
Framework for an Interactive Assistance in Diagnostic Processes Based on the
Translation of UML Activities into Petri Nets

Patrick Philipp∗, Yvonne Fischer†, Dirk Hempel‡ and Jürgen Beyerer∗†
∗Vision and Fusion Laboratory IES, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany

Email: p.philipp@kit.edu
†Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany

Email: {yvonne.fischer, juergen.beyerer}@iosb.fraunhofer.de
‡Steinbeis-Transfer-Institut Klinische Hämatoonkologie, Donauwörth, Germany

Email: dirk.hempel@gmail.com

Abstract—In contemporary medicine, diagnostic processes
provided by Clinical Practice Guidelines (CPGs) play a key
role. A CPG provides recommendations that open up a scope of
actions for the medical practitioner. But there is a gap between
theoretical knowledge and practical solutions. Furthermore,
barriers of implementation can arise. Taking these challenges
into account, we propose a framework for facilitating the
implementation of diagnostic processes. For this reason, the
CPGs of Chronic Myeloid Leukemia (CML) and Myelodys-
plastic Syndromes (MDS) are modeled using Unified Modeling
Language (UML). A UML activity serves as a basis for more
complex models that are used to provide the actual assistance
functions. This paper focuses on the automatic translation of
UML activities into Petri nets.

Keywords: Clinical Practice Guidelines, Diagnosis, Assistance

I. INTRODUCTION

The huge amount of publications can be seen as a

challenge in the medical diagnostic today: a search of the

term “chronic myeloid leukemia diagnosis” in Pubmed [1]

yields about 17000 results. Consequently, a profound inquiry

concerning a specific issue can be extremely laborious.

Clinical Practice Guidelines (CPGs) offer a possible solution

to prevent drowning in information. That is because they are

able to provide consolidated medical knowledge condensed

into general recommendations for actions [2].

To implement a CPG, the medical practitioner has to adapt

the recommendations to the given boundary conditions (e.g.

patient’s wishes, medical equipment) [3], [4]. Consequently,

there is a gap between theoretical knowledge on the one side

and practical solutions on the other side [5]. In addition,

barriers can arise if a guideline is not fully accepted by the

expert. This can be the consequence of (for example) a fear

of regimentation or because the guideline does not reflect

the latest developments in the field [6].

To support the medical practitioner during the implemen-

tation of a diagnostic process, we propose an interactive

assistance that helps to reduce the gap between theoreti-

cal knowledge and practical solutions and helps to lower

barriers.

CPG

Dialog between
domain experts

UML
activity

Petri net Bayesian net

Interpretation by
medical expert

Automatic
translation

Semi-automatic
translation

Assistance function Assistance function

Figure 1. A CPG can be transformed into a UML activity by an expert’s
dialog or by the medical expert himself. An activity serves as an interface
to the models used for providing the actual assistance functions [2], [5].

II. MODELING APPROACH

To establish a CPG model represented by a UML activity,

the medical knowledge provided by the guideline (e.g.

running texts, diagrams) has to be formalized. We believe

that this can be done via a dialog of experts from the

medical- as well as the technical domain (see Figure 1).

Alternatively, the medical expert can interpret the guideline

on his own. Moreover, the depicted bypass enables a medical

practitioner to modify an already existing UML activity by

himself. We are convinced that by this, most of the barriers

of CPG implementation can be moderated. This includes for

example the reduction of fear of regimentation or short-term

modifications due to medical symposia.

To provide the actual assistance functions, (i.e. propose

suitable examination values to the practitioner during the di-

agnostic process), an activity is translated into more complex

models. These models can be (semi-) automatically gener-

ated by only one given activity. In [2], [5] we introduced

the translation from UML activities into Bayesian nets (see

Figure 1). In this paper we focus on the translation of UML

activities into Petri nets. It is based on the work of Störrle

et. al [7], [8], [9].

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.110

733

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.110

732

[x > 1] [x <= 1]A

a)

B
A B A B

b) c)

Figure 2. Three typical routings of the CPG models of CML and MDS.

