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ABSTRACT 

Motivation: Understanding emergent behaviors of complex biologi-

cal systems requires modeling and simulation of large and detailed 

models. Models must be both expressive and scalable to capture 

the size and complexity of molecular and cellular networks.  
Results: 

In this report we present GRANITE (Genetic Regulatory Analysis of 

Networks Investigational Tools Environment), an agent-based mod-

eling (ABM) and multi-agent simulation (MAS) approach to modeling 

large, complex, and dynamic systems. We have demonstrated the 

GRANITE capability on metabolic networks: specifically the mycolic 

acid biosynthesis pathway of the Mycobacterium tuberculosis. The 

agent-based model has been compared to Flux Balance Analysis 

(FBA) and shown to be able to emulate the internal and external 

properties of the system as modeled by FBA. We show that the 

approach is scalable and computationally efficient to allow re-

searcher interaction with a dynamically evolving simulation. The 

GRANITE tool enables the researcher to propose and test systems-

level hypotheses and make predictions for laboratory experiments to 

validate or refute these hypotheses. 

 
Availability and Implementation: 
The GRANITE software is open-source and available from the correspond-
ing author, Ross Henderson.   Please indicate GRANITE in the subject line 
of correspondence. 
Contact: rh@nih.gov * 

 

 

1 INTRODUCTION  

Living systems are complex systems. As such, they have emergent 

behaviors: input-response properties that can be observed but not 

  
*To whom correspondence should be addressed.  

predicted by first order knowledge of the functions of the system’s 

components. Systems biology is an approach to understand the 

general principles of living systems by elucidating the relationships 

between the components of a system and its emergent behaviors. 

 

Only through understanding living things as systems can one hope 

to understand the mechanisms of cellular and molecular biology. 

These systems are formed from the many interactions between 

molecules within the cell and between cells. Examples include 

metabolic networks, signal transduction networks, gene regulatory 

networks, and other epigenetic networks. The interplay between 

these systems creates another level of complexity that makes the 

modeling and simulation of living systems a serious computational 

challenge. 

 

Much of the focus of effort in systems biology involves the devel-

opment of models for biological function at the systems level. To 

be useful these models must be expressive, computationally tracta-

ble, and should yield predictions that can be tested with laboratory 

experiments. Our initial gap analysis indicated the need for an 

interactive M&S (Modeling & Simulation) tool that allows for 

real-time interaction with the simulation. Since Cytoscape 

(http://www.cytoscape.org/) has limited ability to allow real-time 

dynamic interaction, we identified two other tools that study dy-

namics of biological networks and evaluate perturbation hypothe-

ses. FERN (Erhard, et al, 2008) allows visualization of the dynam-

ics but it does not allow for real-time interaction with the simula-

tion. Even then, our attempts to integrate GRANITE with FERN 

proved cumbersome due to limitations of the available interfaces. 

Perturbation Analyzer tool (Fei Li, et al, 2009) was developed to 

investigate specifically the effects of single or combinatorial con-

centration perturbations by comparing two different steady states 

using law of mass action (LMA) in real-time and uses Cytoscape 
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for visualization.  In this report we present a modeling and simula-

tion approach, GRANITE, that is expressive enough to capture any 

kind of interaction network, can modularly use any kinetic model, 

is computationally tractable and scalable, and allows researchers to 

interact and dynamically perturb the system at different hierar-

chical levels to learn its rules for emergent behavior.  
 

2 METHODS 

The Genetic Regulatory Analysis of Networks Investigational 

Tools Environment (GRANITE) software consists of: 

 

 A simulation environment where software agents can be 

organized into dynamic models, 

 A domain specific language (DSL) for expressing bio-

logical function, and  

 A graphical user interface (GUI) for dynamic interaction 

with the simulation.  

 

The agent based modeling and simulation components, and the 

DSL are implemented in Scala and the GUI is implemented in 

Java. The GRANITE software is available upon request from the 

corresponding author. 

