
A VHDL Based Controller Design for Photoplethysmography-Based
Heart Rate Monitoring System

Kiet Duong, Dat Tran, and Ujjal Kumar Bhowmik
Electrical Engineering and Computer Science Dept.

Catholic University of America, Washington DC 20064, USA
Email: bhowmik@cua.edu

Abstract—Continuous monitoring of heat rate using
wearable technology has the potential of improving
healthcare and fitness and reducing the risk of
cardiovascular diseases. A Photoplthysmography (PPG)
based optical sensors are becoming popular to detect heart
rate from human body. However, interfacing different
sensors, acquiring and processing data in real time is a
challenging task and requires dedicated hardware. Field
Programmable Gate Array (FPGA) has become most
widely used technology for real-time application. In this
research, the necessary drivers and interfacing hardware
for the PPG sensor are implemented on a FPGA platform
using hardware description language (HDL). With the help
of simulation and experimental results the accuracy and
functionality of the proposed system are verified.

Keywords—: Photoplthysmography (PPG), Heart-rate
monitoring, FPGA, VHDL, Wearable healthcare.

I. INTRODUCTION

The emergence of micro-sensors and wireless technology has
enabled changes in the conventional healthcare systems,
replacing it with wearable technology. Wearable devices for
measuring ambulatory heart rate becomes a new research topic
in industry and academia. Several industries have recently
introduced smart-watch and smart wrist-band for healthcare
and fitness. Most of these smart devices use PPG based sensors
to measure heart rate and other parameters from human body.
Heart rate monitoring using PPG technology has many
advantages compared to the conventional ECG, such as
convenience in using, lower-cost, portability and continuous
monitoring without any special assistance [1], [3], [4]. Recent
advances in the optical technology, PPG based sensors are
becoming more popular in clinical settings and fitness
industries. However, integrating and interfacing different
sensors in healthcare, fitness or other systems and acquiring and
processing data in real time is a challenging task. The current
trend in hardware design is implementing the complete design
in a single chip. The FPGA based technology has become most
successful and widely used technology for developing systems
that require real-time signal processing [5]. In this research, the
VHDL based hardware description language is used to design,
implement the necessary interfacing hardware, controller, and
signal processing units. The system is implemented and verified
on an Altera DE2-115 FPGA board. During the development
phases of our system, different signal processing modules are first
designed using MATLAB. After successful implementation and

verifications, the MATLAB code is converted to VHDL code using
HDL-coder toolbox. A simulation software, ModelSim 10.3 PE,
is also used for testing and verifying the functionality of different
modules of our design.

The rest of the paper is organized as follow. Section II describes
briefly the TI AFE4400 heart rate sensor used in this research,
section III discussed elaborately the PPG data acquisition system,
section IV discusses the MATLAB implementation of necessary
filters, section V discusses the three-stage signal processing
section, and finally a brief conclusion is given in section VI.

II. HEART RATE MONITOR AND PULSE OXIMETER SYSTEM

The TI AFE4400 is a fully-integrated analog front-end
(AFE) specifically designed for pulse oximetry applications
[2]. The PPG data is obtained by illuminating the skin and
measuring the changes in light absorption caused by the pulses
(Figure 1). The sensor consists of a low-noise receiver channel
with an integrated analog-to-digital converter (ADC) and LED
driver. The device communicates with the host processor using
SPI communication [2] [6].

The sensor has two working mode: reflection mode and
transmission mode as illustrated by Fig 2. In this project,
reflection mode is chosen over transmission mode since it can
obtain data from more parts of the body while not requiring
exact placement like the transmission mode does. A typical
PPG signal is shown in figure 3.

Figure 1. PPG signal acquisition

Figure 2. Two modes of PPG operation

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.156

792

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.156

791

Figure 3. A typical PPG Signal

The required hardware for pulse oximeter system, as
illustrated in Figure 4, consists of three main components: an
AFE4400 chip, a photodiode (PD) and a dual LED (DLED) of
wavelength 660nm (RED) and 905nm (IR) [2]. AFE4400 is in
charge of driving the DLED. The sample data of the output
current of the photodiode is stored inside the registers of
AFE4400. Data can be read from AFE4400 via SPI interface
using the FPGA driver developed in this research.

