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Abstract – Histograms can be used as summaries of 

frequency data. However, staying within the error 

tolerance becomes problematic when dealing with 

dynamic data streams. For dynamic data streams, the 

histograms can be reconstructed every time data is either 

discarded or collected - which is very inefficient. If a 

histogram is to be employed as a quick estimate of stream 

data, updating the histogram non-destructively can be 

done using the following approach: decrement one from 

each bucket where data is to leave the histogram, and 

increment one to each bucket where data is to enter the 

histogram. In this paper, we empirically prove this method 

to be a generally strong way to control loss of accuracy. 

The costs of executing this error-minimizing layer are 

trivial to processing, memory, and should consequentially 

maximize uptime. This method was tested on two 

histogram algorithms including Equivalent Width and 

Variance Optimal in four specified histogram data-density 

scenarios including sparse, balanced, dense, and very 

dense, while using two different random value distribution 

sources including the Uniform distribution and Gaussian 

distribution. 

Keywords: Histogram, Frequency queries, Data Stream, 

Approximation, Algorithm 

 

1 Introduction 

Histograms, utilized as a summary of frequency data, 

have been proven to be accurate-enough measures to 

approximate count (or frequency) queries. Staying within 

the error tolerance becomes problematic when dealing 

with dynamic data, such as streams, due to the potential 

for shifts in source data. This shifting can happen even if 

a stream is modeled by using a single random 

distribution, especially when observing a relatively 

smaller number of values as related to a large or infinite 

data set. Elements can also expire and become irrelevant, 

as well as new elements can come into existence. 

Attempting to run a histogram on dynamic data without a 

method of controlling error will become disastrous, 

especially on specialized histograms such as the 

Variance-Optimal and Maximum Difference due to the 

way they interpret data inherent to their original 

construction. In lieu of reconstructing a histogram every 

time data is either discarded or collected - which is 

prohibitive in processing power,  memory space, and real 

life uptime - a method for reducing cumulative error is 

necessary if not imperative. Therefore, if a histogram is to 

be employed as a quick estimate of stream data, updating 

the histogram non-destructively can be done using the 

following approach: decrement one from each bucket 

where data is to leave the histogram, and increment one 

to each bucket where data is to enter the histogram. The 

costs of executing this error-minimizing layer are trivial 

to processing, memory, and should maximize uptime. In 

this paper, we have tested this method on two histogram 

algorithms including Equi-Width and Variance Optimal 

(also known as V-Opt or V-Optimal).  

2 Background 

Here we will discuss some of the basics of queries and 

histograms. Various types of frequency based queries are 

discussed that can benefit from histograms.  

2.1 Queries  

There are three types of queries that can benefit from 

histograms. 

2.1.1 Selection queries with equality constraints 

Selection queries with equality constraints return the 

tuples in a table that satisfy a certain equality criteria. 

You can also associate a count function to these selection 

queries. For example, in order to determine the number of 

employees with age 65, the following SQL-like query 

could be executed: 

select count(*) from employee where age=65 

This query can be further extended to include other values 

in the following manners: 

select count(*) from Employee where age=62 or age=65 

select count(*) from Employee where age in (62,65,67) 

If a certain amount of error is acceptable, a histogram can 

be used to estimate the frequency of a certain value in a 

data source. The individual frequencies can then be added 

to get the combined counts of extended queries above. 



2.1.2 Range queries 

The range query can have either a lower or an upper limit 

on its input, or both limits explicitly declared. For 

example, suppose an executive in a company wants to 

know how many of their employees are making salaries 

between the range of 50,000 and 100,000 inclusively. The 

SQL-query would be structured as: 

select count (employee_id) from Salary where salary >= 

50000 and salary <= 100000 

Here also histograms can be used to compute the count 

for the whole range by adding frequencies for each 

individual value in the range or by manipulating 

frequencies of whole buckets. 

2.1.3 Join Queries 

Join queries are more targeted towards pattern matching. 

Just as in selection queries, a count function can be 

attached to join queries as well. Consider the scenario 

where personal info for employees is stored in table 

Employee and their salary information is stored in table 

Salary. 

Select emp.first_name, emp.last_name, emp.age, s.salary 

from Employee emp join Salary s on (emp.empId 

=s.empId) where s.salary>=100000 and emp.age <=35 

If accuracy can be sacrificed for efficiency,  histograms 

can be used to provide estimates on each data source, 

which in turn can be used to generate join query result-

counts. Histogram information on the individual tables 

can also be used to create an optimized query plan that 

would run faster. 

