
Towards an Empirical Analysis of .NET Framework
and C# language Features’ Adoption

Petr Capek, Erik Kral and Roman Senkerik
Faculty of Applied Informatics
Tomas Bata University in Zlin

Nad Stranemi 4511, 760 05 Zlin, Czech Republic
{capek,ekral,senkerik}@fai.utb.cz

Abstract— Software companies such as Microsoft periodically
release new versions of the .NET framework and C# language
suites. New features are introduced in each of these new releases.
Currently, there is little or no empirical analysis of the adoption of
.NET framework and C# programming language features and
studies on how successfully those features are accepted by the
community. The aim of this work is to create a set of long term
statistics about the use of the new .NET and C# language features
across existing popular libraries.

Keywords—.NET, C#, Roslyn, code analysis, github

I. INTRODUCTION
So far, Microsoft has released several versions of .NET

framework. In each new version, Microsoft introduced new
methods and classes. Independently from .NET framework,
Microsoft has also released several C# language versions.

A detailed survey exists about Java Language features [1] as
well as an empirical analysis of C# generics [2] but there are no
detailed empirical analyses of the adoption of NET framework
and C# language features. There is also a domain-specific
programming language for analyzing large scale software
repositories [3], but we would like to use the Roslyn compiler
rich code analysis to achieve the best possible understanding of
the code. Our proposed analysis could be used as a decision
support for teaching programming language features, or for
software architects and developers to show what the current state
and trends in this area are.

II. RESEARCH OBJECTIVES

A. .NET framework and C# language version distribution
Firstly, we want to discover the distribution of .NET

framework versions in the projects that were examined. Also,
because C# language version is independent from the .NET
framework, we will evaluate the distribution for this separately.

The goal of this objective is to create distribution statistics for
the .NET and C# versions. We also want to try and establish if
there is a trend between versions of .NET and versions of C#
language.

B. Portable Class Library profile distribution
Then we will focus on the PCL (Portable Class Library)

support for the examined projects. PCL is a subset of the .NET
framework which allows one to create a .NET library (assembly)
which can be used on different platforms. Initially, PCL
supported the Windows, Silverlight, Windows phone and Xbox
platforms. Later, Microsoft - together with Xamarin, introduced
support for the iOS and Android platforms. By choosing the
platforms supported, one can define the PCL profile. Currently,
there are around 40 profiles available.

The goal is to measure the share of projects which support
PCL. In the event that a project supports PCL to find out which
profiles it supports so that we can identify the most used profiles
within all examined libraries.

C. Adoption rate of .NET framework and C# language features
After that, we will measure the adoption rate. What we mean

by adoption rate is a time analysis of the particular project in
which we want to identify how long it takes to migrate to a new
version of .NET framework and to use the new C# language
features. For projects in which there was no migration to a new
.NET framework - or no use of any new language features, we
want to identify the reason(s) why.

The goal of this objective is to find out how long it takes a
developer to migrate to a new .NET framework and how long it
takes to use any new C# language features. We also want to
identify variables which affect this adoption rate (e.g. the size of
the project, the age of the project, supported OS …)

D. Usage share of new .NET framework and C# language
features
The last metric which we want to study is the usage share of

the .NET and C# features. What we mean by usage share is the
usage of a newly-introduced class or method or newly introduced
C# language features to accomplish an expected goal instead of
using an older alternative approach. A typical representative is
the C# Auto-Implemented property feature. Before C# 3.0, you
had to define a property with an implemented body and use a
backfield property. Since C# 3.0, one has been able to use this

This work was supported by Internal Grant Agency of Tomas Bata
University under the project No. IGA/FAI/2015/062.

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 European Union

DOI 10.1109/CSCI.2015.90

866

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 European Union

DOI 10.1109/CSCI.2015.90

865

feature to reduce the amount of “boiler-plate” code in order to
have a cleaner code.

The goal of this objective is to define the requisite code to
attain the required functionality before and after the feature was
introduced and determine and identify such occurrences across
the entire examined project and then create statistics to describe
which .NET/C# features are the most popular and which are the
least popular.