III. UML ACTIVITIES

UML is accepted in software industry worldwide [10].

Activities have been chosen as an interface because of their

easy comprehensibility for the medical- as well as the tech-

nical domain experts [2]. This is a necessary precondition

to make the dialog of experts work smoothly and to allow

modifications by the medical practitioner on his own.

A. Fundamentals

An activity answers the question of how a particular

process or algorithm proceeds [11]. Control flows, object

flows, actions, decisions and forks can be used to specify

such an activity [10]. Figure 2 shows the typical routings

which appear in the CPG models of Chronic Myeloid

Leukemia (CML) and Myelodysplastic Syndromes (MDS)

[2]. The black dot represents the start of an activity (initial

node), whereas the double circle corresponds to the end

of an activity (activity final). The rounded rectangles are

the actions that are to be performed, while the arrows

represent the flow. In Subfigure a) the actions are carried

out one after another (sequentially). Subfigure b) depicts a

selective routing. I.e., only one of the two actions A and

B is performed. The corresponding decision is represented

by a diamond (decision node). In this example the decision

depends on a variable x which is either greater 1 or not.

The second diamond is called merge node as it merges both

flows. Subfigure c) shows a case where two actions can be

performed concurrently. The flow is split up by a fork node

(black bar). The join node on the right synchronizes the

flows. As a result, the flow continues only iff both actions

have been performed in any arbitrary order.

B. Modeling of a Particular Disease

Figure 3 depicts the UML activity based on the CPG of

CML. Due to its size, special parts of interest are emphasized

by magnifying glasses. Subfigure a) shows three sequential

actions: “suspicion of CML”, “anamnesis” and “physical

examination”. The first action “suspicion of CML” is a

necessary precondition for the appliance of the diagnosis

algorithm of the CPG for CML. During the second action

“anamnesis” the patient is asked if he experiences bone

pain. We used a so called pin notation to specify that the

value “bone pain” is an output parameter generated by the

action “anamnesis”. The third action “physical examination”

Verdacht auf
CML

Anamnese

Körperliche
Untersuchung

Blutbild

KM Zytologie Zytogenetik

KM Histologie /
Biopsie (Stanze)

CML negativ

Sonst
Prüfung(Myeloproliferative Erkrankung und

 (Nachweis Bcr-abl Transkripte
(mit/ohne Philadelphia Chromosom)))

ist positiv

CML in
Akzelerationsphase

CML in
Chronischer Phase

CML in
Blastenkrise

(15-29% Blastenanteil (Blut oder KM)) oder
(>= 20% Basophile (Blut oder KM)) oder

(Blastenanteil <30% (Blut oder KM) und Anteil der Vorläuferzellen (Blut oder KM)> 30%)

(>=30% Blastenanteil (Blut oder KM)) oder
 (Nachweis extramedullärer Blasten)

Sonst

Knochenschmerzen

Differential-
blutbild

Thrombozyten

Neutrophile

Leukozyten

Basophile

Thrombozyten
Leukozyten
Milzgröße
Hämoglobin

Eosinophile

Molekular-
genetik

Bcr-abl-Transkripte
Philadelphia-
Chromosom

Hämoglobin

Basophile

Basophile KM

Peripherer Blastenanteil
Medullärer Blastenanteil
Anteil der Vorläuferzellen (Blasten + Promyelozyten)
Anteil der Vorläuferzellen (Blasten + Promyelozyten) KM

Neutrophile

Medullärer Blastenanteil

Philadelphia-Chromosom
Bcr-abl-Transkripte

Medullärer Blastenanteil lymphatisch

Medullärer Blastenanteil lymphatisch

Knochenschmerzen

CML prüfen

Peripherer Blastenanteil
Anteil der Vorläuferzellen (Blasten + Promyelozyten)

CML-Phase
berechnen

Peripherer Blastenanteil
Medullärer Blastenanteil
Anteil der Vorläuferzellen (Blasten + Promyelozyten)
Anteil der Vorläuferzellen (Blasten + Promyelozyten) KM
Basophile
Basophile KM

