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Abstract—Can multiple predictive models be combined to
predict health care outcomes? In this paper, we explore this
question by considering the use of multiple predictive models as
”evidence” and formulate a multi-model approach to prediction
based on Dempster-Shafer’s Theory of Evidence. Given the
accuracy measures of multiple models, we propose a formulation
of a combined predictive model based on Dempster-Shafer’s
Theory. We then evaluate this approach on a set of data and
compare it to predictions by the individual models.

Keywords—predictive models, model accuracy, Dempster-Shafer
Theory.

I. INTRODUCTION

Mathematical models, such as ones based on linear regres-
sion, decision trees, etc., are frequently developed in order to
try to predict the likelihood or plausibility of an individual
having a particular disease or condition given a number of
measured parameters about the individual. These parameters
can range from discrete values, such “male” or “female”,
to continuous ones, such as temperature. The broad goal in
developing such models is to understand potential factors
contributing to a condition and to be able to anticipate or
predict potential problems in order to aid in decision making.

The development of such models typically includes an
assessment of the accuracy of the model. A portion of the
data set used to create the model, or a similar data set, is
used to determine the accuracy of the model once it has been
developed, i.e., how well it predicts whether the condition
is present or not. A perfect predictive model would have an
accuracy of 100%, though in most cases, this is not the case.

Suppose, then, that one has a data set and builds two
models using different techniques, say model M1 and model
M2. Suppose further that the accuracy of these models is 90%
and 80%, respectively. For a given set of values, suppose that
both models predict that the condition is present. This leaves
one with a sense of confidence that the condition is present.
At least this is more appealing than if one model predicted
that the condition was present and the other predicted that it
was not. In the latter situation, would one model be preferred
over the other, say the one with an accuracy of 90%?

Our interest is in being able to explore the use multiple
models for prediction, evaluate the effectiveness of multi-
model predictive techniques versus individual models and to
have some measure of the overall “likelihood” in the predic-
tions based on multiple models. One approach is to simply

rely on joint probabilities. In the previous case, the probability
of both models being correct would be 72%; the probability of
model M1 being correct and model M2 being incorrect would
be 0.9×(1−0.8), or 18%, etc. This is certainly one approach,
but we would like to have an approach which provides a
more intuitive measure of our confidence. Alternatively, one
can think of the two models as providing “evidence” for the
presence or absence of the condition and we are looking for
an estimate of our confidence in that “evidence”. We would
like to be able to consider the outcome of predictions from
two or more different models and have a decision procedure,
with some measure of “evidence”, i.e., of what the outcome
should be based on the results of the individual models.

This same kind of reasoning prompted Arthur Dempster
and Glenn Shafer to pursue a rigorous foundation for the
notion of evidence. Much of the fundamental ideas appeared in
Shafer’s seminal work A Mathematical Theory of Evidence [1].
Dempster-Shafer Theory (DST), as it is commonly called, is
not new to understanding disease, illnesses, etc. It has been
used in a variety of scenarios as a means of quantifying
evidence associated with diagnosis, both within and away
from, the medical area. Our interest here is in the use of the
theory with multiple models and, in particular, in using the
resulting combined models for prediction.

The remainder of this paper is organized as follows: In
Section II, we provide some background on DST and then in
Section III we provide an overview of some of the previous
work making use of DST in a variety of domains. We introduce
our approach to predictive modeling using DST in Section IV
and illustrate the approach on an example in Section V. In
Section VI we present a brief conclusion and identify some
future directions.

II. BASIC CONCEPTS OF DEMPSTER-SHAFER THEORY

We begin with an introduction to the basic concepts in
Dempster-Safer Theory (DST). Let X be the set of all states
under consideration. In our specific case, we will assume
that we are dealing with models where they predict that a
condition (event, cause, etc.) is either present (Yes, has the
condition) (Y ) or does not (N ). Let X = {Y,N} and let
P (X) = {φ, {Y }, {N}, {Y,N}} be the powerset of X . In
essence, the result of using a model results in one of two
states and possible combinations of the those states.

The DS theory of evidence assigns a belief mass (mass) to
each subset of the powerset: P (X)→ [0, 1] and is called a be-
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lief assignment (or mass assignment). The belief mass assigns
a value to each set representing a certain level of “belief” in the
outcomes represented by the set. For example, the set {Y,N}
could have a non-zero mass assignment representing the belief
that the outcome is either “yes” or “no”, i.e., undecided. In this
way, DST differs from standard probability theory.

