
Towards Using Continuous Integration Tools to Teach
Programming Courses

Erik Kral, Petr Capek
Faculty of Applied Informatics
Tomas Bata University in Zlin

Nad Stranemi 4511, 760 05 Zlin, Czech Republic
{ekral,capek}@fai.utb.cz

 Abstract — This work proposes a study focused on

Continuous Integration (CI) tools in teaching programming
courses as well as for automatically grading student assignments.
There are many automatic grading tools for students´
programming assignments which share most of their
functionalities with CI tools. We would like to provide a
methodology on how to implement this tool in teaching
programming languages. We will evaluate and compare common
CI tools and run experiments with students in programming
courses.

Keywords—Continuous Integration; Software Engineering;
Education; Programming Course; Student´s Programming
Assignments

I. INTRODUCTION
In the programming languages teaching field, we have a

problem with how to balance teaching basic to advanced
topics using professional tools such as source code control,
build servers, and automated building, testing and
deployment. These tools are typically targeted at advanced
developers and large groups of developers working long-term
on a large, single-source code repository. We currently teach
basic and advanced programming courses at our university but
we do not use any advanced form of Continuous Integration
(CI) tools that are the industry standards nowadays in any of
these courses. At Tomas Bata University (TBU) in Zlin, we
currently use assignment evaluations based on Docker
Technology [1] which is sufficient - but only supports a
limited number of languages and build tools, and it is not
integrated with source control tools or advanced automated
tests. There are many automatic assignment grading software
tools [2], built mostly by universities. However, in our
experience, it is very hard to keep such software up-to-date
with new languages and related software (e.g. compilers,
frameworks). Most of these Automatic Grading Tools (AGT)
share functionality with Continuous Integration (CI)
methodology [3] - which is a part of the Extreme
Programming (XP) software development methodology.
Studies on using XP for teaching programming courses [4]

already exist. This study [5] covers using CI to teach Software
Engineering and suggests a method to use it by which a large
group of students work on a large legacy code base - as
opposed to an approach in which a small, isolated group of
students work on a project that is not large enough to show the
benefits of CI professional practices. However, the approach
of using a large group of students to work on a legacy code is
not suitable for programming courses for beginners. Both
AGTs and CI share similar methodologies, like unit tests, code
quality metrics, and code reviews. Our goal is to use CI tools
as an AGT and to begin continual use of this for beginner
courses through to advanced courses; i.e. from basic isolated
student´s assignments through to shared, long-term tasks for
large groups of students.

II. PROBLEM DEFINITION
Both AGTs and CI tools are commonly-used and mature

tools, but AGTs are not in general, a professional standard
since they are built by universities and not software
companies. Our goal is to use professional grading software as
soon as possible so that the students can gradually get used to
working with this tool.

Most AGTs have the following features:

• Assignment planning and coordination between student
and teacher. Teacher´s reviews and communication
between teachers and students

• A single-source code repository; but, the code is not
shared between students

• Plagiarism detection

• Automatic and manual grading of functional and
nonfunctional requirements - similar to the
requirements on commercial software

• Sandboxed runtime to prevent student hacks on servers

• Integration with other teaching tools -like Moodle

This work was supported by the Ministry of Education, Youth and Sports
of the Czech Republic within the National Sustainability Program, Project
No.: LO1303 (MSMT-7778/2014); as well as the European Regional
Development Fund, under CEBIA-Tech Project No.: CZ.1.05/2.1.00/03.0089.

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 European Union

DOI 10.1109/CSCI.2015.78

872

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 European Union

DOI 10.1109/CSCI.2015.78

871

Most CI tools have the following features:

• Task planning, team coordination, code reviews

• Single-source code repositories, and the code is
intensively shared among developers

• Automated build, tests and deployment

• Code quality metrics – static or dynamic code analysis

• Integration with 3rd-party tools

While the features of AGTs and CI tools mostly overlap,
there is an important difference in their plagiarism detection,
product deployment and the level of code sharing
characteristics. The process workflow in programming courses
has been analyzed. First the student´s workflow is described
followed by the teacher´s workflow

A. Student´s workflow
In the beginner courses, there is no single source code

repository (mainline code) and there are no sharing; or, only
small groups of two or three students share the code. Overall,
students cannot access one another’s solutions. But, on the
other hand - in advanced courses, the mainline may be shared
by large groups of students, and students work on the same
mainline.

1) Students can access a current assignment description,
its goals, subtasks and grading metric

2) Students can copy the current source code (mainline)
into their local development machine as a working copy using
a source code management system from the prepared mainline
-which may include automated tests

3) Students can alter the source code in a working copy
and change or add automated tests and students can build a
working copy and run automated tests

4) Students can update a working copy with possible
changes from teachers or collaborating students, fix problems
if it is their responsibility, or communicate fixes with
collaborators; and, if it passes tests, commit changes to the
mainline

5) Students’ new commits are detected on the server and
students receive the results of another set of automated tests,
code quality measurements, plagiarism tests – and optionally,
may get teacher´s code reviews and a final grade.

B. Teacher´s workflow
Students are organized by subject, and there can be more

student groups in each subject. As in beginner courses,
students may work independently from one another, teachers
have to prepare copies of the main repositories and grant
access to each student.

1) Teachers prepare current assignment descriptions, their
goals and grading metrics and also create automated tests for

students using interfaces or dummy classes where each
assignment can be split into several, monitorable subtasks

2) Teachers create one or more repositories (mainlines)
for groups of students and assign students rights to work on
these mainlines - since this can be time-consuming, it should
be automated

3) Teachers can update mainlines including automated
tests

4) Teachers do code reviews and final grading; after that,
the student is not allowed to commit changes or get additional
tasks

III. METHODOLOGY
In this work, we will evaluate and compare common CI

tools based on the student´s and teacher´s workflows -
presented herein. A methodology will be created on how to
use CI tools and integration servers to automatically grade
students. Experiments will be run in the following semester
with students in the Beginner´s Programming course and the
more advanced Object-oriented course. In total, more than 100
students are enrolled each year in this course, and 4 teachers
run these courses.

IV. EXPECTED CONTRIBUTIONS
The main contributions of our research will be review of

CI tools and their implementation by means of teaching the
Programming course, a methodology for using CI tools for
teaching and automatic grading and qualitative observations
based on students’ and teachers’ feedback

V. CONCLUSION
In this work, we describe future research on using a

Continuous Integration tool - usually in the form of a server
for teaching. We have introduced working workflows and
presented the methodology for our research.

REFERENCES
[1] G. F. Špa�ek, R. Sohlich and T. Dulík, “Docker as Platform for

Assignments Evaluation”, Procedia Engineering, vol. 100, pp. 1665-
1671, 2015.

[2] J.C. Caiza, J.M. Del Alamo, “Programming Assignments Automatic
Grading: Review of Tools and Implementations”, in Inted 2013
Proceedings, 2013, pp. 5691–5700

[3] M. Fowler, “Continuous Integration”, martinfowler.com, 2006.
[Online]. Available:
http://www.martinfowler.com/articles/continuousIntegration.html.
[Accessed: 10- Oct- 2015].

[4] M.M. Muller, W.F. Tichy, "Case study: extreme programming in a
university environment," in Software Engineering, 2001. ICSE 2001.
Proceedings of the 23rd International Conference on Software
Engineering, IEEE

[5] J.G. Sus, W. Billingsley, "Using continuous integration of code and
content to teach software engineering with limited resources", in
Software Engineering (ICSE), 2012 34th International Conference on
Software Engineering, vol., IEEE

873872

