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Abstract— While the surjectivity of the global map in
two-dimensional cellular automata (2D CA) is undecid-
able in general, in specific cases one can often decide
if the rule is surjective or not. We attempt to classify as
many 2D CA as possible by using a sequence of tests
based on the balance theorem, injectivity of the restric-
tion to finite configurations, as well as permutivity. We
introduce the notion of slice permutivity which is shown
to imply surjectivity in 2D CA. The tests are applied
to 2D binary CA with neighbourhoods consisting of up
to five sites, considering all possible contiguous shapes
of the neighbourhood. We find that if the size of the
neighbourhood is less than five, complete classification
of all rules is possible. Among 5-site rules, those with
von Neuman neighbourhoods as well as neighbourhoods
corresponding to T, V, and Z pentominos can also be
completely classified.

Keywords: cellular automata, surjective, permutive, classifi-
cation, neighbourhood

1. Introduction
In the theory of cellular automata (CA), the surjectiv-

ity of the global map is one of the most extensively
studied properties of CA. It is only natural to ask,
therefore, what are the examples of surjective CA?

In the case of one-dimensional CA, such examples
are easy to construct because there exists the well-
known Amoroso-Patt algorithm for determining if a
given elementary cellular automaton is surjective [1].
Using this algorithm it can be shown that among the 88
minimal elementary CA rules, the only surjective rules
have Wolfram code numbers 15, 30, 45, 51, 60, 90, 105,
106, 150, 154, 170 and 204.

In two dimensions, however, the situation is much dif-
ferent. It has been shown that the question of surjectivity
of two-dimensional cellular automata is undecidable [4],
which means that it is impossible to construct a single
algorithm which would always decide if an arbitrary rule
is surjective or not. This, of course, does not exclude a

possibility that for specific classes of 2D rules surjectiv-
ity can still be decidable – it is known, for example, that
rules which are permutive with respect to the corners of
the Moore neighbourhood are surjective [2].

In this paper, we attempt to classify 2D rules with
respect to surjectivity using two known properties equiv-
alent to surjectivity, namely the balance theorem and the
injectivity of restrictions to finite configurations. More-
over, we introduce the the concept of slice-permutivity
which is then shown to imply surjectivity. We show that
all 2D CA with neighbourhoods of size four (or less),
no matter what shape, can be classified. For five-site
CA, complete classification is still possible for certain
neighbourhood shapes, notably including von Neumann
neighbourhood.

2. Basic Definitions
Let A be a finite set of symbols, to be called a symbol

set. We define a two-dimensional configuration s to be
a function s : Z2 → A, and AZ2

to be the set of all
two-dimensional configurations. For any vector ~x ∈ Z2,
we denote s~x ∈ A to be a symbol located at position
(or site) ~x in configuration s. If V ⊂ Z

2, we define
sV = [s~x]~x∈V .

A neighbourhood N is a finite subset of vectors in
Z

2. A neighbourhood is said to be contiguous if, for
any vector ~x ∈ N , at least one vector in the set {~x ±
(1, 0), ~x ± (0, 1)} is also in N . For any vector ~x, the
neighbourhood of ~x is defined as N (~x) = {~u+ ~x : ~u ∈
N}.

We can now define the local mapping of a two-
dimensional cellular automata (2D CA) to be the func-
tion f : AN → A. The local mapping induces a global
mapping F : AZ2 → AZ2

so that F (s)~x = f(sN (~x)),
for all s ∈ AZ2

and all ~x ∈ Z2.
If Z ⊂ Z2 is a finite set of vectors, then we define a

block to be an element of AZ .
The neighbourhood of Z is defined similarly as be-

fore, so thatN (Z) = {~u+~x : ~u ∈ N , ~x ∈ Z}. The block



evolution operator f : AN (Z) → AZ is now defined by
f(b)~x = f(bN (~x)) for any ~x ∈ Z and b ∈ AN (Z).

Given a block b ∈ AZ , the set of preimages of b under
f is the set of blocks b′ ∈ AN (Z) such that f(b′) = b.
This preimage set will be denoted f−1(b).

Sometimes, we will need to consider the neighbour-
hood of a neighbourhood. We will then use the notation
N 2(Z) = N (N (Z)), and higher powers will refer to
the appropriate number of neighbourhood compositions.