A belief assignment must, however, adhere to two basic
axioms. A belief assignment m must adhere to the following:

1) The mass of the empty set is 0; m(φ) = 0.
2) The sum of the remaining members of the power set

must add up total of 1:
∑

AεP (X)

m(A) = 1.

The mass m(A) of a given member, A, of the power set
expresses the proportion of all relevant and available evidence
that supports the possibility that the actual state belongs to A
but no particular subset of A, i.e., pertains only to A.

From the mass assignments, the upper and lower bounds of
a probability interval can be defined (in the classical sense);
these are referred to as belief (or support) and plausibility.
These are defined as follows for a set A:

• The belief set bel(A) is the sum of all the masses of
subsets of A:

bel(A) =
∑

B|B⊆A

m(B).

• The plausibility pl(A) is the sum of all the masses of
the sets B that intersect A:

pl(A) =
∑

B|B∩A�=φ

m(B).

• The probability, p(A), of A is then within the bounds:

bel(A) ≤ p(A) ≤ pl(A).

A key component of the DST that we are interested in is
how to combine independent sets of mass assignments. In our
particular case, this would allow us to combine two models
to form a combined set of assignments and, consequently,
combined belief and plausibility values, i.e., allows us to
estimate the combined value of the evidence from the two
models. This, in turn, would allow us to construct a new model
which combines the “evidence” from the two models.

This is done using Dempster’s rule of combination. Assume
that we have two models, M1 and M2, defined over the same
set of states X . There are two belief assignments m1 and m2.
Then the combination, say a joint model called M1,2 and its
belief assignments m1,2 is defined as follows:

1) m1,2(φ) = 0.
2) The mass of other non-empty sets A is determined

by:

m1,2(A) = (m1 ⊕m2)(A) =
N

K
, (1)

where, N =
∑

B∩C=A �=φ m1(B)m2(C),

and K = 1−∑
B∩C=φ m1(B)m2(C).

For this computation, B is a set from M1 and C is a set
from M2. Intuitively, the numerator N computes a measure
of evidence from both models which is then normalized by a
measure of “conflict” present from other sets, represented by
the denominator, K.

III. A BRIEF SNAPSHOT OF PREVIOUS WORK UTILIZING

DEMPSTER-SHAFER THEORY

The notion of relying on ”evidence” in decision-making
occurs in a variety of domains. In a broad sense, taking evi-
dence (or input) from multiple diverse sources and computing
an overall estimate can also be viewed as a means of ”data
fusing”. Not surprisingly, then, Dempster-Shafer Theory (DST)
has found applicability in a variety of domains. We look first at
several different approaches for using DST and then consider
its role in health-related analyses.

Chen [2] looks at using DST to analyze data for intrusion
detection. He uses it because it can capture uncertainty and
provides a numerical approach for fusing together multiple
pieces of evidence from unreliable data, such as data collected
from multiple sources or systems while trying to detect in-
truders. He also notes that it is unlike Bayesian theory in
that one does not need to know about a priori or conditional
probabilities which are often difficult or impossible to estimate
for intruder attacks.

The use of DST to fuse data from multiple sources has been
a motivator for a variety of work. Luo [3] considers a variation
on DST’s computation of evidence with a different algorithm
for use in data fusion from multiple sensors. Murphy [4] looks
at the utility of DST for sensor fusion for autonomous mobile
robots. He looks at DST’s weight of conflict metric to measure
the amount of consensus between different sensors and evalu-
ated the approach experiments using four types of sensor data
collected by a mobile robot. Rakowsky [5] illustrates how to
apply DST to safety and reliability modelling.

DST has also been used in information retrieval tasks [6],
[7] because there is an opportunity to combine evidence from
plausible sources of information dealing with different assess-
ments on the content of documents or articles. Orumchian [6],
for example, used DST to fuse information about articles in
order to produce an improved qualitative ranking.

Hu et al. [8] looked the use of DST to improve the
performance of the use of multiple SVMs: multi-class SVMs
(MSVMs) constructed by combining several standard SVM
classifiers. The strategy is based on an earlier approach that
mapped the output of a SVM to the posterior probabilities [9].
Yen et al [10] showed that the subset-valued mapping used in
the Dempster-Shafer theory can be extended to a probabilistic
mapping to express the uncertainties and defined a mass
function to discount the prior probabilities from each mass.
Hu et al build on this work to use the posterior probabilities
of multiple SVMs to construct his mass assignments for the
SVMs and then combines those using DST.