2.1.4 Histogram Algorithms 

Histograms are compressed versions of an entire data set 

that are used as statistical tools of approximation. There 

are many ways to create a histogram that mainly differ in 

the method of setting boundaries commonly known as 

buckets (Ioannidis Y. 2003). Each individual bucket can 

represent a range of values where the range can be as 

small as a distinct value, and as large as the whole data 

range. How to break up a data set into subsets to store in a 

single bucket is up to the histogram algorithm. The easiest 

way to visualize a histogram is to picture a bar graph with 

the bucket ranges on the horizontal axis and the frequency 

counts on the vertical axis. By design, histograms are 

excellent tools for single count queries and range queries. 

In the following subsections, we will briefly describe two 

of the most popular algorithms that will be used in this 

research. Both the examples will be using the same 

sample array: {0, 2, 2, 3, 3, 4, 5, 8, 8} 

2.1.5 Equivalent Width 

One of the more basic histogram algorithms, the equal-

width or equiWidth method separates data into 

horizontally equal-sized buckets. This means that each 

bucket will represent, as closely as possible, an equal 

number of values. The benefits of this algorithm lie in the 

simplicity – and consequentially the inexpensive 

computing cost to construct it. The time complexity is 

O(n) due to the single pass required to process through the 

pre-sorted source array to build the histogram.  

2.1.6 Variance-Optimal (V-Opt) 

The variance-optimal (also commonly referred to as V-

Opt and V-Optimal) histogram is one of the more 

complicated histogram algorithms. It is also broadly 

regarded as one of the more accurate histogram 

algorithms. The premise behind this algorithm is to 

minimize the sum of all intra-bucket variances. There 

exists a dynamic programming algorithm with O(n2B) 

time complexity that follows the following recurrence 

relation 
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In the above equation, n is the number of elements in the 

data array, B is the number of buckets to construct the 

histogram and SSE*(i, k) is the minimum sum of squared 

error (SSE) for the prefix vector F[1, i], i.e. the first i 

values of the frequency array corresponding to the data 

array using at most k buckets. Notice, for this algorithm 

we first need to convert the data array to a frequency 

array F, where F[i] is the frequency of the value mapped 

to slot i. As you can see that this histogram construction 

algorithm can become cost-prohibitive as n grows bigger.  

3 Approximating count queries 

using Histograms  
Suppose we would like to know the frequency of value v. 

In order to do this, we would first find out which bucket i 

value v belongs to and then find the frequency fi and 

number of values ni for that bucket. Then the approximate 

frequency for v can estimated to be fi / ni. For our sample 

array, according to the equiWidth histogram the 

frequency of 3 is 4/3 = 1.33 and according to v-optimal 

histogram the answer is 6/6 = 1.  As you can see, for v = 

3, v-opt has a higher error (2 – 1 = 1) than equiWidth (2 – 

1.33 = 0.67). However, for v = 2, error in v-opt estimation 

is 2 – 2 = 0, whereas equiWidth has an error of 2 – 1 = 1. 

On average, v-opt produces lower error if all values in the 

data range are equally likely to be queried as it is 

designed to minimize average intra-bucket variance (SSE) 

which ultimately minimizes average error. 

3.1 Histograms for Dynamic Data Streams 

The goal of histograms is to be as accurate in estimating 

data distribution as possible while improve speed of 



answering queries and also the speed of histogram 

construction. The speed of query execution results from 

the faster access of a histogram array versus searching 

and counting an entire data array. Since error is produced 

by the averaging of the frequency among all the values 

located in the same bucket, it can be reduced by 

increasing the number of buckets in the histogram. At one 

end of the spectrum is the one-bucket histogram that will 

have the highest error and fastest construction. On the 

other end is the n-bucket histogram where n is the number 

of distinct values, which will have the slowest 

construction time and no error. As one can see, the two 

goals reducing error and increasing construction speed are 

at odds with each other. One may think one should just 

use n buckets since accuracy is more important than 

offline histogram construction time. However, using an n-

bucket histogram not only increases construction time but 

it also requires more space to store the histogram. As a 

result choosing the right number of buckets and the right 

algorithm is crucial for system performance.  

With that established, the problem becomes even more 

difficult when running frequency queries on continuous 

data streams comes into picture. Since a histogram could 

become increasingly inaccurate with each new data point 

entering the stream, we investigate the effectiveness of a 

simple but fast method in mitigating the potentially 

distortional effects a stream could have on histograms. 

