

Adaptive Histogram Algorithms for Approximating

Frequency Queries in Dynamic Data Streams
Joseph S. Gomes

Department of Computer Science, Bowie State University, Bowie, MD, USA

Abstract – Histograms can be used as summaries of

frequency data. However, staying within the error

tolerance becomes problematic when dealing with

dynamic data streams. For dynamic data streams, the

histograms can be reconstructed every time data is either

discarded or collected - which is very inefficient. If a

histogram is to be employed as a quick estimate of stream

data, updating the histogram non-destructively can be

done using the following approach: decrement one from

each bucket where data is to leave the histogram, and

increment one to each bucket where data is to enter the

histogram. In this paper, we empirically prove this method

to be a generally strong way to control loss of accuracy.

The costs of executing this error-minimizing layer are

trivial to processing, memory, and should consequentially

maximize uptime. This method was tested on two

histogram algorithms including Equivalent Width and

Variance Optimal in four specified histogram data-density

scenarios including sparse, balanced, dense, and very

dense, while using two different random value distribution

sources including the Uniform distribution and Gaussian

distribution.

Keywords: Histogram, Frequency queries, Data Stream,

Approximation, Algorithm

1 Introduction

Histograms, utilized as a summary of frequency data,

have been proven to be accurate-enough measures to

approximate count (or frequency) queries. Staying within

the error tolerance becomes problematic when dealing

with dynamic data, such as streams, due to the potential

for shifts in source data. This shifting can happen even if

a stream is modeled by using a single random

distribution, especially when observing a relatively

smaller number of values as related to a large or infinite

data set. Elements can also expire and become irrelevant,

as well as new elements can come into existence.

Attempting to run a histogram on dynamic data without a

method of controlling error will become disastrous,

especially on specialized histograms such as the

Variance-Optimal and Maximum Difference due to the

way they interpret data inherent to their original

construction. In lieu of reconstructing a histogram every

time data is either discarded or collected - which is

prohibitive in processing power, memory space, and real

life uptime - a method for reducing cumulative error is

necessary if not imperative. Therefore, if a histogram is to

be employed as a quick estimate of stream data, updating

the histogram non-destructively can be done using the

following approach: decrement one from each bucket

where data is to leave the histogram, and increment one

to each bucket where data is to enter the histogram. The

costs of executing this error-minimizing layer are trivial

to processing, memory, and should maximize uptime. In

this paper, we have tested this method on two histogram

algorithms including Equi-Width and Variance Optimal

(also known as V-Opt or V-Optimal).

2 Background

Here we will discuss some of the basics of queries and

histograms. Various types of frequency based queries are

discussed that can benefit from histograms.

2.1 Queries

There are three types of queries that can benefit from

histograms.

2.1.1 Selection queries with equality constraints

Selection queries with equality constraints return the

tuples in a table that satisfy a certain equality criteria.

You can also associate a count function to these selection

queries. For example, in order to determine the number of

employees with age 65, the following SQL-like query

could be executed:

select count(*) from employee where age=65

This query can be further extended to include other values

in the following manners:

select count(*) from Employee where age=62 or age=65

select count(*) from Employee where age in (62,65,67)

If a certain amount of error is acceptable, a histogram can

be used to estimate the frequency of a certain value in a

data source. The individual frequencies can then be added

to get the combined counts of extended queries above.

2.1.2 Range queries

The range query can have either a lower or an upper limit

on its input, or both limits explicitly declared. For

example, suppose an executive in a company wants to

know how many of their employees are making salaries

between the range of 50,000 and 100,000 inclusively. The

SQL-query would be structured as:

select count (employee_id) from Salary where salary >=

50000 and salary <= 100000

Here also histograms can be used to compute the count

for the whole range by adding frequencies for each

individual value in the range or by manipulating

frequencies of whole buckets.

2.1.3 Join Queries

Join queries are more targeted towards pattern matching.

Just as in selection queries, a count function can be

attached to join queries as well. Consider the scenario

where personal info for employees is stored in table

Employee and their salary information is stored in table

Salary.