Milzgröße

Anteil der Vorläuferzellen
(Blasten + Promyelozyten) KM

Eosinophile
Basophile KM

Fibrose

suspicion of CML

anamnesis

physical
examination

spleen size

bone pain

a)

b)

c)

verify CML philadelphia c
bcr-abl transc
leukocyte

spleen size

calculate
CML phase

Figure 3. In the background of this figure the UML activity for CML
is shown. Because of the size of the activity, the sketch emphasizes some
parts of interest (magnifying glasses) [2], [5].

yields the output parameter “spleen size”. In general, actions

can have several output or input parameters. Subfigure b)

depicts the action “verify CML”. This action involves an

assessment by the medical expert: He has to decide whether

or not the gathered examination values indicate the presence

of the disease or not. This decision cannot be modeled in

a deterministic way (i.e. not by fixed rules), because the

final decision is up to the medical expert. Subfigure c)

shows another type of decision which can be made on the

basis of a specific rule. This is emphasized by the keyword

“calculate”. By evaluating fixed rules (e.g. thresholds for

particular blood test results), the type of CML that is present

can be derived. The UML activity for the second disease

under consideration, MDS, is about twice the size of the

one shown for CML. Since the basic underlying concepts

are the same, we chose not to show it in this paper.

IV. PETRI NETS

There are a whole range of reasons for considering Petri

nets [12] as a modeling tool for dynamic aspects of a process

[13], [14]. With respect to the modeling of a diagnostic pro-

cess, we opted for Petri nets (and their extensions: Coloured

Petri nets (CPNs) [15]) because of their formal semantics.

This, and the fact that Petri nets are well researched, results

in an abundance of analysis techniques.

Additionally, they are suited for processes (e.g. CPGs)

that are characterized by parallelism and synchronization

[16]. The graphical nature is often brought forward as an

advantage of Petri nets. In our case, the size and complexity

of the resulting Petri nets are not suited for an experts’

dialog, Moreover, the modification of the model by the

734733

p1 p2t1

a) b)

p1 p2t1

Figure 4. The net structure NST of a Petri net is given by its places p,
transitions t and directed edges (arcs).

medical expert himself seems not to be feasible. As a result,

we introduce translation rules, transferring a UML activity

into a CPN.

A. Fundamentals

The net structure [17] of a Petri net is given by the tupel

NST = (P, T, F) , (1)

where P is the set of places and T is the set of transitions

P = {pi : i = 1, ..., |P |} ,
T = {ti : i = 1, ..., |T |} ,

so that

P ∩ T = ∅ .
The flow relation F reflects the connection of places and

transitions (and vice versa):

F ⊆ (P × T) ∪ (T × P) .

Consequently the net structure NST of a Petri net is a di-

rected bipartite graph (see Figure 4). To model the dynamic

behavior of the system, so called “tokens” are introduced

(black dots in Figure 4). The distribution of tokens on the set

of places represents the state of the Petri net. It is also called

marking [17]. An initial marking is given by the mapping:

M0 : P → N .

Ergo, at the beginning each place p contains M0(p) ∈ N
tokens. As an example please refer to Subfigure 4a) where

M0(p1) = 1 and M0(p2) = 0.

A transition that occurs (or: fires) consumes tokens re-

spectively produces tokens in connected places. This results

in new markings (see Subfigure 4b)). To allow a transition

to occur, it has to be enabled. That means M(p) ≥ 1 must

hold for all places p in the pre-set •t of t using

•t = {p ∈ P | (p, t) ∈ F} and t• = {p ∈ P | (t, p) ∈ F} ,
where t• is the post-set of t and (p, t) represents a directed

edge from place p to transition t. In a step of a transition

M
t−→ M ′ (or: M [t〉M ′) for each place p a new marking

M ′ is generated [17]:

M ′(p) =

⎧⎪⎨
⎪⎩
M(p)− 1 if p ∈ •t and p /∈ t•

M(p) + 1 if p ∈ t• and p /∈ •t
M(p) otherwise

.