 

2.1 Agent-based Modeling (ABM) and Multi-agent 

Simulation (MAS) 

The evolution of assemblies of biological components is often 

modeled as a system of ordinary differential equations (ODEs) that 

can be solved using numerical methods. Alternatively, the ABM 

approach (Eric, 2002) creates an assembly of computational com-

ponents (agents) that would be governed by the same system of 

ODEs, but instead of explicitly solving the ODEs using classical 

numerical analysis, we simply allow the computational compo-

nents to evolve directly in a MAS environment. This in effect 

solves the ODEs approximately in a distributed manner. The pro-

cess of creating and running a system model for an experiment in 

the GRANITE context is as follows: A metabolic network model 

for the mycolic acid biosynthesis pathway (MAP) is instantiated 

from an SBML (Systems Biology Markup Language) model (Ra-

man, et al, 2005). A set of reaction agents and their associated 

metabolites are created by parsing the model, instantiating the 

agents, the environments, and populating the environment with 

metabolites. Simple Michaelis-Menten kinetics are used to model 

the agent reaction kinetics; GRANITE facilitates the use of other 

kinetic models by providing a generic agent-environment interac-

tion interface. Similarly, the non-agent entities (e.g. metabolites 

and enzymes) are added to the environment and given initial condi-

tions. The agents are then placed in the simulation framework with 

a set of parameters. A simulation scheduler strategy (deterministic 

or stochastic) is chosen and the progress of the simulation is meas-

ured in interaction time. For non-interactive simulations the simu-

lation is allowed to evolve until it reaches a steady state. For inter-

active simulations the simulation evolves under control of the re-

searcher via the Glimpse-GRANITE GUI. 

 

2.2 Scalability 

Agents interact with one another only indirectly using the envi-

ronment as a mediator. This decoupled approach leads to modulari-

ty and scalability. The approach is modular because it uses agents 

to encapsulate biological function, and scalable because it avoids 

combinatorial interactions and therefore results in an efficient sim-

ulation. The performance of the GRANITE system has been 

benchmarked using the MAP network. We have shown that the 

computation scales linearly with the number of reaction agents. In 

the MAS framework, we employed a scheduling capability that 

provides control of the computational demands by modulating the 

simulation fidelity. A GRANITE simulation is configured to em-

ploy a deterministic or a stochastic scheduler. The deterministic 

scheduler evolves the simulation using all agent-environment in-

teractions at all times based on the kinetic models of the agents; 

i.e., their strategies for turning reactants into products. However, 

an agent's interaction with the environment may not always lead to 

significant changes in the environment. For example, at very low 

substrate concentrations, the continuity assumption for the rate law 

does not hold and the reaction may not be moving forward at all 

times. Stochastic scheduling exploits this constraint and allows 

agents (reactions) to interact only if their interaction is significant; 

see Fig. 1. The uncoupled agents and the scheduling of their inter-

actions with the environment produce simulations that scale linear-

ly with the agent population size.  
 
Let c be the continuity threshold and let the maximum saturation 

rate of a reaction agent, ‘i’, be given Mi. Let the relative rate of the 

reaction, r, at any time t, ri,t = vi,t/Mi. The mixed strategy used by 

the agent’ ‘i’ for deciding on whether to interact or not at any giv-

en time is as follows: 

 

 If ri,t > c, the agent can interact with the environment at 

time t. Let the set of all agents in this category be denot-

ed as AI. 

 Else, let ri,t = ri,t / ri,t define a normalized distribu-

tion, r. We then choose a user defined percentage of the 

agents from the set AI using roulette wheel selection 

based on r. 

 

An important measure of scalability of MAS is the time it takes to 

evolve to some steady state: the settling time. Factors contributing 

to settling time include the number of agents participating in the 

simulation and the fidelity of the underlying kinetic model of each 

agent (fidelity impacts how closely the computational components 

can evolve to the solution prescribed by the ODEs). 



 

 

 
Fig. 1. Agent Population Size vs. Simulation Time. Stochastic Scheduler needs on average 75% agent-environment interactions (166 agents interact on 

average) and at most 190 agents, 87%, interact at any given time compared to Deterministic Scheduler (all 219 agents interact all the time).  

 

The simulation framework manages this complexity by determin-

ing, at each time step, a trust region for each agent in which the 

agent can make a reliable contribution to environment evolution. 

The validity of this trust region is determined by the interactions of 

all the agents with the environment, driven by the scheduler. Fig-

ure 2 shows results from empirical experiments, demonstrating that 

a relatively coarse model of the trust region is sufficient to avoid 

very large settling times. We use the steady state flux to compare 

GRANITE to FBA where the GRANITE flux plots are scaled to 

compare with FBA on a gene by gene basis. The scaling approach 

we used is very straightforward and intuitive. We chose to group 

all reactions associated with each gene ‘i’ (Raman et al, 2005). Let 

fj be the FBA flux and gj be the GRANITE flux for reaction j, and 

Si be the set of reactions influenced by gene ‘i’. The affine scaling 

for all reactions in Si is then computed as follows: 

 

      

 

  

Fig. 2. Fidelity vs. Settling Time. Higher fidelity, trust parameter =0.1, moves the simulation slower to the steady state but the interactions are more accu-

rate (the first order linear approximator defines the trust region using more support points in the same interval). Coarsest fidelity, trust parameter =0.99, 

corresponds to only 2 support points (the end points of the closed interval) and advances the simulation faster although with less accuracy. 

