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Abstract—Finding the maximum flow, or capacity, of wireless
multihop networks received a considerable attention by the
research community due to its importance from theoretical and
practical standpoints. However, since it is np-hard, only bounds
can be found using different heuristics. In this poster we find an
upper bound on the maximum flow supported by static wireless
multihop networks for any load matrix and arbitrary topology
in a polynomial time, via a Linear Program, by exploiting only
a local interference conflict graph. By noting that interference
is local, we replace the optimization problem condition of listing
maximal independent sets by listing maximal cliques which
improves computational complexity of the solution. Doing this,
we had a quadratic programming problem to calculate the
exact maximum flow, and not bounds, for any network which is
polynomial for some interference models such as the Unit Disk
Graph. We applied our model to an example network in [1] and
obtained the exact maximum network flow, while [1] suggests
only a solution to calculate bounds for the network. The model
was also applied to other networks such that the conflict-graph
is not perfect, where other models fail to calculate the capacity,
and we were able of obtaining the exact capacity.

Keywords - Capacity, maximum flow, conflict graph, linear
programming, quadratic programming.

I. INTRODUCTION

The reader is referred to Jain’s paper [1] for details. Here,

we just write the optimization problem and our modification

by taking conflicts (interference) into consideration locally.

We start with a wireless network of N nodes that are

connected by unidirectional links L. The vertices in the

network graph correspond to the wireless nodes N and the

edges correspond to the wireless links L between nodes. The

optimization problem has two parts: Part I which is same

as that in wired networks and Part II is a restriction due to

conflict because of interference and media contention.

Part I:

max
∑

lsi∈L fsi
Subject to:

∑

lij∈L

fij =
∑

lji∈L

fji ni ∈ N\{ns, nd}
∑

lis∈L

fis = 0

∑

ldi∈L

fdi = 0

fij ≤ Cij ∀i, j|lij ∈ L, fij ≥ 0 ∀i, j|lij ∈ L (1)

The optimization problem above is for maximizing the flow

from source node s to destination node d. Due to interference

and media contention, we cannot route data on every single

path in wireless multi-hop networks. We can route only on

paths of conflict-free links. Using the conflict graph of the

network we have Part II below.

Part II:
K′∑

i=1

λi ≤ 1 (2)

fij ≤
∑

lij∈Ii

λi.Cij (3)

Here λi is the fraction of time allocated to maximal indepen-

dent set Ii and K ′ is the total number of maximal independent

sets in the conflict graph. The number of maximal independent

sets may be exponentially many as per [1].

A. A local conflict graph formulation

Focusing on each link conflicts locally, let the fraction of

time link lij is active is γij and let l1, l2, ..., lk be the

conflicting links with link lij as per the conflict graph. Assume

γ1, γ2, ...,γk be the fraction of active times for links l1, l2,

..., lk respectively. Then we have the following restriction on

the flow. Note that the flow may constitute successful and

conflicting flows.

0 ≤ γij ≤ 1 ∀i, j|lij ∈ L (4)

(1−γ1−γ2−...−γk).Cij ≤ fij ≤ (1−max(γ1, γ2, ..., γk)).Cij

∀i, j|lij ∈ L (5)

Eq. 4 is clear. Eq. 5 states that maximum flow fij can be

more than left side when all the conflicting links send data

and are active at different times but no more than the right

side when all the conflicting links are sending data at the same

time. The non-linear constraint 5 can be converted to linear

by substituting max(γ1, γ2, ..., γk) by say zij . Then Eq. 5 can

be written as:

(1−γ1−γ2−...−γk).Cij ≤ fij ≤ (1−zij).Cij ∀i, j|lij ∈ L
(6)

γi ≤ zij ∀i = 1, 2, ..., k (7)

We seek to maximize the flow from the source node s.