Select emp.first_name, emp.last_name, emp.age, s.salary

from Employee emp join Salary s on (emp.empId

=s.empId) where s.salary>=100000 and emp.age <=35

If accuracy can be sacrificed for efficiency, histograms

can be used to provide estimates on each data source,

which in turn can be used to generate join query result-

counts. Histogram information on the individual tables

can also be used to create an optimized query plan that

would run faster.

2.1.4 Histogram Algorithms

Histograms are compressed versions of an entire data set

that are used as statistical tools of approximation. There

are many ways to create a histogram that mainly differ in

the method of setting boundaries commonly known as

buckets (Ioannidis Y. 2003). Each individual bucket can

represent a range of values where the range can be as

small as a distinct value, and as large as the whole data

range. How to break up a data set into subsets to store in a

single bucket is up to the histogram algorithm. The easiest

way to visualize a histogram is to picture a bar graph with

the bucket ranges on the horizontal axis and the frequency

counts on the vertical axis. By design, histograms are

excellent tools for single count queries and range queries.

In the following subsections, we will briefly describe two

of the most popular algorithms that will be used in this

research. Both the examples will be using the same

sample array: {0, 2, 2, 3, 3, 4, 5, 8, 8}

2.1.5 Equivalent Width

One of the more basic histogram algorithms, the equal-

width or equiWidth method separates data into

horizontally equal-sized buckets. This means that each

bucket will represent, as closely as possible, an equal

number of values. The benefits of this algorithm lie in the

simplicity – and consequentially the inexpensive

computing cost to construct it. The time complexity is

O(n) due to the single pass required to process through the

pre-sorted source array to build the histogram.

2.1.6 Variance-Optimal (V-Opt)

The variance-optimal (also commonly referred to as V-

Opt and V-Optimal) histogram is one of the more

complicated histogram algorithms. It is also broadly

regarded as one of the more accurate histogram

algorithms. The premise behind this algorithm is to

minimize the sum of all intra-bucket variances. There

exists a dynamic programming algorithm with O(n2B)

time complexity that follows the following recurrence

relation

),(* kiSSE

)1(])},1([)1,(*{min
1

ijSSEkjSSE
ij




In the above equation, n is the number of elements in the

data array, B is the number of buckets to construct the

histogram and SSE*(i, k) is the minimum sum of squared

error (SSE) for the prefix vector F[1, i], i.e. the first i

values of the frequency array corresponding to the data

array using at most k buckets. Notice, for this algorithm

we first need to convert the data array to a frequency

array F, where F[i] is the frequency of the value mapped

to slot i. As you can see that this histogram construction

algorithm can become cost-prohibitive as n grows bigger.

3 Approximating count queries

using Histograms
Suppose we would like to know the frequency of value v.

In order to do this, we would first find out which bucket i

value v belongs to and then find the frequency fi and

number of values ni for that bucket. Then the approximate

frequency for v can estimated to be fi / ni. For our sample

array, according to the equiWidth histogram the

frequency of 3 is 4/3 = 1.33 and according to v-optimal

histogram the answer is 6/6 = 1. As you can see, for v =

3, v-opt has a higher error (2 – 1 = 1) than equiWidth (2 –

1.33 = 0.67). However, for v = 2, error in v-opt estimation

is 2 – 2 = 0, whereas equiWidth has an error of 2 – 1 = 1.

On average, v-opt produces lower error if all values in the

data range are equally likely to be queried as it is

designed to minimize average intra-bucket variance (SSE)

which ultimately minimizes average error.