Figure 4. AFE4400 with necessary FPGA driver

III. PPG DATA ACQUISITION SYSTEM

After turning on the AFE4400, the FPGA driver will

initialize the AFE4400 and configure it to desired operation
mode by sending write commands to change the values of its
internal registers. This step is required as the chip cannot work
under default setting. When the initialization phase is done, the
FPGA driver will send read commands to obtain the data
whenever new data is ready. AFE4400 signals new data ready
signal through ADC_RDY pin. All communications are done
using SPI protocol [6]. SPI write and read protocol are shown
respectively in figure 5.

After being configured, the AFE4400’s operation can be
described by figure 6. For each pulse repetition period, it will
first turn on the LED1 to get the sample data and then turn it off
to get the ambiance data. It then does the same for the LED2.
After obtaining each sample, it will convert them to 24-bit
digital signal and store the result in its register while it takes the
next sample. At the end of each period, it will overwrite the old
data and drive the ADC_RDY signal high to inform the driver
that new data is ready to be read. After that, it goes to the next
repetition period.

Figure 6. AFE4400 Operation

Figure 5. SPI write (top) and read (bottom) protocol

793792

The frequency of the repetition period is equal to the
sampling rate, which can be set between 62.5 Hz and 5 kHz. In
this project, the sampling rate is chosen as 100 Hz and the duty
cycle is reduced to 20% instead of 100%. The PPG signal
obtained in low noise environment is shown in figure 7.

IV. DESIGNING FILTERS USING MATLAB

After obtaining the PPG signal from the driver, the data will
be processed to obtain the heart rate. The data from only one of
the two LEDs is sufficient to calculate the heart rate. A sixth
order Butterworth band pass filter with cut-off frequency of 0.5
Hz and 2.5 Hz, which correspond to heart rate of 30 BPM and
150 BPM respectively, is implemented in MATLAB to extract
heart rate from sampled dataset. The Bode plot of the frequency
response of the filter is shown in figure 8.

Figure 8. The Bode plot of the filter's frequency response

The recorded data from the sensor are imported to MATLAB
to verify the functionality the algorithm. But since FPGA is
better suited for fixed point arithmetic computation, a
conversion of the floating-point arithmetic filter to fixed-point
arithmetic filter has been implemented in MATLAB. It is also
to be noted that in order to avoid overflow, the filter requires
zero mean input. Therefore, one additional pre-filter step is
required. The average of the data is computed and subtracted
from the raw data in pre-filter step. From MATLAB simulation,
the output of floating-point filter and the output of fixed-point
filter are shown in figure 9. Note that the filters require some
time to calibrate before giving the correct result. From the
simulation, it is clear that the response of the fixed-point filter
is consistent with the response of the floating-point filter.
However, floating-point hardware implementation usually
requires a lot of resource of the FPGA. For this reason, the

fixed-point filter is developed in MATLAB and converted to
VHDL code using HDL-coder toolbox in MATLAB R2014a.

Figure 9. Floating point filter vs Fixed point filter

To verify the functionality of the filter and its performance
in real-time, a stimulus list is created from the zero-mean data
and stored in the FPGA’s ROM and it is used as the excitation
input for the VHDL filter. Using Signaltap II Logic Analyzer
tool provided in Quartus II allowed us to examine the behavior
of the output signal of the VHDL filter in real-time. The VHDL
filter worked correctly as expected. In figure 10, the first signal
is the input data and the second signal is the output data of the
VHDL filter.

Figure 10. Logic Analyzer output waveform

V. THREE-STEP SIGNAL PROCESSING FOR DETECTING AND
CALCULATING HEART RATE

After verifying the functionality of the algorithm, the
algorithm will be implemented on an FPGA platform. In this
research, the PPG signal will be passed through three stages of
digital signal processing (DSP), namely Pre-processing,
Processing, and Post-Processing steps to extract the heart rate
from sampled PPG dataset (figure 11).

