
“Distributed task” in A2 and A3 of PGPDT algorithm refers to
the steps where the processors cooperate together to

perform the required computation. In these steps,
communications and synchronization are needed. In the other
steps, the processors asynchronously perform the same
computations on the same input data to obtain a local copy of
the expected output data.

Figure 1. Serial Multi Class Parallel Binary Class Support Vector Machines

Figure 2. Parallel Gradient Projection Decomposition Technique Algorithm

III. SMC-PBC-SVM RESULTS ANALYSIS

The SMC-PBC-SVM algorithm was implemented using the
object-oriented C++ programming language and the standard
MPI communication routines [19]. The experiments are carried
out on two different parallel platforms at the Mississippi Center
for Supercomputing Research (MCSR) [20], and ALBACORE
Linux clusters [21]. The performance analysis was visualized
using Jumpshot software [22]. The best performance was
achieved with ALBACORE, which contains 12 compute
nodes, each node has 2 chips, and each chip has 4 cores. Each
core is an Intel(R) Xeon(R) CPU X5570 with 2.93 GHZ and
8192 KB Cache. Each node of node0 and node1 has 16 GB,
and node2 to node11 has 12 GB.

The SMC_PBC_SVM has been tested using different size
datasets, Earthworm, Protein, Mnist, and Mnist8m, which are
small, medium, large, and very large datasets respectively.
Table I includes the description of these datasets. The results
show that SMC-PBC-SVM is very efficient with very large
datasets as Mnist8m dataset, highly efficient with large datasets
as Mnist dataset, reasonably efficient in medium datasets as
Protein dataset, and less efficient with small datasets as
Earthworm dataset. For more details, see Table II, which shows

the training run time when number of processes 1, 2, 4, 9, 16,
25, and 36 are used.

TABLE I. DATASETS DESCRIPTION

Dataset

Name
Earthworm Protein Mnist Mnist8m

Reference [23] LY10 [24] JW02 [25] YL98 [26] GL07

Classes

Number
3 3 10 10

Features

Number
869 357 780 784

Training

Samples

Number
248 17766 60000 8100000

Testing

Samples

Number
30 662 10000 10000

Best

C
32.0 32.0 32.0 32.0

Best

ɤ
0.001953 0.001953 0.001953 0.001953

Accuracy

%
100 69.55 98.21 98.73

TABLE II. TRAINING RUN TIME IN SECONDS

Processes

Number
Earthworm Protein Mnist Mnist8m

NP = 1 460.000 2427.840 4118.800 5111.370

NP = 2 454.031 2299.361 3915.277 4641.645

NP = 4 421.053 1618.583 2187.881 2961.146

NP = 9 398.174 933.000 1409.055 1824.251

NP = 16 367.177 732.000 986.758 1252.153

NP = 25 347.444 516.617 814.520 945.837

NP = 36 334.620 431.059 701.696 768.011

The complexity for the multi-class classification
is , where K is the number of classes, M is the
number of features, and N is the number of training samples
[3]. This serial complexity is the worst case scenario for
multiclass classification using binary classifiers. But when this
job is distributed among P processors, the parallel complexity

becomes

 where is the complexity due to

communication for task scheduling and combining the results.

We evaluate the parallel performance by the relative
speedup (S), which is defined as the ratio of the time taken to
solve a problem on a single processing element to the time
required to solve the same problem on a parallel computer with
p identical processing elements, then

Then,

 .

Efficiency (E) is another way to analyze the parallel
implementation, which is defined as the ratio of speedup to the
number of processing elements, then

 Then,

 .

Figures 3, 4, and 5 show the relationship between the
number of processors and run time, speedup, and efficiency
respectively. Also, Figures 6 and 7 show the output of
Jumpshot, which is a visualization tool to study the
performance of parallel programs using log files that are
generated from the execution of the SMC-PBC-SVM
implementation to Earthworm and Mnist datasets using 16
processors.