Let ~v ∈ N , and let us denote M = N \ ~v. Let b ∈
AM and let us denote [x, b] to be an element of AN
such that its entries with indices in M are the same as
corresponding entries in b, while the entry with index
~v is equal to x, x ∈ A. A 2D CA is permutive with
respect to ~v ∈ N if, for any choice of b, the function
x→ f([x, b]) is one-to-one.

2.1 One-dimensional Binary Rules
Before we attempt to classify two-dimensional CA

rules, let us discuss what happens in one dimension, as
this will give us some important insight. As mentioned
in the introduction, surjectivity in 1D is known to be
decidable, and the algorithm for testing for surjectivity
has been developed by Amoroso and Patt in early 70’s
[1]. We used this algorithm to find all surjective binary
rules of a given neighbourhood size, for neighbourhood
sizes ranging from 1 to 5. We also checked which
of these rules are permutive. The results are given in
Table 1. One can make two interesting observations from
this table. First of all, the proportion of rules which are
surjective decreases dramatically as the neighbourhood
size increases. The second observation can be stated as
the following proposition.

Proposition 2.1: Any contiguous one-dimensional bi-
nary cellular automata dependent on three or less sites
is surjective if and only if it is permutive.

This means that for a binary rule to be surjective yet
non-permutive a neighbourhood of at least four sites is
needed. A natural question to ask, therefore, is whether
this is also the case in two dimensions?

3. Permutivity and Surjectivity
As we will shortly see, permutivity alone is not

enough to guarantee surjectivity in two dimensions. In
[2], the authors considered 2D CA with Moore neigh-
bourhood of radius r, where N = {(i, j) : |i|, |j| ≤ r}.
They proved that any such rule is surjective if it is
permutive with respect to sites (±r,±r). We will prove a
similar result using an arbitrary neighbourhood and any

site that can be sliced off from the neighbourhood by a
straight line.

Given m, c ∈ Q, we define a line ` = {(x, y) : y =
mx+ c}, and the following two regions, `+ = {(x, y) :
y > mx + c} and `− = {(x, y) : y < mx + c}. For
vertical lines ` = {(x, y) : x = c} we similarly define
`+ = {(x, y) : x > c} and `− = {(x, y) : x < c}. A
site ~x ∈ N can be sliced if there exists a set ` such
that ~x ∈ ` and N \ ~x ⊂ `+ (or `−). A 2D CA is slice
permutive if it is permutive with respect to a site which
can be sliced.

The main result relating slice-permutivity and surjec-
tivity can be stated as follows.

Theorem 3.1: Any two-dimensional slice permutive
CA is surjective.

Before we start the proof, we will need the following
classical result. Let Zn be a square region in Z2, defined
as Zn = [0, 1, . . . , n−1]×[0, 1, . . . , n−1], where n ∈ N.

Theorem 3.2 (Balance Theorem): A 2D CA is surjec-
tive if and only if for all n ≥ 1 and all b, b′ ∈ AZn , we
have card f−1(b) = card f−1(b′).

A one-dimensional version of this theorem first ap-
peared in [3]. The proof of the two-dimensional version
can be found in [5], where the authors consider a Moore
neighbourhood of any radius. Since any neighbourhood
can be extended to a Moore neighbourhood by adding
extra sites, the Balance Theorem also holds for a CA
rule with any neighbourhood shape.

Proof: [of Theorem 3.1] Consider an arbitrary block
b ∈ AZn . Since our CA is slice permutive, there exists
a line ` which slices the neighbourhood at some site
~u ∈ N , so that all sites in N \ ~u are either in `− or in
`+. Without loss of generality, we assume that all sites
of N \~u are are in `−. The proof of the other case can be
obtained by replacing `± with `∓. Let ~n be the normal
vector to ` oriented so that it points in the direction of
`+. Consider {`1, `2, . . . , `k} to be the family of lines
with the same slope as ` with indices increasing in the
direction of ~n, so that for any ~x ∈ Zn there exists `i
such that ~x ∈ `i. We now construct the set of preimages
of b, each element of which is of the form [a~x]~x∈N (Zn).

In order to illustrate this better, we will conduct the
proof while simultaneously referring to an example of a



Neighbourhood Size Total Rules Surjective Rules
Permutive Not Permutive Total

1 2 2 0 2
2 16 6 0 6
3 256 28 0 28
4 65536 518 64 582
5 4294967296 131502 11516 143018

Table 1: One-dimensional binary rules

rule defined on the seven-site neighbourhood

N = {(−3, 1), (−3, 0), (−2, 0), (−1, 0),
(0, 0), (0,−1), (1,−1)}.