In the pre-processing step, the signal will be passed through
a pre-filter module to create the zero-mean signal required for
the filter to work. To make the output a zero-mean signal, the
pre-filter will subtract the mean value of a number of previous
input data from the current input data. The output can be
describe by the following function, in which x[n] = 0 �n < 0

Figure7. PPG data obtained in low-noise environment

Figure 11. Three stages of DSP

794793

�[�] = �[�] � 1� � �[� �]
��
��

The division operation usually requires a lot of resource. To
reduce the amount of resource needed, N = 2m, where m is a
positive integer, is chosen in this research. Then the division
operation can be closely approximated with a right shift of m-
bit, which requires almost no resource in FPGA. Experimental
results show that larger m gives better result. However, larger
m also means more resources need to be used. To balance this
trade-off, it is chosen as m = 5, for which the filter output is
good enough for later processing while also keeping the amount
of resource used reasonable. The output now becomes

�[�] = �[�] � 132 � �[� �]��
��

= �[�] � ��[�]
There are two approaches to realize this output, namely finite

impulse response (FIR) and infinite impulse response (IIR). In
the FIR approach, the mean value xM[n] is calculated with the
formula

��[�] = 132 � �[� �]31
	=0

The block diagram to realize this function is shown below in
figure 12. This approach uses a total of 31 registers and 31 full
adders to calculate the mean value.

In the IIR approach, the mean is calculated by the formula

��[�] = 132 � �[� �]31
	=0

= 132 ���[� � 32] + � �[� �]��
��

+ �[�]�
= 132 �� �[� � 1 �]��

��
+ �[�] � �[� � 32]�

= 132 ���[� � 1] + �[�] � �[� � 32]�
The block diagram to realize this function is shown in figure

13. IIR filter realization requires a total of 33 registers and 2 full
adders. FIR approach gives slightly more stable results but uses
significantly more resource, therefore, IIR approach is used in
the final design. The final design for the pre-filter module is

illustrated in figure 14. The input and output of the pre-filter
module are shown in figures 15 and 16.

 Figure 14. Pre-filter module

Figure 15. Noisy Input

Figure 16. Pre-filter output of noisy input

In the processing stage, the pre-filter output will be fed to the
band-pass filter generated by MATLAB. The filter output is
shown in figure 17. It can be seen from the output that all of the
noise have been filtered out.

Figure 12. FIR Average Filter

Figure 13. IIR Average Filter

795794

Figure17. VHDL filter output of the noisy input data

After filtering the noisy data, the filtered signal will be passed
through a peak detector circuit to detect peaks in the signal. The
block diagram of a typical peak detector is shown in figure 18.

Figure 18. Schematic diagram of a Peak-detector circuit

The simplified description of the peak detector’s operation is
shown in figure 19. The peak detector will alternate between
finding peak and finding trough in the signal to avoid false
detection. For a value to be considered as a peak, it must be
higher than a certain threshold and must stay as the maximum
for at least 0.3 seconds. Currently, a static threshold value is
used. However, to improve accuracy, a dynamic threshold
calculated from past peaks should be implemented. Similarly,
for a value to be considered as a trough, its value must be
negative and stay as the minimum for at least 0.3 seconds. The
“peak” output signal will be high for 30ms whenever a peak is
detected. A typical output of the peak detector is shown in
figure 20. The “peak” output of the peak detector will then be
used as the input for the BPM_calc module to extract the heart
rate. The schematic of the module is given in figure 21, in which
the HR signal is an unsigned signal and the error signal means
no peak has been detected for more than 2 seconds (i.e. the heart
has stopped beating). The internal circuit and the detailed
operation of the calculator are described in Figures 22 and 23.
The pseudo codes for figures 19 and 23 are given in Table 1.
To reduce the number of resources required to implement
division operation in count2HR module, a look-up table
generated by MATLAB is used in that module. After successful
implementation of the proposed heart rate sensor, BPM_calc’s
output is compared against a manual observation of heart-rate
on wrist. BPM_cal output is very much consistent with the
manual observation. It is to be mentioned that the motion
artifacts are not considered in this research. The primary goal

of this research is to implement a working VHDL controller for
AFE4400. In our future endeavor effort will be made to include
an accelerometer in the system and verify the results in a
medical setting against ECG output.