Given the use of DST within a variety of areas, it is not sur-
prising to find uses within the health/medicine arena, Asland
[11] explores the use of DST to combine the classification of
three classifiers: k-Nearest Neighbor (kNN), Nave Bayesian
and Decision Tree. The combination approach was used to
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across two domains: breast tumor classification and skin le-
sion classification. The belief assignments and uncertainty are
designed for each of the individual classifiers. For example,
for the Bayesian classifier, posterior probabilities are used to
evaluate basic beliefs. DST’s rule of combination combines
three beliefs to arrive at one final decision. Asland carries out
experiments with k-fold cross validation and shows that the
nature of the data set has a bigger impact on some classifiers
than others and the classification based on combined belief
shows better overall accuracy than any individual classifier.
He notes that the ability to handle such situations robustly and
the ability to classify samples as uncertain in the presence
of classifier uncertainty makes this approach attractive for
healthcare applications.

Asland’s work is similar to the work in this paper - he
looks at specific means of combining the results of different
classifiers into a single overall classification/decision. Key
to his work was specifically designed measures of beliefs
and uncertainties, while our work has looked at combining
classification evidence from multiple models without specific
customization and being able to accomodate many different
models.

IV. PREDICTIVE MODELS AND DS-THEORY

Let us then look at how Dempster-Shafer Theory can
help look at the “evidence” provided by multiple different
models. For the current work, we will assume that we begin
with accuracy-based models (AB-Models) defined as M =
(Dom,X, {py, pn}) where Dom is the domain of data for
the models (i.e., the actual values used to determine the
predictions), X = {Y,N} is the set of states (i.e., the model
predicts that a condition is present (Y ) or not (N ) ), and py
and pn are the measured accuracies of the model in predicting
Y and N , respectively. Alternatively, we can think of Y
and N as representing two different classes and we have a
predictive model that given an instance predicts the class that
the instance belongs to. We use Y and N throughout the paper
to help provide some intuition on the formation of the models.
We begin by looking at how two such AB-Models might be
combined to form a joint model based on DST.

A. Forming DS Models

Assume that we have two AB-Models: M1 =
(Dom,X, {py1, pn1}) and M2 = (Dom,X, {py2, pn2}). For
a dεD, we have Mj(d) → {Yj , Nj}. That is, each of our
models, when given an item, d, from the data space makes
a prediction about d - either it satisfies the condition or does
not. For any d, there are four possible outcomes:

• M1 predicts Y and M2 predicts Y .

• M1 predicts Y and M2 predicts N .

• M1 predicts N and M2 predicts Y .

• M1 predicts N and M2 predicts N .

Consider the first scenario, i.e., for a particular d, M1(d)→
Y and M2(d)→ Y . Based on the predictive likelihood of each
of the models, M1 is likely to predict correctly py1 percent of
the time and M2 is likely to predict correctly py2 percent of
the time. But each model could also predict incorrectly with a

likelihood of 1 − py1 and 1 − py2, respectively. We can treat
the “evidence” of M1 predicting correctly as py1; similarly for
M2. We can also treat 1−py1 as the “evidence” for M1 being
incorrect and similarly for M2.

These observations allow us to create a DST model for
this particular scenario. For the possible outcomes from
our two predictive models, we can create a DST-Model
corresponding to each, say, D1(X,m1) and D2(X,m2).
We assume that as per the Dempster-Shafer Theory that the
possible states associated with each DST model are then
P (X) = {φ, {Y }, {N}, {Y,N}} and that for the two models
we define the mass assignments as follows:

• D1(X,m1)

◦ m1(φ) = 0,
◦ m1({Y }) = p1Y ,
◦ m1({N}) = 1− p1Y ,
◦ m1({Y,N}) = 0.

• D2(X,m2)

◦ m2(φ) = 0,
◦ m2({Y }) = p2Y ,
◦ m2({N}) = 1− p2Y ,
◦ m2({Y,N}) = 0.

Intuitively, each of these DST models associates a value
with the possible result based on the predictive accuracy of
the models for this scenario, namely, that both models predict
Yes. Thus, this approach would yield four different models -
one for each of the possible outcome scenarios for the two
models.

Now that we have both models and associated mass as-
signments for this scenario, we would like to consider how
these might be combined into single model. We would like our
combined model to have states that correspond to the outcomes
of the predictions of the two individual models. Since we
are assuming that models predict Y , then we would like the
combined model to have some measure (mass) associated
with Y in the combined model which reflects the combined
evidence.