3.2 Dynamic Data Streams 

In order to emulate a dynamic data source, a sliding 

window based method is used. This sliding window 

approach used in experiments is very similar in nature to a 

stock or financial ticker on a news channel. The television 

can only show as much data that can fit on the screen, just 

like a fixed-size sliding window stores data. As the ticker 

scrolls, stock data exits the screen and new and more 

relevant information comes into the picture. The point of 

this parallel is to illustrate the core workings of the sliding 

window mechanism, as applied to processing data stream 

simulations. In this paper we consider only fixed-size 

sliding windows as opposed to variable-sized sliding 

windows. 

3.3 Reducing Inaccuracy 

In the scope of this paper, inaccuracy, I, is measured 

using a normalized error technique given by equation 2.  

)2(

A

HA

V

VV
I


  

Here VH is the answer returned by the histogram and VA is 

the the actual frequency in the sliding window.  

By establishing a metric for representing inaccuracy, a 

measured comparative difference can be calculated from 

various testing simulations. Static histograms have error 

built in to begin with. Therefore, if a distribution changes 

skew even slightly, the histogram would become 

increasingly less accurate, depending on how significant a 

change. Even in the same distribution, depending on how 

many values the histogram stores and covers in the 

overall range, shifts could be expected – still leading to an 

increase in inaccuracy. As a result, to be able to answer 

queries with higher accuracy, histograms need to be 

updated in accordance with change in streaming data. 

This is not a big problem for equiWidth since the bucket 

boundaries stay the same and only frequencies change. 

However, this is very problematic for v-optimal 

histograms since the new data could render the existing 

histogram boundaries incorrect as far as minimizing 

expected intra-bucket variance is concerned. 

In an attempt to control for such a force, this paper 

explores a bucket tweaking method. To combat the 

complications that dynamic streaming data presents to 

histogram algorithms, some sort of mitigation method 

must be installed to keep the histogram up to date so to 

speak. The histogram algorithms are capable of handling 

static data, but cannot compensate themselves for data 

growing stale and driving inaccuracy up, as occurs with 

dynamic data. Since this shifting effect appears to affect 

the specialized partition scheme algorithms the most, it 

would be prudent to attack the problem at its core: the 

buckets. Instead of moving the buckets around in a 

desperate attempt to account for an entire distribution 

shift, consider smaller, incremental changes designed to 

be an agile response to dynamic activity in the simulated 

data stream. By using the sliding window approach 

previously discussed and already proven to be an effective 

way to manage data streams, it is possible to determine 

what data is becoming stale, and what data is fresh. In 

combination of the agile concept proposed and the sliding 

window approach, the following adaptive method is used 

to keep the histogram as up to date as reasonably possible. 

For every data point that leaves the sliding window, 

decrement the corresponding bucket in the histogram by 

one. Conversely, for every data point entering the sliding 

window, increment the corresponding bucket by one. In 

these experiments, a single unit of data expires as a single 

unit of data becomes relevant. That is an inherent property 

of a fixed-size sliding window, however, it would be 

possible to change the size of the stream sample if the 

situation deems necessary.  

4 Experimental setup 

Two different pseudo-random distributions are used in 

this paper to avoid single distribution bias – Uniform and 

Gaussian. Similar to the problem of distribution bias is the 

issue of histogram density. To be precise, density in the 



scope of this research refers to the ratio between the 

number of values in the histogram as it relates to the 

range the histogram attempts to model. For example, a 

histogram summarizing 100 distinct values with 150 total 

occurrences has density 1.5. To address the density bias, 

four different histogram densities given below were 

tested.  

Name Density 

Sparse 1 

Balanced 1.5 

Dense 2 

Very Dense 2.5 

4.1 Performance metric  

For each combination of input characteristics, we use 0 – 

1000 as the value range. Once the data arrays are filled, 

queries are posed after each new data addition. Altogether 

10000 queries are executed and their error measured. At 

the end of each trial, the normalized errors obtained from 

equation 2 are summed, and divided by the number of 

queries processed to determine an average normalized 

error per query. 

