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Abstract—Path selection in multihop wireless networks is a
hard problem. Given a performance goal, the best approach
remains unclear. In hardwired networks, network flow may
be maximized by using shortest path over link weights that
are determined by a linear program to a multicommodity flow
formulation. In this poster we generalize this linear program
to include interference and mobility. We show that “In a static
wireless multihop network If we route packets using any other
algorithm than shortest path with links weights determined by
the solution of the dual problem of maximizing the minimum
spare capacity after adding the interference constraints, then the
network flow saturates before reaching the maximum when we
increase the demands; while we can always increase demands
until we reach the maximum flow supported by the network,
if we use shortest path with links weights determined as stated
above. The same is true for mobile wireless multi-hop networks
under protocol interference model if nodes are available within
each other transmission, interference ranges within constant
probabilities”.

Keywords - maximum flow, conflict graph, linear program-
ming, shortest path, optimum routing.

I. INTRODUCTION

In [2] the authors proved shortest path is optimum in hard-

wired networks by maximizing the minimum spare capacity

for elastic traffic and accordingly more data can be accommo-

dated. The minimum spare capacity z may be maximized by

solving the LP in Eq. 1,[
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I = [II...I] (3)

X(k) ≥ 0, 1 ≤ k ≤ K, z ≥ 0 (4)

A is the node-link incidence matrix, of dimension N × L.

X is links flow vector, V is the demands vector and C is the

links capacity vector. There are K demands.

A solution to the above linear program exists when routes

are selected according to shortest path where the link weights

are the optimal values for the dual variables yT of the dual

problem. The dual problem is a minimization subject to:

[uT yT ]

[
A 0
I 1

]
≥ [0T 1] yT ≥ 0 (5)

where uT is a vector of size 1 × KN of the dual variables

corresponding to the equality constraints. yT is a vector of

size L corresponding to the inequality constraints.

II. INTERPRETATION OF MAXIMIZING THE MINIMUM

SPARE CAPACITY OPTIMALITY RESULT

We will prove the following proposition which we first

proved in our paper [1] although stated differently:

“In a hard-wired network if we route packets using any
other algorithm than shortest path with links weights deter-
mined by the solution of the dual problem of maximizing
the minimum spare capacity, then the network flow saturates
before reaching the maximum when we increase the demands;
while we can always increase demands until we reach the
maximum flow supported by the network, if we use shortest
path with links weights determined as stated above.”

Let us call a routing strategy (algorithm) that solves max-

imizing the minimum spare capacity z by γ and all other

strategies that don’t solve this optimization problem by ω. we

will prove:

In any network: (i) when γ is used, which means the

minimum spare capacity is maximum, then we can inject

more demand (traffic) in the network, i.e. we can increase the

demand, if the flow is not maximum. (ii) On the other hand

when we have the flow is maximum then the routing strategy

(algorithm) used must also be a solution to maximizing the

minimum spare capacity, i.e γ, and the maximum minimum

spare capacity is zero. Accordingly, when the flow is not

maximum and we are using ω, we cannot reach the maximum

flow by increasing the demand, because if we keep increasing

the demand until we reach the maximum then that means we

are using γ which is a contradiction.

Proof:
The first part of the proposition (i) is clear because spare

capacities of all links are at least z = minl∈Lzl, zl is the

spare capacity of link l, 1 ≤ l ≤ L and that minimum z is

at its maximum value when γ strategy (algorithm) is used.

Hence we can increase the load of each link by that minimum

which means we can increase the load (demand). We prove

the 2nd part of the proposition (ii) as follows:

Let the flow is maximum whatever the routing strategy

used ω or γ, i.e. for the collection of all routing strategies

(algorithms), then zl should be zero for at least one value

of l, 1 ≤ l ≤ L. Let this is not the case, i.e. zl is not zero
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for all values of l. Take now any path from a source node

to a destination node. Increase the traffic (flow) on the links

of this path by minl∈links of the pathzl and thus we were able

to increase the total flow. This is a contradiction because the

flow is maximum and accordingly zl should be zero for at

least one value of l, 1 ≤ l ≤ L. We have proved for any

routing strategy γ or ω that at least one spare capacity is

zero. Thus z = minl∈Lzl = 0 is independent of the routing

strategy. Thus, the maximum of minimum spare capacities,

i.e. max z, equals to 0 for the collection of all routing

strategies (algorithms) ω or γ. Now when we use γ, we get

z maximized and when we use any ω strategy (algorithm)

we have z less than its maximum value but this means z < 0
which is a contradiction since z ≥ 0. Hence only strategy γ
can be used when the flow is maximum.