3.1 Histograms for Dynamic Data Streams

The goal of histograms is to be as accurate in estimating

data distribution as possible while improve speed of

answering queries and also the speed of histogram

construction. The speed of query execution results from

the faster access of a histogram array versus searching

and counting an entire data array. Since error is produced

by the averaging of the frequency among all the values

located in the same bucket, it can be reduced by

increasing the number of buckets in the histogram. At one

end of the spectrum is the one-bucket histogram that will

have the highest error and fastest construction. On the

other end is the n-bucket histogram where n is the number

of distinct values, which will have the slowest

construction time and no error. As one can see, the two

goals reducing error and increasing construction speed are

at odds with each other. One may think one should just

use n buckets since accuracy is more important than

offline histogram construction time. However, using an n-

bucket histogram not only increases construction time but

it also requires more space to store the histogram. As a

result choosing the right number of buckets and the right

algorithm is crucial for system performance.

With that established, the problem becomes even more

difficult when running frequency queries on continuous

data streams comes into picture. Since a histogram could

become increasingly inaccurate with each new data point

entering the stream, we investigate the effectiveness of a

simple but fast method in mitigating the potentially

distortional effects a stream could have on histograms.

3.2 Dynamic Data Streams

In order to emulate a dynamic data source, a sliding

window based method is used. This sliding window

approach used in experiments is very similar in nature to a

stock or financial ticker on a news channel. The television

can only show as much data that can fit on the screen, just

like a fixed-size sliding window stores data. As the ticker

scrolls, stock data exits the screen and new and more

relevant information comes into the picture. The point of

this parallel is to illustrate the core workings of the sliding

window mechanism, as applied to processing data stream

simulations. In this paper we consider only fixed-size

sliding windows as opposed to variable-sized sliding

windows.

3.3 Reducing Inaccuracy

In the scope of this paper, inaccuracy, I, is measured

using a normalized error technique given by equation 2.

)2(

A

HA

V

VV
I




Here VH is the answer returned by the histogram and VA is

the the actual frequency in the sliding window.

By establishing a metric for representing inaccuracy, a

measured comparative difference can be calculated from

various testing simulations. Static histograms have error

built in to begin with. Therefore, if a distribution changes

skew even slightly, the histogram would become

increasingly less accurate, depending on how significant a

change. Even in the same distribution, depending on how

many values the histogram stores and covers in the

overall range, shifts could be expected – still leading to an

increase in inaccuracy. As a result, to be able to answer

queries with higher accuracy, histograms need to be

updated in accordance with change in streaming data.

This is not a big problem for equiWidth since the bucket

boundaries stay the same and only frequencies change.

However, this is very problematic for v-optimal

histograms since the new data could render the existing

histogram boundaries incorrect as far as minimizing

expected intra-bucket variance is concerned.

In an attempt to control for such a force, this paper

explores a bucket tweaking method. To combat the

complications that dynamic streaming data presents to

histogram algorithms, some sort of mitigation method

must be installed to keep the histogram up to date so to

speak. The histogram algorithms are capable of handling

static data, but cannot compensate themselves for data

growing stale and driving inaccuracy up, as occurs with

dynamic data. Since this shifting effect appears to affect

the specialized partition scheme algorithms the most, it

would be prudent to attack the problem at its core: the

buckets. Instead of moving the buckets around in a

desperate attempt to account for an entire distribution

shift, consider smaller, incremental changes designed to

be an agile response to dynamic activity in the simulated

data stream. By using the sliding window approach

previously discussed and already proven to be an effective

way to manage data streams, it is possible to determine

what data is becoming stale, and what data is fresh. In

combination of the agile concept proposed and the sliding

window approach, the following adaptive method is used

to keep the histogram as up to date as reasonably possible.

For every data point that leaves the sliding window,

decrement the corresponding bucket in the histogram by

one. Conversely, for every data point entering the sliding

window, increment the corresponding bucket by one. In

these experiments, a single unit of data expires as a single

unit of data becomes relevant. That is an inherent property

of a fixed-size sliding window, however, it would be

possible to change the size of the stream sample if the

situation deems necessary.

4 Experimental setup

Two different pseudo-random distributions are used in

this paper to avoid single distribution bias – Uniform and

Gaussian. Similar to the problem of distribution bias is the

issue of histogram density. To be precise, density in the

scope of this research refers to the ratio between the

number of values in the histogram as it relates to the

range the histogram attempts to model. For example, a

histogram summarizing 100 distinct values with 150 total

occurrences has density 1.5. To address the density bias,

four different histogram densities given below were

tested.