Let us say there are m links emanating from the source node

labeled l1, l2, ..., lm and the flow of these links and their active

times are f1, f2, ..., fm and γ1, γ2, ..., γm respectively. Then if

we assume the network is up for a period of time T , it is clear
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total successful flow from source node s is less than or equal

what is given by:

[f1.γ1T + f2.γ2T + ...+ fm.γmT ]/T

= f1.γ1 + f2.γ2 + ...+ fm.γm (8)

We have equality when all the flows of all m emanating

links are not conflicting during their entire activity times

(transmission times). Our optimization problem is now max-

imizing the upper bound in non-linear Eq. 8 given the linear

constraints in Eqs. 1, 4, 6, and 7. However, by noting that

fi = γi.Ci, i = 1, 2, ...,m we have, Eq. 8 equals to:

f2
1 /C1 + f2

2 /C2 + ...+ f2
m/Cm (9)

so our problem is to maximize Eq. 9 over the polyhedron

determined by the set of linear constraints 1, 4, 6, and 7.

It can be shown the values of f1, f2, ..., fm of the solution

are the same if we replace our objective function in Eq. 9 by

the following linear function:

f1 + f2 + f2 + ...+ fm (10)

Applying our formulation to the example network in [1] of

3×3 lattice grid, and by using the sufficient Row constraints in

[2] to show the upper bound is a scheduleable, we obtained

exactly the same optimum flow of 0.5 and the same exact

schedule of the links in a polynomial time. Only an upper

bound of 0.667 was found in [1]. To the Peterson graph

[3] in Fig. 1, we obtained an upper bound of 12 while the

independence number is 9.

Fig. 1. A Peterson Graph has independence number = 9.

B. Exact Maximum Flow - Quadratic Programming Model

For each link lj , let ζj , 0 ≤ ζj ≤ 1, be the fraction of

the transmission time γj that the transmission was successful

on link lj , 1 ≤ j ≤ |L|. Hence, assuming there are m links

emanating from the source, the throughput (successful flow)

is given by:

throughput = f1.γ1.ζ1 + f2.γ2.ζ2 + ...+ fm.γm.ζm (11)

Moreover, we have the following additional constraint:

For each node in the conflict graph (each link) we have:
∑

γpiζpi + ...+ γriζri ≤ 1 ∀i = 1 to q (12)

where q is the number of maximal cliques containing the node

and pi, ..., ri are the nodes in the maximal clique i that the

node is a member of , 1 ≤ i ≤ q. This is true because the

total successful time in each in each maximal clique is less

than or equal 1. Now, replacing each γiζi, i = 1 to |L| by

θi, 0 ≤ θi ≤ 1, we have the following complete nonlinear

optimization problem for flow maximization:
Max :f1.θ1 + f2.θ2 + ...+ fm.θm, m links emanating from

source node s
subject to in addition to Eq. 1 :

∑
θpi + ...+ θri ≤ 1

for each node where q is the num-

ber of maximal cliques containing

the node and pi, ..., ri are the nodes

in clique i, 1≤ i ≤ q
(13)

θi ≤ γi ∀i|i ∈ L (14)

(1−γ1−γ2−...−γk).Cij ≤ fij ≤ (1−zij).Cij ∀i, j|lij ∈ L
(15)

γi ≤ zij ∀i = 1, 2, ..., k (16)

0 ≤ γi ≤ 1, 0 ≤ θi ≤ 1 ∀i|i ∈ L (17)

C. Illustrative Examples and Results
The quadratic programming model was applied to Jain’s

network example discussed in previous section and we were

able to get a capacity of 0.5 ( a capacity of 0.5625 is sometimes

was obtained depending on the initial starting point of the

solver). Two more examples were used to verify the model.

First one, is Peterson Graph, [3], see Fig. 1. As it is known

finding the independence number of a graph is equivalent to

calculating the capacity of a two nodes network that has a

conflict matrix equivalent to the graph. For the Peterson graph

shown in Fig. 1, the independence number is 9 which is exactly

what we obtained by using our model. The last example is

the largest graph with a known independence number in the

database of House of Graphs [4], a graph of 200 vertices and

2200 edges and independence number 100. We obtained the

exact independence number in almost 5 minutes; 1 minute or

less for listing the maximal cliques in the graph and almost

4 minutes or less for the matlab SQP solver to converge. It

is clear the Peterson Graph is non-perfect due to odd holes.

Finally, through it is clear using maximal cliques has a better

computation time due to local connectivity of the conflict

graph, polynomial time is possible for certain graph such as

the Unit Disk Graph.
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