In this example, we assume that the rule is permutive
with respect to the sliceable site (0, 0), for which the
corresponding line ` has slope −1/2. The neighbourhood
of Z3 is shown in Figure 3(a).

We start the construction from sites of Zn which
belong to the line l1. Due to slice permutivity, all sites of
the preimage which are below this line can take arbitrary
values, and sites which are on the line can be chosen in
such a way that b~x = f(aN (~x)) for all ~x ∈ `1∩Zn. This
means that sites of N (Zn) which belong to `−1 can take
arbitrary values, and sites of Zn which belong to `1 are
uniquely determined by those arbitrary values.

In Figure 3(b) arbitrary sites are denoted by stars, and
the uniquely determined site (only one in this case) is
denoted by D.

We then move to `2, and again, for every possible
configuration of sites from the set N (Zn)∩`−2 , values of
sites which lie in Zn∩`2 will be uniquely determined. It
may happen, as shown in Figure 3(b), that some sites of
N (Zn)∩`−2 have not been labeled before. These sites can
also assume arbitrary values, and thus they are marked
as red stars in Figure 3(c).

We repeat the above procedure until all sites ofN (Zn)
are labeled, as shown in Figures 3(d-h). In the end, as in
Figure 3(i), all sites which belong to Zn will be labeled
by D, while the sites of N (Zn) \ Zn will be labeled
by stars. This means that we have card(N (Zn) \ Zn)
sites in the preimage which can assume any values from
the symbol set A. Thus, for each block b ∈ Br, we
have card f−1(b) = (cardA)card(N (Zn)\Zn). Since this
is independent of b, by Theorem 3.2 we conclude that
the CA is surjective.

4. Classification procedure
The result of the previous section gives us a method

to determine surjectivity of a special class of rules,

namely slice-permutive rules. In classifying rules we will
also need some method for checking if a rule is not
surjective – although of course a general algorithm of
this type cannot exist. One such method involves the
Balance Theorem. One can simply check if all blocks
of a given size have the same number of preimages -
if one finds a single violation of the balance theorem,
the rule is obviously not surjective. Clearly, one can
perform such exhaustive check only for block of small
size, and if no balance violation is found, then the test
remains inconclusive. It turns out, however, that this
simple method is surprisingly effective for 2D rules with
small neighbourhood size.

Another test for non-surjectivity is based on the fol-
lowing classical result [6]. Here by a finite configuration
we mean a configuration where all but a finite number
of sites are in some arbitrary fixed state.

Theorem 4.1: A CA is surjective if and only if it is
injective when restricted to finite configurations.

If one can find two finite configurations which are
different but have the same image, then the rule is not
surjective. One can perform this test exhaustively for
small finite configurations. It turns out to be useful in
cases where the balance theorem test is inconclusive.

We may now present a procedure for classification
of 2D rules with a given neighbourhood shape. This
procedure is illustrated in Figure 2. While it has been
tailored for binary rules (that is, rules where cardA =
2), it can be easily adapted for larger alphabets.

Procedure 4.1: We start with a list of all rules on a
given neighbourhood and apply the following filters to
remove known surjective and non-surjective rules.

1) First we check the simplest balance condition,
that is, card f−1(0) = card f−1(1). Rules which
violate this condition are non-surjective.

2) We check if the rule truly depended on all given
sites. If not, it means it can be treated as if it had
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Fig. 1: Example: Iteration of the procedure in Theorem 3.1

smaller neighbourhood, thus we check how it was
classified before (we were classifying rules with
progressively increasing neighbourhood size).

3) We check if the rule is permutive with respect to
at least one sliceable site. If it is, it is surjective.

4) The following two tests are performed simultane-
ously owing to the fact that they required approx-
imately the same information.
• We check if all blocks from the set AN (Z1)

have the same number of preimages. If not,
the rule is non-surjective.

• We search for violations of injectivity on finite
configurations. Let M be the set of all sites
~x ∈ Z2 for which (0, 0) ∈ N (~x). For each
b ∈ AM we consider a finite configuration s
such that sM = b and the sites which do not
belong to M are in the state 0, as well as
configuration s′ obtained from s by replacing
s(0,0) by 1−s(0,0). If F (s) = F (s′), injectivity
is violated, thus the rule is not surjective.

5) We check if all blocks from the set AN 2(Z1) have
the same number of preimages. If not, the rule is
non-surjective.