5 Results 

This section discusses all the simulation results and 

presents several charts. The x-axis of each chart shows the 

number of buckets as a percentage of the size of the zero-

based range, and the y-axis shows the measure of 

inaccuracy determined by the normalized difference per 

query. Each chart title and legend clearly dictates what 

simulation data is presented. These charts are separated 

based on pseudorandom distribution and histogram 

algorithm. Each chart shows the performance of the 

histogram algorithm as it applies to all four density-ratios 

and three types of source data and histogram pairings – 

static data with static histograms (static scenario), 

dynamic data with static histograms (dynamic scenario) 

and dynamic data with adaptive histograms (adaptive 

scenario). The density-ratios are color-coordinated. The 

source data and histogram pairings are coordinated on the 

graph by line-type, such that: static scenario simulations 

are represented by a solid line, dynamic scenario 

simulations are shown with a dashed line, and the 

adaptive scenario simulations are shown as a dotted line. 

The static scenario represents the baseline as the results 

cannot get any better than this.  The purpose of testing the 

dynamic scenario is two-fold. One, it determines the 

feasibility of using a static histogram in a data stream 

management system. If the skew of a distribution in data 

stream suddenly morphs, how does that affect the 

histogram? Two, as alluded to with the prior question, if 

and how does the accuracy of the histogram change as the 

data stream progresses with new information processed 

by the sliding window? Finally, the adaptive scenario is 

used to test the effectiveness of our adaptive histogram 

method in estimating answers to frequency based queries. 

5.1 EquiWidth on Uniform Data 

This distribution is usually better suited for analysis by 

histograms because the skew is very low and consistently 

even, regardless of the point in question within the 

distribution chart. The results shown in Figure 3 are as 

expected, from the static showing less inaccuracy with 

more buckets, to the dynamic data losing accuracy with 

more buckets, through to the adaptive method following 

the same pattern as the static data. The static data here is 

very consistent in accuracy from the sparse density-ratio 

up through the very dense density-ratio. As previously 

mentioned, the dynamic data does increase in inaccuracy, 

which again proves the point that histograms alone are ill 

suited to model streaming data. Combined with the fact 

that they become less accurate with more buckets, this 

means that there must be a different solution. In this case, 

the solution again is the adaptive method. With the 

EquiWidth histogram, queries were nearly just as accurate 

as the static data in the lower number of buckets 

scenarios, and proceeded to follow the static data very 

closely in accuracy. This strongly suggests that the 

adaptive method works well in these categories. 

 

Figure 1: Equiwidth error on Uniform data 

5.2 V-Opt on Uniform Data 

Proceeding onward from the equivalent width analysis, 

we now study the results of the variance optimal 

algorithm processing uniform pseudorandom data. The 

chart is shown in Figure 4. Again, this is excellent result. 

The graph shows the decreasing slope for static data, 

showing that the more buckets the variance optimal 
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histogram has at its disposal, the more accurate the results 

it can return.  

 

Figure 2: V-Optimal error on Uniform data 

 

Figure 5: EquiWidth error on Gaussian data 

Variance optimal histogram test data shows consistency 

in accuracy when the density-ratio is at least 1:1. The 

dynamic data lines tell a story. As more buckets are 

introduced in a dynamic setting, the histogram gets less 

accurate rapidly and consistently. This shows that the 

variance optimal algorithm is sensitive and susceptible to 

changes in its underlying data. Due to the nature of the 

algorithm basing its partitioning scheme on minimizing 

variance, it is of no surprise that it loses accuracy as 

rapidly as it does in these stressful scenarios. Conversely, 

the adaptive method again shows excellent mitigation of 

error creep introduced by dynamic data. The slope nearly 

matches the static data slope. Also, the level of accuracy 

provided by the adaptive method nearly matches the level 

of accuracy that the static data typically returns. At peak 

effectiveness, at the 50% number of buckets mark, the 

difference in accuracy is around 0.05 units. By contrast, 

the dynamic data at the same point was ten times less 

accurate.  

5.3 EquiWidth on Gaussian Data 

Gaussian pseudorandom data provides a different 

challenge, as it is a more erratic distribution with regard 

to frequency. This poses a complication to histograms, 

because the skew is both greater than a relatively flat line 

and changing depending on the point in question within 

the distribution chart.  