Name Density

Sparse 1

Balanced 1.5

Dense 2

Very Dense 2.5

4.1 Performance metric

For each combination of input characteristics, we use 0 –

1000 as the value range. Once the data arrays are filled,

queries are posed after each new data addition. Altogether

10000 queries are executed and their error measured. At

the end of each trial, the normalized errors obtained from

equation 2 are summed, and divided by the number of

queries processed to determine an average normalized

error per query.

5 Results

This section discusses all the simulation results and

presents several charts. The x-axis of each chart shows the

number of buckets as a percentage of the size of the zero-

based range, and the y-axis shows the measure of

inaccuracy determined by the normalized difference per

query. Each chart title and legend clearly dictates what

simulation data is presented. These charts are separated

based on pseudorandom distribution and histogram

algorithm. Each chart shows the performance of the

histogram algorithm as it applies to all four density-ratios

and three types of source data and histogram pairings –

static data with static histograms (static scenario),

dynamic data with static histograms (dynamic scenario)

and dynamic data with adaptive histograms (adaptive

scenario). The density-ratios are color-coordinated. The

source data and histogram pairings are coordinated on the

graph by line-type, such that: static scenario simulations

are represented by a solid line, dynamic scenario

simulations are shown with a dashed line, and the

adaptive scenario simulations are shown as a dotted line.

The static scenario represents the baseline as the results

cannot get any better than this. The purpose of testing the

dynamic scenario is two-fold. One, it determines the

feasibility of using a static histogram in a data stream

management system. If the skew of a distribution in data

stream suddenly morphs, how does that affect the

histogram? Two, as alluded to with the prior question, if

and how does the accuracy of the histogram change as the

data stream progresses with new information processed

by the sliding window? Finally, the adaptive scenario is

used to test the effectiveness of our adaptive histogram

method in estimating answers to frequency based queries.

5.1 EquiWidth on Uniform Data

This distribution is usually better suited for analysis by

histograms because the skew is very low and consistently

even, regardless of the point in question within the

distribution chart. The results shown in Figure 3 are as

expected, from the static showing less inaccuracy with

more buckets, to the dynamic data losing accuracy with

more buckets, through to the adaptive method following

the same pattern as the static data. The static data here is

very consistent in accuracy from the sparse density-ratio

up through the very dense density-ratio. As previously

mentioned, the dynamic data does increase in inaccuracy,

which again proves the point that histograms alone are ill

suited to model streaming data. Combined with the fact

that they become less accurate with more buckets, this

means that there must be a different solution. In this case,

the solution again is the adaptive method. With the

EquiWidth histogram, queries were nearly just as accurate

as the static data in the lower number of buckets

scenarios, and proceeded to follow the static data very

closely in accuracy. This strongly suggests that the

adaptive method works well in these categories.

Figure 1: Equiwidth error on Uniform data

5.2 V-Opt on Uniform Data

Proceeding onward from the equivalent width analysis,

we now study the results of the variance optimal

algorithm processing uniform pseudorandom data. The

chart is shown in Figure 4. Again, this is excellent result.

The graph shows the decreasing slope for static data,

showing that the more buckets the variance optimal

N
o
rm

al
iz

ed
 e

rr
o
r

p
er

 q
u
er

y

 0

.3
5

0

.4
5

0

.5
5

 0

.6
5

0

.7
5

 5 15 25 35 45

#Buckets as % of Value Cap

histogram has at its disposal, the more accurate the results

it can return.