III. METHODOLOGY
To be able to undertake these analyses, we plan to use our

own tool - which is in the form of a C# application in which each
analysis will be a stand-alone plug-in. This tool will
automatically obtain the input data and run the analyses.

As input data for our research, we plan to use C# projects
hosted on GitHub. GitHub is a Web-based Git repository-hosting
service. It offers all of the distributed revision control and the Git
Source Code Management (SCM) functionality as well as adding
its own features. As of 2015, GitHub reports having over 11.3
million users and over 28.1 million repositories [4], which makes
it the largest host of source code in the world [5].

GitHub also provides API for programmatically acquiring the
necessary information. We plan to use this API to get a list of
popular projects and download those projects.

Then we must prepare an environment to be able to build
downloaded projects. Each project needs to have properly set up
dependencies. This is mostly done with the Nuget package
system [6]. When the environment is prepared, we can then run
our analyses; and plan to use Roslyn for code analysis.

IV. CURRENT PROGRESS
Currently, we are able to use the GitHub API to obtain a

sorted list of projects and are also able to download them. In
addition, we have prepared a high-level structure of our analysis
tool. We have a few beta versions of plug-ins (we plan to use one
plug-in per feature) which will analyze code to search for C#
language features

V. EXPECTED PROBLEM AREAS
There is a standard technology called MsBuild [7] for

building .NET projects. Developers can also use the Nuget
packaging system to manage external dependencies. However, in
some cases, the projects are too complex to be handled by
MSBuild and must be built using a different technology. We will
try to adapt these other technologies to build projects to run our
code analyses.

The next problem is to define code snippets to measure the
acceptance of new features. For some features, it is easy to
implement such code snippets (e.g. “Property with Backfield” vs.
the “Auto-Property” feature); however, for other features it is
very difficult - or even impossible, to cover all snippets (like a
code for searching for the maximum vs. the LINQ
IEnumerable.Max function).

VI. EXPECTED CONTRIBUTION
The main contributions of our research will be:

• To create a graph of .NET framework version as well as
C# language version distributions to identify the most,
and least, popular .NET framework and C# language
versions.

• To create a histogram of platforms supported by PCL and
to identify just how much developers use PCL and
identify widely-used PCL profiles a s well as lesser-used
profiles.

• To create and compile complex statistics on the adoption
rate of the .NET framework and C# language features.
Then, to try to identify the factors (like project size,
project age, etc …) that affect the adoption rate of new
.NET framework and C# language versions.

• To create a set of complex statistics on the usage share of
new .NET framework and C# language features; as well
as to identify the most and least usable features.

VII. CONCLUSION
In this work, we have described future research focused on

investigating .NET framework and C# language feature usage.
We began by defining the research objectives that we want to
focus on. Then, we went on to describe how we want to obtain
the input data for our research, as well as the methodology with
which we want to collect such information.

REFERENCE

[1] R. Dyer, H. Rajan, H. A. Nguyen and T. N. Nguyen,
"Mining Billions of AST Nodes to Study Actual and
Potential Usage of Java Language Features," in ICSE ’14,
Hyderabad, India, 2014.

[2] D. Kim, E. Murphy-Hill, C. Parnin, C. Bird and R. Garcia,
"The Reaction of Open-Source Projects to New Language
Features: An Empirical Study of C# Generics," in Journal of
Object Technology, vol. 12, no. 4, 2012.

[3] R. Dyer, H. A. Nguyen, H. Rajan and T. N. Nguyen, "Boa: A
Language and Infrastructure for Analyzing Ultra-Large-
Scale Software Repositories," in ICSE 2013, San Francisco,
USA, 2013.

[4] "GitHub," GitHub, Inc., 2015. [Online]. Available:
https://github.com/about/press.

[5] G. Gousios, B. Vasilescu, A. Serebrenik and A. Zaidman,
"Lean GHTorrent: GitHub Data on Demand," in MSR'14,
Hyderabad, India, 2014.

[6] "NuGet," .NET Foundation, 2015. [Online]. Available:
https://www.nuget.org/.

[7] "Microsoft.Build (MSBuild)," Microsoft, 2015. [Online].
Available: https://github.com/Microsoft/msbuild.

867866