The chart displaying the results of this simulation is at the 

end of this subsection, shown in Figure 5. Proceeding to 

the analysis, the vast majority of the results are as 

expected. The static lines are consistent and at a 

downward slope – confirming that the more buckets, the 

more accurate. They are also closely clustered, suggesting 

that density-ratio does not have a great effect on 

inaccuracy. Regardless of how much data is in the 

histogram, the appearance is that the query will be 

approximately a half point away in accuracy, or fifty 

percent of the actual frequency. The dynamic data lines 

are ascending in slope, which is also expected. Bear in 

mind that over the same sized range, the larger the 

number of buckets, the smaller range size they 

individually cover normally. This smaller range size on 

one hand does make them better representations of the 

distribution curve, but also makes them more sensitive to 

changes in underlying data. A larger bucket may not be 

more accurate, but it will not lose accuracy as quickly 

either. Additionally, the dynamic data scenario is affected 

by the density ratio. The more data packed into the 

histogram, the less accurate. A balanced histogram is 

already off by one full point in estimation in the five 

percent bucket situation, and nearly reaches two full 

points away from the true value in the very dense scenario 

with fifty percent. Bearing in mind that each point 

represents a multiplicative factor applied to the actual 

frequency value, inaccuracy rising to an increased error of 

200% is problematic. The adaptive lines show a lot of 

promise here. As they have more buckets to work with, 

they return greater accuracy. This is exactly the opposite 

of what occurs with dynamic data, and precisely what the 

goal of this research sought out to determine. Data density 

does appear to have an effect as well, such that the denser 

the histogram, the sooner the adaptive benefits take place, 

with respect to an ascending number of buckets. All of 

these effects combine to solve many of the problems 

dynamic data present, and that is with the more difficult 

pseudorandom distribution to model in histograms. At 

peak operating efficiency, the data charts suggest that it is 

possible to re-gain over a half point of accuracy in the 

dense and very dense scenarios. This does not adversely 
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affect the attempt to devise a generally acceptable method 

of mitigating dynamic error creep, due to the fact that 

generalizations are not universally perfect. Although this 

does make the adaptive method appear to be more of a 

situational fix at first glance, given enough situations 

where the adaptive method presents benefits, this can be 

utilized as a generalized solution to counteract the 

negative effects of dynamic data on histograms. 

5.4 V-Opt on Gaussian Data 

Moving forward, the next algorithm for analysis is the 

variance optimal algorithm using Gaussian data. The chart 

displaying the results of this simulation is shown in 

Figure 6. As previously exposed with the equivalent-

width algorithm, the expected results of the static data 

increasing in accuracy as more buckets are provided is 

expected. Also expected, is the overall decrease of 

accuracy when running on dynamic data, and the increase 

in inaccuracy with more buckets on dynamic data. The 

dynamic data can result in as much as two points of 

divergence from the true frequency count, as shown in the 

fifty percent case with a density-ratio of very dense. 

The adaptive technology, on the other hand, is really 

starting to shine. As seen with the equivalent width 

algorithm, the adaptive method works better with denser 

histograms. In two categories, balanced and dense data 

density ratios, the adaptive method was completely more 

accurate than the dynamic scenario. The very dense 

scenario was more accurate starting with the ten percent 

bucket point, forward to all counts of buckets higher. The 

overall downward sloping dotted line in all scenarios is 

very encouraging for the adaptive method to mitigate the 

inaccuracy complications that dynamic data can present. 

 
Figure 6: V-Optimal error on Gaussian data 

6 Future Applications 

The future applications for research exist as an extension 

of what was done in this paper. Iteratively speaking, more 

algorithms could be tested with more random 

distributions – which could yield either more evidence 

confirming these results, or information pointing to the 

contrary. Similarly, another way to extend the research 

presented in this paper could be to develop other methods 

of keeping histograms fresh. Perhaps it is possible to 

dynamically alter the bucket boundaries to reflect a best-

guess real-time estimation for the summary of a dynamic 

data stream. Following the same logic, it could also be 

possible to trigger a full histogram reconstruction should 

the level of inaccuracy exceed a specified error threshold. 

These would certainly benefit the field. 

Further ahead, it is possible that one could start testing 

these concepts against higher-dimensional histograms, 

determining if the results found here extend to more 

complicated algorithms. Common sense is not factual 

until empirically proven in the eyes of the scientific 

community, and as such, results could be proven contrary 

to common sense. This research was also limited to the 

scope of single selection count queries based on 

frequency. It would not take much to extend this research 

to range queries and join queries. 