 



 

 

 
Fig. 3. The Belief-Desires-Intentions strategy is used to control the behavior of agents in a multi-agent simulation. For an agent that represents an enzymatic 

reaction, the Beliefs are the inputs to the reaction available from the environment and the entity properties; Desires are specified in one or more kinetic mod-

els for the reaction, and Intentions are the actions made by the agent onto the environment at each update step. 

 
All of the GRANITE reaction fluxes associated with a gene are 

then scaled with the scale found for that gene. The correlation be-

tween the flux profiles improves significantly with this scaling. 

Note that one can apply a feedback loop by incorporating these 

scales into the catalyst concentration values to drive the GRANITE 

simulation.  

 

3 RESULTS AND DISCUSSION 

In this report we present a software framework for ABM of biolog-

ical entities and a MAS environment for simulation of biological 

systems. This framework provides a means to create complex 

models of molecular networks that can evolve in an interactive 

simulation environment.  

3.1 Agency 

We employed classic ABM (Axelrod, 1997) to express units of 

biological function. Using the Belief-Desires-Intentions (BDI) 

model (Rao, 1995; and Weiss, 2000), as shown in Fig. 3, we creat-

ed a framework for expressing biological agents that can be com-

posed into complex systems. We discovered that this pattern works 

very well when agents represent biological function and specific 

entities. For example, an enzyme is represented by an agent that 

models its enzymatic reaction. Beliefs in the BDI model represent 

the world-view of the agent: the inputs to the agent from the envi-

ronment, such as the state of mutable properties of substrates, en-

zymes, inhibitors, and other effectors. Desires represent the agent’s 

goals such as the conversion of substrates to products, governed by 

stoichiometry and kinetic models for a reaction. Intentions are the 

actual steps an agent takes to affect its desires on the environment; 

the rate model for a reaction, for instance. The environment is then 

an arena where different agents compete through their intentions to 

achieve their desires. 

 

This approach to modeling units of biological function is both 

expressive and modular. There are no limits placed on the tech-

niques for expressing a functional response to environmental con-

ditions. Thus, alternative assumptions and models can be incorpo-

rated into the simulation and tested.  

3.2 Simulation 

We employed a multi-agent simulation with scheduling strategies 

to create a computationally tractable and scalable modeling and 

simulation capability. Agents compete with one another to achieve 

their goals in one or more environments. The simulation frame-

work’s job is therefore to manage the changes to the environ-

ment(s) resulting from agent activities scheduled in the system.  

 

3.3 Domain Specific Language (DSL) for Dynamic 
Biological Systems  

 
The feature that ties modeling and simulation together is a novel 

Domain Specific Language that enables the systems biologist to 

express agents and simulation context in a simple and concise form 

that they can relate to. Where SBML can express state, GRANITE 

DSL can express state, coordination, and activity. As such, the 

DSL can describe all of the dynamics of the system, i.e. the sys-

tem’s overall behavior with respect to time. The DSL is an exten-

sion of the popular Scala programming language, which is de-

signed for domain specific extensions, and benefits from all of the 

tools and documentation developed in the Scala community. In 

addition to GRANITE’s ability to use SBML models as inputs, the 

DSL facilitates creation of biological models in a more natural yet 

formal way which is biologist friendly. Consider units of measure 

as an example. Above, we stated that the GRANITE user can sup-

ply their own kinetic models. In fact, different reaction agents may 

employ different kinetic models as appropriate for the reaction. In 

order to maintain consistency among the different kinetic models, 

their units must be compatible. This is a hard bookkeeping prob-

lem, made harder when different models are developed by different 

people in different organizations. The GRANITE DSL provides 

“guardrails” for the user by supplying syntax for defining the units 



 

 

of measure for the rate constants, or for any other values. The 

GRANITE system also supplies implicit conversions so that if one 

model assumes concentrations in moles/liter and another model 

assumes millimoles/liter, the GRANITE system will automatically 

make the appropriate conversions. When incompatible or unknown 

units are combined, GRANITE alerts the user rather than produc-

ing meaningless results. Adding two values in units of molarity 

produces an error because concentrations are not addable. Corre-

sponding volumes are needed for that operation to make sense, and 

so the GRANITE DSL prevents it. 