Figure 3. The relationship between Run Time and Number of Processors

Figure 4. The relationship between Speedup and Number of Processors

Figure 5. The relationship between Efficiency and Number of Processors

In Figure 3, we can see that the training execution time
goes down as the number of processors is increased. It shows
that when there is a sufficient work to be done concurrently on
an increasing set of processors, there is a related improvement
in performance. For small datasets, as Earthworm, there is not

enough work to be done concurrently. Therefore, there is no
significant improvement in performance in that case. On the
other hand, for very large datasets, as Minst8m, there is a
sufficient work to be done concurrently. Therefore, there is a
significant improvement in performance with very large
datasets. By the same concept, the performances of medium
and large datasets, such as Protein and Mnist, fell between the
performances of small datasets and very large datasets. We
used a Portable batch system (PBS) script which allows us to
choose number of processors which are needed for job
execution.

Referring to the speedup (5), we can see that, the size of
datasets and the size of classes are significant factors in
speedup. Therefore, it may not be possible to avoid the idling
of some processes. Also, as the number of processes is
increased, the speedup is less than linear, indicating idle time
for few processors while waiting for other processors. In Figure
4, we can observe that the speedup is closed to linear speedup
from very large dataset to small dataset.

Efficiency (7) is defined as the ratio of speedup to the
number of processors. Therefore, a higher speedup ensures
good efficiency, implying efficient use of the parallel
resources. In Figure 5, we can see, the efficiency of SMC-
PBC-SVM is gradual from a very large dataset to a small
dataset.

In Figure 6, we can observe that there is a lot of lost time
through idling especially with a large number of processes
where the dataset size is small. Therefore, this explains the low
efficiency with small datasets. While in Figure 7, we can see
that there is no lost time because most time is spent in
computation without idle time, where the dataset size is large.
Therefore, this explains the high efficiency with large datasets.

IV. CONCLUSION AND FUTURE WORK

In this paper, the problem of solving multi-class

classification using an efficient parallel support vector machine

implementation was investigated. SMC-PBC-SVM is an

efficient parallel algorithm, which combines Parallel Binary

Class with Serial Multi-Class Support Vector Machines for

classification. The SMC-PBC-SVM algorithm was

implemented using the object-oriented C++ programming

language and standard Message Passing Interface (MPI)

communication routines. The parallel code was executed on an

ALBACORE Linux cluster, and then tested with four datasets

with difference sizes: Earthworm, Protein, Mnist, and

Mnist8m. The results show that the SMC-PBC-SVM

implementation can significantly improve the performance of

data classification without loss of accuracy. As the dataset

becomes larger, the SMC-PBC-SVM achieves a higher

efficiency. In this paper, we used one processor in mulgroup

which means SMC, and more than one processes in bingroup

which means PBC.

Figure 6. Jumpshot Timeline, Histogram and legend windows

of Earthworm dataset using 16 processors

Figure 7. Jumpshot Timeline, Histogram and legend windows

of Mnist dataset using 16 processors

In the future work, the scope of mulgroup will extend to
include more than one processor, (Add comma) where each of
which has its own bingroup. Therefore, these processes in
mulgroup work in parallel, and then we will produce PMC-
PBC-SVM implementation which will improve the
performance and will address the limitations of SMC-PBC-
SVM.

ACKNOWLEDGMENT

The authors gratefully acknowledge the Beni Suef
University for their financial support.

REFERENCES

[1] C. Cortes, and V. Vapnik, “Support-vector networks
Machine Learning,” 1995.

[2] V. Vapnik, “The Nature of Statistical Learning Theory,”
Springer-Verlag, 1999.

[3] A. Rajendran, “Parallel Support Vector Machines for
Mulicategory Classification of Large Scale Data,” Dissertation,
University of Southern Mississippi, 2007.

[4] E. Osuna, R. Freund, and F. Girosi, “An improved training
algorithm for support vector machines,” IEEE Workshop
Neural Networks for Signal Processing, pp. 276–285, 1997.

[5] S. Qiu, and T. Lane, “Parallel computation of RBF kernels
for support vector classifiers,” Fifth SIAM International
Conference on Data Mining, 2005.

[6] G. Zanghirati, and L. Zanni, “Parallel solver for large
quadratic programs in training support vector machines,”
Parallel Computing 29, pp. 535-551, 2003.

[7] L. Zanni, T. Serafini, and G. Zanghirati, “Parallel software
for training large scale support vector machines on
multiprocessors systems,” Journal of Machine Learning
Research 7, pp. 1467-1492, 2006.