7 Related Work 

Amongst many researchers in the field studying 

histograms, one in particular took the time to compose a 

comprehensive study of the history of histograms: Yannis 

Ioannidis of the University of Athens. In his paper 

entitled, “The History of Histograms (abridged),” Again 

jumping in time, now to the mid-1990s, Yannis Ioannidis 

writes another paper, now with Viswanath Poosala at the 

University of Wisconsin, “Balancing Histogram 

Optimality and Practicality for Query Result Size 

Estimation” (Ioannidis & Poosala, 1995). Jagadish et. al. 

developed a dynamic programming method of calculating 

the bucket boundaries in a variance optimal histogram in 

the paper  “Optimal Histograms With Quality 

Guarantees.” By using an inherent property of the 

variance optimal histograms, the sum-squared error (SSE) 

is determined to be possible to calculate in an iterative 

fashion. This ability, in turn, saves repeated and 

redundantly wasteful calculations when intermediate 

results are stored in an internal matrix. Later Yannis 

Ioannidis and Viswanath Poosala delve into answering 

queries with an approximation while improving database 

response time (Ioannidis Y. E., 1999), in “Histogram-

Based Approximations of Set-Valued Query Answers”. At 

that time, database responses were slow to return 

information – even when precision was not necessary. By 

using histograms, they were able to generate 

approximations for early reports in on-line database 

queries when the precise answer was not absolutely 

critical, but response time was. With regard to utilizing 

sliding window technology, Arvind Arasu and Gurmeet 

Singh Manku pioneered the efforts of maintaining 
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approximations and quantiles over both fixed and 

variable-sized sliding windows processing streaming data 

(Arasu & Manku, 2004). Gurmeet Singh Manku and 

Rajeev Motwani devised two methods of approximating 

frequently occurring singleton frequency counts over data 

streams using sliding windows with small memory 

footprints and output error limited to user-specification 

(Manku & Motwani, 2002). In other related work, sliding 

window technology has been used in conjunction with 

other algorithms designed to count and maintain 

aggregate data in dynamic data streams with provable 

low-memory (Datar, Gionis, Indyk, & Motwani, 2002). 

8 Conclusions 

While histograms inherently are not designed, nor are 

capable of by default, to handle dynamic data sources, 

they can be adjusted with certain methods of error-

minimization to compensate for what otherwise could be 

considered cumulative error. This paper has empirically 

shown that when using a sliding window approach for 

using the histogram over a dynamic data stream, the 

histograms grow stale and less accurate. The data 

analyzing partition scheme based histogram algorithms 

suffer the most, which is problematic because they are 

also the most accurate under static data. In order to make 

them work on dynamic data, their buckets must be 

modified in such a manner to keep them fresh. 

Overall the adaptive method is a strong success. In the 

Equivalent Width histogram tests using Gaussian 

pseudorandom data, the adaptive histogram process was 

an okay performer. It did increase accuracy over the 

dynamic data on static histograms scenarios with more 

buckets or more dense data. In overlapping cases, 

performance was even better. Specifically, there was a 

20% reduction of error at the 25% number of buckets 

ratio when the histogram was very densely packed. The 

Variance Optimal histogram on Gaussian data benefitted 

strongly from the adaptive method. In the balanced, 

dense, and very dense ratios, inaccuracy decreased 

between 40% and 70% from the dynamic data estimates 

across the spectrum of number of buckets, and above 15% 

number of buckets ratio for very dense data. For 

EquiWidth histograms operating on uniformly distributed 

data, the adaptive method proved to be an excellent 

performer. The accuracy rivaled static data results, within 

2% throughout all density ratios and number of bucket 

ratios. Additionally, VOpt histograms with uniformly 

distributed data maintained a level of accuracy within 

10% of all of the static data tests, throughout all number 

of bucket ratios and data density ratios. In summary, the 

adaptive method showed okay to excellent results, 

depending on pseudorandom distribution. Although not as 

strong on Gaussian data, the adaptation drastically 

improved accuracy when histograms were processing 

uniformly distributed data. There was an overall trend of a 

greater decrease in inaccuracy with more buckets.  

This paper has shown that an agile method using minimal 

incremental changes can aid in maintaining the accuracy 

of the histograms. In conclusion, this method is a strong 

candidate for error mitigation in histograms applied to 

dynamic data sources for a few reasons. It is inexpensive 

to maintain, as two high level seek operations and two 

basic operations at most are required per update: seeking 

the corresponding bucket in a histogram for a given value 

(twice if inserting and removing), and incrementing or 

decrementing that value as necessary. Those operations 

are not processor or memory intensive tasks. Finally, the 

decrease in inaccuracy over a broad range of tests 

suggests the potential for true generalization. 
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