Let us consider, then, for our current scenario and for
the DST models derived from it, how we might combine the
models into a single joint model, say D12(X,m12). Here, we
rely on Dempster’s rule of combination. The mass of the sets
in the combined model is determined by the following:

m1,2(A) = (m1 ⊕m2)(A) =
N

K
, (2)

where, N =
∑

B∩C=A �=φ m1(B)m2(C),

and K = 1−∑
B∩C=φ m1(B)m2(C).

We consider each of the possible sets in the combined
model:

• m12(φ) = 0 (by definition),

• m12({Y }) = SY

K12
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where SY = m1({Y })×m2({Y }) +
m1({Y,N})×m2({Y }) +
m1({Y })×m2({Y,N}),

and

K12 = 1− (m1({Y })×m2({N}) +
m1({N})×m2({Y })),

which is

= p1Y ×p2Y

1−(p1Y ×(1−p2Y )+(1−p1Y )×p2Y )

• m12({N}) = SN

K12

where SN = m1({N})×m2({N}) +
m1({Y,N})×m2({N}) +
m1({N})×m2({Y,N})

and K12 is as above.

which is

= (1−p1Y )×(1−p2Y )
1−(p1Y ×(1−p2Y )+(1−p1Y )×p2Y )

• m12({Y,N}) = m1({Y,N})×m2({Y,N})
1 = 0

Note that because m1({Y,N}) = m2({Y,N}) = 0, the
intersections of the singletons {Y } and {N} with {Y,N}
result in 0 in the numerator and an overall mass of 0 associated
with m12({Y,N}).

B. Example of Two Models

To illustrate our approach, consider an example in which
we have two models which predict whether for some dεDom
it has a particular condition or not. Our two models are
then: M1 = (Dom,X = {Y,N}, {0.81, 0.99}) and M2 =
(Dom,X = {Y,N}, {0.73, 0.98}). In this case, model M1 is
accurate 81% of the time when predicting that a dεDom has
the condition and is accurate 99% of the time when predicting
that it does not. Similarly, for model M2 its accuracy is 73%
and 98% respectively.

Let us consider Scenario 1, where both predict, for an
element d, that d has the condition, i.e., both predict Yes.
From these models we create a DST-Model corresponding to
each, namely, D1(X,m1)Y and D2(X,m2)Y ; we denote the
dependency of the models on the outcome with the subscript
Y in both cases. The mass assignments as follows:

• D1(X,m1)Y
◦ m1(φ) = 0,
◦ m1({Y }) = p1Y = 0.81,
◦ m1({N}) = 1− p1Y = 0.19,
◦ m1({Y,N}) = 0.

• D2(X,m2)Y
◦ m2(φ) = 0,
◦ m2({Y }) = p2Y = 0.73,
◦ m2({N}) = 1− p2Y = 0.27,

◦ m2({Y,N}) = 0.

The mass assignments for the combined model, denoted
D12(X,m12)Y Y where the subscript Y Y indicates that the
model originated from the two models predicting Yes, is then:

• m12(φ) = 0,

• m12({Y }) = p1Y ×p2Y

1−(p1Y ×(1−p2Y )+(1−p1Y )×p2Y )

= 0.81×0.73
1−(0.81×0.27+0.19×0.73) = 0.9202

• m12({N}) = (1−p1Y )×(1−p2Y )
1−(p1Y ×(1−p2Y )+(1−p1Y )×p2Y )

= 0.19×0.27
1−(0.81×0.27+0.19×0.73) = 0.0798

• m12({Y,N}) = 0

Thus, the combined model suggests that the weight (belief,
mass) of evidence in favor of concluding that d has the
condition, namely Y, is 0.9202. That is, when both models
m1 and m2 both predict Y, our decision making based on
the combined models is to conclude Y as well. Intuitively,
this makes sense - both models predict Y, so why would one
conclude anything else?

Let us consider, then, Scenario 2: M1(di) → Y and
M2(di) → N . In this case, one model predicts Y while the
other predicts N. What is the decision in the combined model?

We again construct our DST-Models for this Scenario:

• D1(X,m1)Y
◦ m1(φ) = 0,
◦ m1({Y }) = p1Y = 0.81,
◦ m1({N}) = 1− p1Y = 0.19,
◦ m1({Y,N}) = 0.

• D2(X,m2)N
◦ m2(φ) = 0,
◦ m2({Y }) = 1− p2N = 0.02,
◦ m2({N}) = p2N = 0.98,
◦ m2({Y,N}) = 0.