Figure 2: V-Optimal error on Uniform data

Figure 5: EquiWidth error on Gaussian data

Variance optimal histogram test data shows consistency

in accuracy when the density-ratio is at least 1:1. The

dynamic data lines tell a story. As more buckets are

introduced in a dynamic setting, the histogram gets less

accurate rapidly and consistently. This shows that the

variance optimal algorithm is sensitive and susceptible to

changes in its underlying data. Due to the nature of the

algorithm basing its partitioning scheme on minimizing

variance, it is of no surprise that it loses accuracy as

rapidly as it does in these stressful scenarios. Conversely,

the adaptive method again shows excellent mitigation of

error creep introduced by dynamic data. The slope nearly

matches the static data slope. Also, the level of accuracy

provided by the adaptive method nearly matches the level

of accuracy that the static data typically returns. At peak

effectiveness, at the 50% number of buckets mark, the

difference in accuracy is around 0.05 units. By contrast,

the dynamic data at the same point was ten times less

accurate.

5.3 EquiWidth on Gaussian Data

Gaussian pseudorandom data provides a different

challenge, as it is a more erratic distribution with regard

to frequency. This poses a complication to histograms,

because the skew is both greater than a relatively flat line

and changing depending on the point in question within

the distribution chart.

The chart displaying the results of this simulation is at the

end of this subsection, shown in Figure 5. Proceeding to

the analysis, the vast majority of the results are as

expected. The static lines are consistent and at a

downward slope – confirming that the more buckets, the

more accurate. They are also closely clustered, suggesting

that density-ratio does not have a great effect on

inaccuracy. Regardless of how much data is in the

histogram, the appearance is that the query will be

approximately a half point away in accuracy, or fifty

percent of the actual frequency. The dynamic data lines

are ascending in slope, which is also expected. Bear in

mind that over the same sized range, the larger the

number of buckets, the smaller range size they

individually cover normally. This smaller range size on

one hand does make them better representations of the

distribution curve, but also makes them more sensitive to

changes in underlying data. A larger bucket may not be

more accurate, but it will not lose accuracy as quickly

either. Additionally, the dynamic data scenario is affected

by the density ratio. The more data packed into the

histogram, the less accurate. A balanced histogram is

already off by one full point in estimation in the five

percent bucket situation, and nearly reaches two full

points away from the true value in the very dense scenario

with fifty percent. Bearing in mind that each point

represents a multiplicative factor applied to the actual

frequency value, inaccuracy rising to an increased error of

200% is problematic. The adaptive lines show a lot of

promise here. As they have more buckets to work with,

they return greater accuracy. This is exactly the opposite

of what occurs with dynamic data, and precisely what the

goal of this research sought out to determine. Data density

does appear to have an effect as well, such that the denser

the histogram, the sooner the adaptive benefits take place,

with respect to an ascending number of buckets. All of

these effects combine to solve many of the problems

dynamic data present, and that is with the more difficult

pseudorandom distribution to model in histograms. At

peak operating efficiency, the data charts suggest that it is

possible to re-gain over a half point of accuracy in the

dense and very dense scenarios. This does not adversely

N
o
rm

al
iz

ed
 e

rr
o
r

p
er

 q
u
er

y

0
.3

5

 0

.7
5

 1

.1
5

 1

.5
5

1

.9
5

 5 15 25 35 45

#Buckets as % of Value Cap

N
o
rm

al
iz

ed
 e

rr
o
r

p
er

 q
u
er

y

0
.2

5

0

.4

 0

.5
5

0

.7
0

 0

.8
5

 5 15 25 35 45

#Buckets as % of Value Cap

affect the attempt to devise a generally acceptable method

of mitigating dynamic error creep, due to the fact that

generalizations are not universally perfect. Although this

does make the adaptive method appear to be more of a

situational fix at first glance, given enough situations

where the adaptive method presents benefits, this can be

utilized as a generalized solution to counteract the

negative effects of dynamic data on histograms.

5.4 V-Opt on Gaussian Data

Moving forward, the next algorithm for analysis is the

variance optimal algorithm using Gaussian data. The chart

displaying the results of this simulation is shown in

Figure 6. As previously exposed with the equivalent-

width algorithm, the expected results of the static data

increasing in accuracy as more buckets are provided is

expected. Also expected, is the overall decrease of

accuracy when running on dynamic data, and the increase

in inaccuracy with more buckets on dynamic data. The

dynamic data can result in as much as two points of

divergence from the true frequency count, as shown in the

fifty percent case with a density-ratio of very dense.