Figure 20. Typical peak detector output

Figure 21. Schematic of a BPM_cal module

Figure 22. The calculator’s internal circuit

Figure 19. Peak detector’s operation

796795

Table 1. Pseudo Codes for figures 19 and 23

VI. CONCLUSION

In this paper, we have designed and implemented a VHDL
based controller suitable for Texas Instrumentation’s AFE4400,
a Photoplthysmography (PPG) based optical heart monitoring
system. In the proposed system, we have implemented the SPI
protocol to initialize and read data from AFE4400, we have
designed a three-step signal processor to filter out heart rate
signal from PPG dataset and finally we implemented a peak
detector algorithm to detect heart rate for the processed data set.
The design is tested against a set of manual observations of
heartbeat taken from different persons. Experimental results are
consistent with the heart-rate measured on wrist. In future,
efforts will be made to test the system in clinical settings and
make it suitable for ambulatory heart-rate measurement by
incorporating accelerometer with it.

 REFERENCES

[1] Toshiyo Tamura, Yuka Maeda, Masaki Sekine and
 Masaki Yoshida, “Wearable Photoplethysmographic
 Sensors—Past and Present,” Electronics 2014, 3, 282-
 302; doi:10.3390/electronics3020282
 [2] AFE4400 Integrated Analog Front-End for Heart Rate

Monitors and Low-Cost Pulse Oximeters [Online].
Available: http://www.ti.com/lit/ds/symlink/afe4400.pdf.

[3] M. Elliot and A. Coventry, “Critical Care: The Eight
 Vital Signs of Patient Monitoring” British Journal of
 Nursing, vol. 21, pp. 62-625, May. 2012.
[4] N. Cooper, K. Forest and P. Cramp, Acute Care, 2nd Ed.

Malden, MA: BMJ Books, 2006.
[5] Dat Tran, Kiet Duong and Ujjal K. Bhowmik, “A VHDL

Based Controller Design for Non-contact Temperature
and BreathingSensors Suitable for Crib,” IEEE BIBE
2014, Nov. 10-12, 2014, Boca Raton, Florida, USA.

[6] M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar
Chowdary, K.Rajasekhar, K.Purnima, “Implementation
of SPI Communication Protocol for Multipurpose
Applications with I2C Power and Area Reduction,”
International Journal of Engineering Research and
Applications (IJERA), Vol. 2, Issue 2, Mar-Apr 2012,
pp. 875-883

Pseudo Code for Figure 19:

WHILE TRUE
OUTPUT = 0
MAX = 0
WHILE COUNTER <= 30 OR
MAX = 0
IF INPUT >= MAX THEN
IF INPUT > THRESHOLD THEN
MAX = INPUT
END
COUNTER = 0
CONTINUE
END
IF COUNTER >= 28 AND MAX >
0 THEN
OUTPUT = 1
END
IF COUNTER = 31 THEN
COUNTER = 0
CONTINUE
END
COUNTER++
END
OUTPUT = 0
MIN = 0
WHILE COUNTER <= 14
IF INPUT <= MIN THEN
MIN = INPUT
COUNTER = 0
ELSE
COUNTER++
END
END
COUNTER = 0
END

Pseudo Code for Figure 23:

WHILE TRUE
INIT: WHILE PEAK = 0
END

RESET: COUNTER = 0

WAIT: WHILE PEAK = 1
END

COUNT: WHILE PEAK = 0
IF COUNTER > 198 THEN
GOTO ERROR
END
COUNTER++
END

UPDATE: REG_VALUE =
COUNTER
HR = COUNT2HR(REG_VALUE)
GOTO RESET

ERROR: ERROR_SIGNAL = 1
WHILE PEAK = 0
END
ERROR_SIGNAL = 0
GOTO INIT
END

Figure 23. The Calculator’s operation

797796