Model m1 remains the same, but model m2 changes since
the predicted outcome is N and the evidence for that has a
different value and so the mass assignment changes as well.

We can construct the combined model similarly to the
above, but the mass of the combined model, in this case
denoted D12(X,m12)Y N , is as follows:

• m12(φ) = 0,

• m12({Y }) = p1Y ×(1−p2N )
1−(p1Y ×p2N+(1−p1Y )×(1−p2N ))

= 0.81×0.02
1−(0.81×0.98+0.19×0.02) = 0.0800

• m12({N}) = (1−p1Y )×p2N

1−(p1Y ×p2N+(1−p1Y )×(1−p2N ))
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= 0.19×0.98
1−(0.81×0.98+0.19×0.02) = 0.9200

• m12({Y,N}) = 0

In this case, the “evidence” in the combined model is for
a decision of N. This is still intuitive in that the weight of the
accuracy of model m2 when predicting a N is so high (0.98)
that the “logical” choice is to simply follow model m2.

The models for the remaining two Scenarios, namely that
M1 predicts N and M2 predicts Y and that both predict N ,
follow similarly.

Note also that this approach can be extended to accom-
modate any number of AB-Models, though the number of
corresponding DST-Models grows exponentially; i.e., for 3 AB-
Models there are 8 DST-Models, for 4 AB-Models there are 16
DST-Models, etc. Given 3 AB-Models, the DST-Models would
be Y Y Y (all predict Y ), Y Y N (the first two models predict Y
and the third predicts N ), etc. Fortunately, for even a modest
number of models, the mass assignments of all the models can
be computed fairly efficiently using an iterative algorithm.

C. Predicting with DS Models

How does one use the DS-Models once they have been
constructed? Assume that we have n AB − Models =
{M1, ...,Mn} over some domain Dom. Assume that we have
constructed our DST − Models = {DS1, ..., DSN} where
N = 2n. For predicting the outcome associated with dεDom,
we introduce the following algorithm:

Dominant-Belief Algorithm (DB):
Input: d, AB-Models = {M1, ...,Mn}, DST-Models =
{DS1, ..., DSN}

1) Evaluate each of M1, ...,Mn on d, Mi(d) =
Oiε(Y,N) for each of the models.

2) Find the DST-Model, say DSi corresponding to the
predicted outcomes, i.e., the DST-Model correspond-
ing to O1, ...On.

3) Choose the outcome based on the highest belief value
of the outcomes in DSi.

DB is a simple algorithm to predict a single overall
outcome based on the outcomes from the individual models
and using their results to select a DST-Model which is then
used to choose an outcome; we illustrate this in the next
section. More importantly, the approach provides a means of
quantifying choices based on the outcomes of the original
predictive models. This is certainly not the only way to
interpret the results. Recall that the ”mass” in a DST-Model
represents ”belief”, so that the more mass the stronger ”belief”.
This can also be used as part of the decision making; we will
also illustrate this in the next section.

V. APPLICATION OF THE MODELS

In the following we report on the use of the models
using a data set dealing with the classification of the severity
of mammographic mass lesions as benign or malignant[12].
The data set contains a patient’s age, four attributes from
mammographic images and the resulting outcome (benign or

Logistic SVM DTree
Benign Accuracy 0.700 0.685 0.681

Malignant Accuracy 0.840 0.845 0.833

TABLE I. PREDICTION ACCURACY OF LOGISTIC, SVM AND

DECISION TREE MODELS

malignant). There are 961 instances with 516 being benign and
445 being malignant.

The data was analyzed using three classification schemes:
Logistic Regression (LR), Support Vector Machine (SVM) and
Decision Tree (DT); the Weka analysis package [13] was used
for the analyses. The models were built using 70% of the data
set as training data and the remaining 30% for testing and
measuring the predictive accuracy of each method. The results
of the prediction accuracy for the methods are summarized in
Table I.

The results of computing the DST-Models for just LR and
SVM are summarized in Table II and for the three models, the
results of the DST-Models are summarized in Table III. In the
table Y is Benign and N is Malignant.

For the LR and SVM models, the corresponding four DST-
Models and the masses (belief) associated with outcomes Y
and N are provided in Table II. As per the algorithm described
in the previous section, given an instance from the domain, a
prediction from the LR and SVM models is obtained, either Y
or N , and then the corresponding entry in Table II is examined.
The ”prediction” is then based on the class with the highest
mass. For example, if for an instance d, LR predicts Y and
SVM predicts N , then using the DB algorithm described, we
would use the DST-Model in the second row of Table I and
choose N as our prediction as its mass is 0.700.