The adaptive technology, on the other hand, is really

starting to shine. As seen with the equivalent width

algorithm, the adaptive method works better with denser

histograms. In two categories, balanced and dense data

density ratios, the adaptive method was completely more

accurate than the dynamic scenario. The very dense

scenario was more accurate starting with the ten percent

bucket point, forward to all counts of buckets higher. The

overall downward sloping dotted line in all scenarios is

very encouraging for the adaptive method to mitigate the

inaccuracy complications that dynamic data can present.

Figure 6: V-Optimal error on Gaussian data

6 Future Applications

The future applications for research exist as an extension

of what was done in this paper. Iteratively speaking, more

algorithms could be tested with more random

distributions – which could yield either more evidence

confirming these results, or information pointing to the

contrary. Similarly, another way to extend the research

presented in this paper could be to develop other methods

of keeping histograms fresh. Perhaps it is possible to

dynamically alter the bucket boundaries to reflect a best-

guess real-time estimation for the summary of a dynamic

data stream. Following the same logic, it could also be

possible to trigger a full histogram reconstruction should

the level of inaccuracy exceed a specified error threshold.

These would certainly benefit the field.

Further ahead, it is possible that one could start testing

these concepts against higher-dimensional histograms,

determining if the results found here extend to more

complicated algorithms. Common sense is not factual

until empirically proven in the eyes of the scientific

community, and as such, results could be proven contrary

to common sense. This research was also limited to the

scope of single selection count queries based on

frequency. It would not take much to extend this research

to range queries and join queries.

7 Related Work

Amongst many researchers in the field studying

histograms, one in particular took the time to compose a

comprehensive study of the history of histograms: Yannis

Ioannidis of the University of Athens. In his paper

entitled, “The History of Histograms (abridged),” Again

jumping in time, now to the mid-1990s, Yannis Ioannidis

writes another paper, now with Viswanath Poosala at the

University of Wisconsin, “Balancing Histogram

Optimality and Practicality for Query Result Size

Estimation” (Ioannidis & Poosala, 1995). Jagadish et. al.

developed a dynamic programming method of calculating

the bucket boundaries in a variance optimal histogram in

the paper “Optimal Histograms With Quality

Guarantees.” By using an inherent property of the

variance optimal histograms, the sum-squared error (SSE)

is determined to be possible to calculate in an iterative

fashion. This ability, in turn, saves repeated and

redundantly wasteful calculations when intermediate

results are stored in an internal matrix. Later Yannis

Ioannidis and Viswanath Poosala delve into answering

queries with an approximation while improving database

response time (Ioannidis Y. E., 1999), in “Histogram-

Based Approximations of Set-Valued Query Answers”. At

that time, database responses were slow to return

information – even when precision was not necessary. By

using histograms, they were able to generate

approximations for early reports in on-line database

queries when the precise answer was not absolutely

critical, but response time was. With regard to utilizing

sliding window technology, Arvind Arasu and Gurmeet

Singh Manku pioneered the efforts of maintaining

N
o
rm

al
iz

ed
 e

rr
o
r

p
er

 q
u
er

y

0
.2

 0

.6

 1

.0

 1

.4

1
.8

 5 15 25 35 45

#Buckets as % of Value Cap

approximations and quantiles over both fixed and

variable-sized sliding windows processing streaming data

(Arasu & Manku, 2004). Gurmeet Singh Manku and

Rajeev Motwani devised two methods of approximating

frequently occurring singleton frequency counts over data

streams using sliding windows with small memory

footprints and output error limited to user-specification

(Manku & Motwani, 2002). In other related work, sliding

window technology has been used in conjunction with

other algorithms designed to count and maintain

aggregate data in dynamic data streams with provable

low-memory (Datar, Gionis, Indyk, & Motwani, 2002).