 

We discuss some simple steps to illustrate the use of DSL in the 

context of a metabolic network. The first step defines a meme 

called “a”. Memes are first class modeling objects that have muta-

ble and immutable properties. An immutable property, like molec-

ular weight, always has the same value.  A mutable property, like 

concentration, may vary at different times and in different envi-

ronments.  

 

val a = Species called "a" build 

 

The second step defines a simulation; interaction models that will 

be bound to an environment using a simulation context are created. 

In the example below, the interaction model is a metabolic network 

containing two reactions. Reaction r1 produces b and consumes a, 

whereas reaction r2 produces c and consumes b using given stoi-

chiometric coefficients, kinetic laws, rate parameters, and a deter-

ministic scheduler (in this example) to decouple and synchronize 

the agent interactions. 

 

def metabolicNetwork = CreateMetabolicNetwork of ( 

    Reaction called "r1" of (1*a) -> (1*b) 

             using (MichaelisMenten withSpecificityConstants(a->0.1)  

                    catalyzedBy(p) withCatalyticConstant(0.1)), 

    Reaction called "r2" of (1*b) -> (1*c) 

             using (MichaelisMenten withSpecificityConstants(b->0.1) 

                    catalyzedBy(p) withCatalyticConstant(0.1)) 

) scheduledBy DeterministicMetabolicModelScheduler(0.01) 

 

The specificity constant and the catalyst constant are typically 

denoted in the Michaelis-Menten kinetics as Km and Ko respective-

ly, and may be referenced as such in the DSL.   

 

The third step creates the simulation contexts; this involves the 

creation of environments and the assignment of interaction models 

affecting those environments. The environment is defined using a 

containing clause which specifies memes and associated proper-

ties.  Specifying which interaction models to use is accomplished 

by a using clause.  Below is an example of defining a simulation 

context where memes a, b, c, and p are associated with concentra-

tion properties which use a metabolic network interaction model. 

 

val sc1 = SimulationContext called "sc1" containing ( 

    a where ConcentrationIs(1000.0), 

    b where ConcentrationIs(0.0), 

    c where ConcentrationIs(0.0), 

    p where ConcentrationIs(1.0) 

) using metabolicNetwork 

 

Finally, a simulation is constructed by defining which simulation 

contexts are part of the simulation. Below is an example of defin-

ing a simulation.  The conciseness reflects the power of the DSL. 

 

Simulation of sc1 

3.4 Validation 

As the use of agents is a departure from traditional methods of 

modeling biological systems, we performed a set of experiments 

designed to validate the approach. Our basis for validation criteria 

was the ability to emulate results from established systems, as well 

as from accepted modeling or simulation methods. For this study 

we chose to model a metabolic network, the mycolic acid biosyn-

thesis pathway of the Mycobacterium tuberculosis which involves 

197 metabolites, 219 reactions, and 28 enzymes driving these reac-

tions. The pathway has been defined (Barry, 1998) and models 

exist in the SBML format (Raman, et al., 2005). Furthermore, 

systems-level analyses exist in the literature that provide metrics 

about the internal states of the system against which we can com-

pare the states of the agents and the environment. We chose to 

compare the ABM-MAS results to a Flux Balance Analysis of the 

mycolic acid pathway using the same SBML model of MAP as 

used by Raman et al. Instantiating the MAP model into a set of 

reaction agents with the same stoichiometric parameters, we at-

tempted to emulate the internal and external states of the metabolic 

pathway at steady-state using Michaelis-Menten kinetics. We ex-

amined the ability of the ABM-MAS system to emulate the output 

of the pathway in terms of the observed proportions of mycolic 

acids and the flux profiles of the reactions in the network. Initial 

results showed that we could either emulate the mycolate ratios or 

the flux profile (Table 1). Using group scaling based on gene-

reaction associations, and an optimized set of parameters, the 

ABM-MAS system was able to reproduce both the observed 

mycolic acid proportions and the reported flux profiles (Fig. 4). 

The method for optimizing and discovering the system parameters 

involves a novel use of genetic algorithms (Lawson, Singh, et al.) 

that will be published separately.  

 

3.5 Dynamic Systems 

 
Agent systems are particularly useful in modeling dynamic sys-

tems in a manner that allows the modeler to directly interact with 

the evolving system. The modeler can make changes to the system 

and immediately observe the response in real-time. We assert this 

is a novel technique for proposing and testing hypotheses at the 

systems level of molecular biology. 