Using this approach we evaluated the DB algorithm on
our test set. The overall prediction accuracies for LR and
SVM were respectively 77.8% and 76.4% and using the DB
algorithm with the DST models the result was 78.9%. The
prediction performance is somewhat better than the individual
models.

We did a similar analysis using three models, adding a
Decision Tree model to our previous two. This resulted in eight
DST-Models and associated masses; see Table III. Intuitively,
one might take a naive approach and just assume that when
any two of the three models agree on a choice, then that
should be the overall choice. However, computing the masses
for the different models using the rule of combination, the
results are a little different in this case. Using our very simple
algorithm and just relying on the magnitude of the masses,
we see that from Table III only two choices would yield a
Y choice, namely when all three of the models predict Y or
when both LR and SVM predict Y . In all other cases, the
prediction is N . Evaluating the accuracies on our test set,
we have LR and SVM as before and DT with an accuracy
of 75.7%; prediction with the DST models and our simple
algorithm achieved an accuracy of 78.9%. In this case the result
of having the three models is not any better than having just
the two; the Decision Tree model did not add much additional
evidence in the additional DST models. If one did take the
naive approach of just using a voting approach (i.e., choose the
response that at least two of the three models agreed upon),
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LR SVM DST Model
Y Y Y = 0.835, N = 0.165

Y N Y = 0.300, N = 0.700

N Y Y = 0.293, N = 0.707

N N Y = 0.034, N = 0.966

TABLE II. DST MODELS BASED ON LR AND SVM MODELS

LR SVM DTree DST Model
Y Y Y Y = 0.916, N = 0.085

Y Y N Y = 0.504, N = 0.496

Y N Y Y = 0.478, N = 0.523

Y N N Y = 0.079, N = 0.921

N Y Y Y = 0.467, N = 0.531

N Y N Y = 0.077, N = 0.923

N N Y Y = 0.069, N = 0.931

N N N Y = 0.007, N = 0.993

TABLE III. DST MODELS BASED ON LR, SVM AND DT MODELS

then the result would have been 77.4% – better than the SVM
and DT models, but somewhat poorer than that LR model and
poorer than the DB algorithm.

As noted, the “mass” represents a measure of “belief”
so that one does not necessarily have to treat a DST-model
as purely predictive. In looking at the mass values in Table
II the largest magnitudes range from 0.700 to 0.966. One
might choose to rely only on “beliefs” at a certain level. We
considered a somewhat alternative algorithm: we only consider
predictions using the DST model in Table II when LR and
SVM both predict Y or both predict N ; one can think of
instances where this is not the case as “undecided”. This
resulted in 30 instances not being classified (i.e., “undecided”)
and the remaining being predicted with an accuracy of 79.8%.

A similar “prediction” algorithm was used with the DST-
Model in Table III. Here, we only considered combinations
of the LR, SVM and DTree models where there was a mass
greater than 0.8. In this case, there were 6 instances (of 288)
that were not classified; the remaining 282 were classified with
an accuracy of 78.7%.

VI. CONCLUSION AND DIRECTIONS

This approach to the use of Dempster-Shafer Theory pro-
vides a means of considering multiple predictive models as
“evidence” and can yield alternative approaches for decision
making; the results of experiments suggest that there is poten-
tial value. The approach presented in this paper, however, is
only an initial look at how Dempster-Shafer Theory might be
used; a number of further areas are open for study.

The approach taken for combining the results of different
classifiers is not dependent on particular models and can easily
be extended to include the results of a large number of models.
As well, the methodology used to form DST-Models is not
necessarily the only way to do so from accuracy-based models;
other alternatives could be considered. Though the focus here
was on predictions over two classes (Y and N ), there is no
inherent limitation on considering predictions over some finite
number of classes. This would broaden the scope of the DST-
Models.

A particular advantage of Dempster-Shafer Theory is that
it allows for the modeling of “uncertainties”; i.e., we could

consider predictive models which predict “yes”, “no”, “un-
known”, for example, as Asland has done. This would require
some changes in the construction of predictive models, but
would allow for a formulation of DST-Models that could
associate a measure of “belief” around these choices. This
could help support decision making processes by explicitly
capturing confidence around yes-no predictions and confidence
that a prediction of “maybe” might suggest further information
is needed. We have not yet explored how we might capture un-
certainty, as did Asland, though this is something to consider.

Finally, further evaluation of the approach with more and
different data, and more experiments in different settings is
required.
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