8 Conclusions

While histograms inherently are not designed, nor are

capable of by default, to handle dynamic data sources,

they can be adjusted with certain methods of error-

minimization to compensate for what otherwise could be

considered cumulative error. This paper has empirically

shown that when using a sliding window approach for

using the histogram over a dynamic data stream, the

histograms grow stale and less accurate. The data

analyzing partition scheme based histogram algorithms

suffer the most, which is problematic because they are

also the most accurate under static data. In order to make

them work on dynamic data, their buckets must be

modified in such a manner to keep them fresh.

Overall the adaptive method is a strong success. In the

Equivalent Width histogram tests using Gaussian

pseudorandom data, the adaptive histogram process was

an okay performer. It did increase accuracy over the

dynamic data on static histograms scenarios with more

buckets or more dense data. In overlapping cases,

performance was even better. Specifically, there was a

20% reduction of error at the 25% number of buckets

ratio when the histogram was very densely packed. The

Variance Optimal histogram on Gaussian data benefitted

strongly from the adaptive method. In the balanced,

dense, and very dense ratios, inaccuracy decreased

between 40% and 70% from the dynamic data estimates

across the spectrum of number of buckets, and above 15%

number of buckets ratio for very dense data. For

EquiWidth histograms operating on uniformly distributed

data, the adaptive method proved to be an excellent

performer. The accuracy rivaled static data results, within

2% throughout all density ratios and number of bucket

ratios. Additionally, VOpt histograms with uniformly

distributed data maintained a level of accuracy within

10% of all of the static data tests, throughout all number

of bucket ratios and data density ratios. In summary, the

adaptive method showed okay to excellent results,

depending on pseudorandom distribution. Although not as

strong on Gaussian data, the adaptation drastically

improved accuracy when histograms were processing

uniformly distributed data. There was an overall trend of a

greater decrease in inaccuracy with more buckets.

This paper has shown that an agile method using minimal

incremental changes can aid in maintaining the accuracy

of the histograms. In conclusion, this method is a strong

candidate for error mitigation in histograms applied to

dynamic data sources for a few reasons. It is inexpensive

to maintain, as two high level seek operations and two

basic operations at most are required per update: seeking

the corresponding bucket in a histogram for a given value

(twice if inserting and removing), and incrementing or

decrementing that value as necessary. Those operations

are not processor or memory intensive tasks. Finally, the

decrease in inaccuracy over a broad range of tests

suggests the potential for true generalization.

References

[1] Ioannidis, Y. (2003). The history of histograms

(abridged). VLDB '2003: Proceedings of the 29th

international conference on Very large data bases , 19-30.

[2] Ioannidis, Y. & Poosala V. (1995). Balancing

Histogram Optimality and Practicality for Query Result

Size Estimation. SIGMOD ’95: Proceedings of the 1995

ACM SIGMOD International conference on Management

of data, 233 – 244.
[3] Jagadish, H. V., Koudas, N., Muthukrishnan, S.,

Poosala, V., Sevcik, K. C., & Suel, T. (1998). Optimal

Histograms with Quality Guarantees. Proceedings of the

24rd International Conference on Very Large Data Bases ,

275-286.

[4] Ioannidis, Y. E. (1999, September). Histogram-Based

Approximation of Set- Valued Query-Answers. VLDB

'99: Proceedings of the 25th International Conference on

Very Large Data Bases , 174-185.

[5] Arasu, A., & Manku, G. S. (2004). Approximate

Counts and Quantiles over Sliding Windows. PODS '04:

Proceedings of the twenty-third ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database

systems , 286-296.

[6] Manku, G. S., & Motwani, R. (2002). Approximate

frequency counts over data streams. VLDB '02:

Proceedings of the 28th international conference on Very

Large Data Bases , 346-357.

[7] Datar, M., Gionis, A., Indyk, P., & Motwani, R.

(2002). Maintaining stream statistics over sliding

windows: (extended abstract). SODA '02: Proceedings

of the thirteenth annual ACM-SIAM symposium on

Discrete algorithms , 635 – 644.