Q.E.D

III. CONSTRAINTS IMPOSED BY INTERFERENCE

Jain et al [3] developed a model to calculate the maximum

capacity of a wireless muti-hop network under interference

using a conflict graph. In addition to the well-known formal

formulation of the maximum flow problem in hard-wired

networks. They added two constraints imposed by interference.

K′∑

i=1

λi ≤ 1 (6)

fij ≤
∑

lij∈Ii

λiCapij (7)

K ′ is the number of maximal independent sets in the conflict

graph, Ii is a maximal independent set, λi is the fraction of

time maximal independent set Ii is active (carrying transmitted

data), fij is the flow carried by link ij and Capij is the

capacity of link ij. An Independent set in the conflict graph

is simply a set of non-interfering links.

IV. OPTIMUM ROUTING IN STATIC WIRELESS MULTI-HOP

NETWORKS

By adding the interference constraints in Eqs. 6 and 7

to the model in the section I and letting λ be the vector

[λ1, λ2, ..., λi, ..., λK′ ]T . It can be easily shown that Eq. 1 in

section I becomes:
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Where A, 0, I, and 1 are the same as in Eq. 1. The first 0 in

the left matrix of Eq. 8 is a matrix of dimensions KN ×K ′

of all zeros. The first 0 in the second row is all zeros vector

of dimensions 1×KL; 1̄ is a vector of all 1s of dimensions

1 ×K ′; and the last 0 in the second row is just a zero. The

middle 0 in the last row of the matrix is all zeros matrix of

dimensions L×K ′. The last matrix in the right column is L
× 1 vector such that the jth element is

∑
j∈Ii

λiCj . This can

be further written as :
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M is L × K ′ matrix where Mij = −Ci if link i ∈ Ij and 0
otherwise. The dual problem is a minimization subject to:

[uT v yT ]

⎡
⎣ A 0 0

0 1̄ 0
I M 1

⎤
⎦ = [0T 1] yT ≥ 0 (10)

v is the dual variable corresponding to the constraint

[0 1̄ 0]. [X λ z]T = 1. 0T is a vector of dimensions

1 × (KL + K ′) of all 0s. It can be readily seen that the

solution is also shortest path with link weights are optimum

values assumed by the dual variables of the vector yT . We

can use the algorithm in [3] or any other algorithm to

find (maximal) independent sets and solve the optimization

problem in this section, approximating links weights, but

maybe in non-polynomial time.

V. OPTIMUM ROUTING IN MOBILE WIRELESS MULTI-HOP

NETWORKS

Assuming nodes mobility where each node is available

within transmission, interference, range of each other node

with constant probabilities pi, qi respectively. These prob-

abilities may be different for each pair of nodes. Then by

following the same approach in [1], we can arrive at a similar

formulation in static wireless multi-hop networks when we

set the the objective function as maximizing the minimum

mean spare capacity to accommodate for more mean flow

after adding interference constraints. However, due to an as-

tronomical number of possible different networks topologies,

the number of possible independent sets in such topologies is

so huge that calculating links weights which depends on the

two stated probabilities becomes infeasible unless we have a

very limited mobility. One possible scenario is VANETs that

vehicles move on specific routes with minor network topology

changes. This is left for future work to figure out potentially

successful algorithms that compute such weights. In spite of

this shortest path is proved to be also optimum in some setting

that allows the network to carry more mean flow contrary

to what is generally believed by the research community. As

future work also a simulation will be carried out to validate

our findings.
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