5. Classification Results
We applied the aforementioned procedure to two-

dimensional rules with neighbourhoods of size 3, 4, and
5. It is not necessary to consider smaller neighbourhoods,
as those are effectively one-dimensional, thus results of
sec. 2.1 apply. In all cases we considered only truly
two-dimensional contiguous neighbourhoods, meaning
that linear neighbourhoods were excluded – again, these
are included in results of sec. 2.1. Contiguous neigh-
bourhoods have shapes known as polyominoes, that is,
plane geometric figures formed by joining several equal
squares edge to edge. Since rigid transformations of Z2

preserve surjectivity, we considered only shapes which
are representatives of equivalence classes with respect to
the group of isometries of Z2.
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Fig. 2: Surjectivity test flowchart.

5.1 Three-site neighbourhoods

There is only one contiguous three-site neighbour-
hoods which is truly two-dimensional: the L-shaped
neighbourhood (Figure 3a), with 256 corresponding bi-
nary rules. Applying the procedure of Figure 2, we found
that all these rules can be classified, and that among them
38 rules are surjective, all of which are slice permutive.
The remaining rules are non-surjective.

Proposition 5.1: Any contiguous three-site binary CA
is surjective if and only if it is slice permutive.

5.2 Four-site neighbourhoods
There are four contiguous two-dimensional four-site

neighbourhoods, often referred to as tetrominos and
named after their resemblance to the letters L, O, S and T
(Figure 3b). There are 65536 total binary rules dependent
on each of these neighbourhoods.

In the case of the L and T neighbourhoods, there
are 724 slice permutive (and thus surjective) rules. In
the case of the O and S neighbourhoods, there are
942 slice permutive and surjective rules. This difference
seems to be due to the number of sliceable sites in
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Fig. 3: Contiguous Neighbourhoods

each neighbourhood (3 and 4 respectively). In each case,
following Procedure 4.1 we determined that these are the
only surjective rules, thus we again obtain a complete
classification of all rules truly dependent on all four sites.
This can be summarized as follows.

Proposition 5.2: Any contiguous four-site two-
dimensional binary cellular automaton is surjective if
and only if it is slice permutive.

5.3 Five-site neighbourhoods

There are eleven contiguous two-dimensional five-site
neighbourhoods, often referred to as pentominos and
named after their resemblance to the letters F, L, P, S,
T, U, V, W, Z, Y and Z. There are 4294967296 binary
rules associated with each neighbourhood. The results of
application of Procedure 4.1 are shown in Table 2. We
can observe that the classification is complete in the case
of four neighbourhood shapes, T, V, X, and Z.

Proposition 5.3: Any contiguous five-site two-
dimensional binary cellular automaton with the
neighbourhood shaped as T, V, X, or Z pentomino is
surjective if and only if it is slice permutive.

Note that this includes the traditional von Neumann
neighbourhood (shape X). Also note that for neighbour-
hood shapes for which complete classification was not
possible, the vast majority of rules were nevertheless
classified. In all cases the fraction of rules which were
classified exceeded 99.998%.

6. Conclusions

We were able to obtain complete classification with
respect to surjectivity of all 2D rules with contiguous
neighbourhoods of size up to 4. In these neighbour-
hoods, all surjective rules are slice permutive. Among
5-site rules, those with von Neuman neighbourhoods as
well as neighbourhoods corresponding to T, V, and Z
pentominos can also be completely classified, and again,
surjectivity and slice permutivity are equivalent for them.
For the remaining pentomino shapes, only a very small
fraction of rules defies classification. The worst case
is the S pentomino, for which .0016% rules cannot be
classified with our algorithm.

A number of open questions remain. First of all,
can the remaining 5-site rules be classified? We suspect
that at least some of them could be, if one performed
balance and/or injectivity tests on larger blocks, although
such tests would be computationally very expensive. A
related question is whether there exist any truly two-
dimensional five-site binary rule which is surjective
yet not slice permutive? Since in one dimension such
rules are possible even in four-site neighbourhoods, we
suspect that the answer is affirmative, although currently
we cannot offer any evidence of this claim.
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Table 2: Two-dimensional truly five-site binary rules

Neighbourhood Surjective Unknown Neighbourhood Surjective Unknown
F 257106 16 V 193138 0
L 193138 1472 W 257106 3596
P 257106 3596 X 257106 0
S 192938 67764 Y 193138 1472
T 193138 0 Z 257106 0
U 192938 64264
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