 

 

 



 

 

Table 1. A comparison of the observed and simulated mycolate ratios. 

 methoxy-mycolate 

to alpha-mycolate 

keto-mycolate to alpha-

mycolate 

trans to cis forms of methoxy-

mycolate and keto-mycolate 

Observed 0.54 0.49 0.14 

Randomly Chosen Parameters 0.49 0.47 1.0 

Manually Chosen Parameters 0.36 0.28 0.15 

Learned Parameters 0.54 0.49 0.14 

The first row presents the published output of the myolic acid pathway (Watanabe, 2001). Initial experiments with randomly chosen parameters were able to 

approximate the ratios except for the cis:trans bias (row 2). Altering the specific activity levels of the methylases MmaA1 and MmaA4 did improve the 

cis:trans bias but reduced the fidelity of the other mycolates (row3). Learned parameters using a genetic algorithm approach (Lawson, Singh, et al.) were 

ultimately used to create a model that produced the desired mycolate ratios (row 4). 

 

The Glimpse-GRANITE tool was developed to provide that capa-

bility to systems biologists. This GUI, see Fig. 5, provides a com-

mand-and-control interface to the simulation that includes the abil-

ity to create an agent system, start a simulation, observe the inter-

nals and externals of the simulation environment, and configure all 

aspects of the system and the simulation. The temporal aspect of 

the simulation is measured in number of interactions within the 

system. Since the agents are uncoupled from the simulation inter-

actions, a change to an agent is immediately reflected in the simu-

lation – no re-compilation or re-start is necessary. Furthermore, the 

state of the simulation can be check-pointed, or saved, such that if 

perturbations of the system destroy the integrity of the steady-state 

model, the simulation can be brought back to a stable state and 

new perturbations can be tested. 

3.6 Predictive Power of ABM-MAS 

In addition to the expressivity, scalability, and evolutionary proper-

ties of the ABM-MAS method, it also has the capability of making 

and testing predictions. Outcomes of the multi-agent simulations 

are not determined by a global objective or control function. Thus, 

the system, as a function of initial conditions, will evolve dynami-

cally into a steady-state, an oscillating state, or possibly degenerate 

into a chaotic state that is not sustainable. The observable features 

of the system state(s) are important components in measuring the 

predictive power of the model. If a change to the system model  

 

 
Fig. 4. Comparison of the FBA and ABM-MAS flux profiles. The reaction flux across each reaction point in the mycolic acid pathway (MAP) was com-

pared in this plot. The x axis values represents the numbered reactions in the MAP SBML model while the y axis values represents the flux value calculated 

using FBA (blue line) and the ABM simulation (black dot). The inset shows the comparison of the high-complexity region of the Flux plot. The comparison 

shows that the ABM approach is able to emulate the internal flux properties of the FBA analyses with a correlation of 0.99 

 



 

 

 
Fig. 5. The GRANITE tool includes a visualization application that allows direct interaction with the simulation. The GUI view displays a directed 

graph in which nodes are GRANITE memes and directed edges are the relationships between them (the right hand plot is zoomed in on a specific reaction). 

An edge from a meme to a reaction node implies that the meme is a reactant; an edge to a meme from a reaction node implies that the meme is a product of 

that reaction. Node color and size are configured based on the interaction model. In a metabolic network, color represents meme type such as reaction or 

metabolite.  The size of a node represents reaction flux or concentration.  Researchers can easily identify highly active reactions (agents) and select a subset 

of memes to compare their property values in real time in a chart view. Users can also perturb the system by changing some meme properties at any time and 

observe the effects of those perturbations on the system evolution.   

 

(initial conditions inclusive) results in a new system-state with new 

observable features that can be recreated in the lab, the perturba-

tion is informative and the predictive capability of the model in-

creases for the next round of in silico experimentation. Iterations 

on this hypothetico-deductive cycle promise to build more accurate 

predictive models and reveal the general principles of the biologi-

cal system under study. Thus GRANITE is an expressive, scalable, 

and predictive environment for modeling and simulating biological 

systems that enables bench researchers to integrate existing system 

descriptions with current hypotheses, and construct in silico exper-

iments that lead to predictions which can be tested in the laborato-

ry.  The results of those experiments can inform refinements to the 

system model that improve the prediction capability and focus lab 

experimentation. We intend to apply this technique to other inter-

action networks and integrated systems of metabolic, gene regula-

tory, and signal transduction networks, that are of interest to sys-

tems biology researchers and developers..  Ongoing work is being 

directed toward establishing a GRANITE user community, so that 

comprehensive systems-level in silico simulations of biological 

and biochemical networks can be collaboratively designed, created, 

and developed.  
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