[8] T. Serafini, G. Zanghirati, and L. Zanni, “PGPDT: Parallel
Gradient projection based on Decompostion Technique,”
Technical report, http://dm.unife.it/gpdt/,2007.

[9] C. Zhang, P. Li, A. Rajendran, and Y. Deng,
“Parallelization of multicategory support vector machines for
classifying microarray data,” BMC Bioinformatics, 2006.

 [10] T.Eitrich, and B. Lang, “Efficient Implementation of
serial and parallel support vector machine training with a multi-
parameter kernel for large-scale data mining,” Proceedings of
World Academy of Science, Engineering, and Technology 11,
2006.

[11] T. Serafini, L. Zanni, “On the Working Set Selection in
Gradient Projection-based Decomposition Techniques for
Support Vector Machines,” Optim. Meth. Soft. 20, pp. 583-
596, 2005.

[12] R. Fan, P. Chen, and C. Lin, “Working set selection using
second order information for training support vector
machines,” Journal of Machine Learning Research, 2005.

[13] T.Eitrich, and B. Lange, “On the optimal working set size
in serial and parallel support vector machine learning with the
decomposition algorithm,” Proceedings of the fifth
Australasian Conference on Data mining and analysis 61, pp.
121-128,2006.

[14] J. Platt, “Fasting training of support vector machines using
Sequential Minimal Optimization,” In Advances in Kernel
Methods Support Vector Learning, MIT press, pp. 185-208,
1999.

[15] J. Dong, A. Krzyzak, and C. Suen, “A fast parallel
optimization for training support vector machine,” Proceedings
of 3rd Int. Conf. Machine Learning and Data Mining, pp. 96-
105, Germany, 2003.

[16] J. Dong, A. Krzyzak, and C. Suen, “Fast SVM training
algorithm with decomposition on very large data sets,” IEEE
Transactions on Pattern Analysis and Machine Intelligence 27,
pp. 603-618, 2005.

[17] C. Change and C. Len, “LIBSVM: a library for support
vector machines,” Technical report,
http://www.csie.ntu.edu.tw/_cjlin/libsvm/, 2005.

[18] T. Joachims, “SVM
Light

, Support vector machine,”
Developed at the university of Dortmund , and it is available at
http://svmlight.joachims.org/, 1994.

 [19] MPI: A Message Passing Interface Standard (Version
2.2), Message Passing Interface Forum, September 4, URL
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf,
2009.

[20] MCSR: Mississippi center for supercomputing research,
Technical report, http://www.mcsr.olemiss.edu.

 [21] USM: Albacore Cluster, Chemistry lab at The University
of Southern Miss. http://albacore.st.usm.edu/cgi-bin/portal.cgi.

[22] A. Chan, D. Ashton, R. Lusk, and W. Gropp, “Jumpshot-4
Users Guide,” Mathematics and Computer Science Division,
http://www.mcs.anl.gov/research/projects/perfvis/software/vie
wers/index.htm, 2007.

[23] Y. Li, N. Wang, E. Perkins, C. Zhang, and P. Gong,
“Identification and Optimization of Classifier Genes from
Multi-Class Earthworm Microarray Dataset,” PLoS ONE
5(10): e13715. doi:10.1371/journal.pone.0013715, October
2010.

[24] J. Wang, “Application of support vector machines in
bioinformatics,” Master's thesis, Department of Computer
Science and Information Engineering, National Taiwan
University, 2002.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recognition,”
Proceedings of the IEEE, 86(11):2278-2324, MNIST database
available at http://yann.lecun.com/exdb/mnist/, 1998.

[26] G. Loosli, S. Canu, and L. Bottou, “Training invariant
support vector machines using selective sampling,” In Léon
Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston,
editors, Large Scale Kernel Machines, pages 301-320. MIT
Press, Cambridge, 2007.

http://dm.unife.it/gpdt/sz-oms2005.pdf
http://dm.unife.it/gpdt/sz-oms2005.pdf
http://dm.unife.it/gpdt/sz-oms2005.pdf
http://svmlight.joachims.org/
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mcsr.olemiss.edu/
http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm
http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm
http://yann.lecun.com/exdb/mnist/