A CPN is a so called high-level Petri net, since CPNs

provide some extensions in comparison to the elementary

Petri nets described above. For example the tokens can

contain data. For that purpose, every token is assigned with

a value (or: “colour”). Every value is of a specific type

(or: “colour set”). This can be primitive types like Boolean,

Integer or String – it is also possible to use composite types

like Lists to store many thousand records.

Tokens having different colors are distinguishable from

each other. To model this fact, a so called “multiset” (or:

“bag”) is needed. A multiset m over a non-empty set S is

given by the mapping

m : S → N ,

where N ist the set of natural numbers and m(s) specifies

the number of appereances of an element s in the multiset m
[18]. The set of all multisets over S is denoted by SMS . For

example: if S is given by S = {◦, •}, the set of all multisets

is SMS = {∅, {◦}, {•}, {◦, •}, {◦, ◦}, {•, •}, {◦, ◦, •}, ...}.
Thus, a marking M of a CPN assigns every place p

a multiset m ∈ SMM with m = M(p) and therefore

determines the state of the system. The set S defines the

type that has to be specified for each place of the CPN.

In a CPN the flow of tokens can be manipulated by

expressions attached to arcs and transitions. E.g., a transition

can only be enabled if the guard expression evaluates to

true. To specify the syntax of the CPN, it is assumed that

the languagein which types, variables and expressions are

stated comprises the following constructs:

• Type(v): Type of a variable v.

• Type(expr): Type of an expression expr.

• Var(expr): Set of free variables of an expression expr.

A CPN is then given by the following tuple [15], [18]:

CPN = (NST,Σ, V, C,G,E, I) , (2)

where:

• NST is a net structure

• Σ is a finite set of types (or: non-empty colour sets).

• V is a finite set of typed variables such that Type(v)∈ Σ
for all variables v ∈ V .

• C : P → Σ is a colour set function that assigns a type

(or: Colour set) to each place.

• G : T → expr is a guard function that assigns a guard

expression to each transition t such that Type(G(t)) =

Boolean and Var(expr) ⊆ V .

• E : A→ expr is an arc expression function that assigns

an arc expression to each arc a such that Type(E(a))
= C(p)MS , where p is the place connected to the arc

a and Var(expr) ⊆ V .

• I : P → expr is an initialisation function that assigns

an initialisation expression to each place p such that

Type(I(p)) = C(p)MS and Var(expr) �⊆ V .

735734

B. Translation from UML activity to Petri net

Given a UML activity represented as a graph U =
(activitynodes, activityedges). The set of activitynodes can

be further divided into different sets of nodes:

• A: Set of actions,

• S, E : Set of initial node, set of final nodes,

• B: Set of decision- and merge nodes (branch nodes),

• C: Set of fork- and join nodes (concurrency nodes),

• O: Set of object nodes.

The set of object nodes is given by the set of data pins. A

node that is part of one of the node sets S, E ,B, C is called a

control node. Furthermore, the set of activity edges is given

by

• KF : Control flow, i.e. activity edges connecting actions

and control nodes, as well as edges between themselves.

• DF : Object flow, i.e. activity edges connecting actions

and object nodes or between control nodes and object

nodes.

Formally the translation [[U]] of a UML activity U to a

CPN is given by:

[[(activitynodes, activityedges)]] = (NST,Σ, V, C,G,E, I),

where NST is given by:

P = S ∪ { pend } ∪ B (3)

∪ {pe | e ∈ KF , {e.src, e.trg} ⊆ (A ∪ C) }, (4)

T =A ∪ C (5)

∪ {te | e ∈ KF , {e.src, e.trg} ⊆ (B ∪ S ∪ E) } (6)

∪ {te | e ∈ KF , e.src ∈ S, e.trg ∈ A } (7)

∪ {ta | a ∈ A | a.contains(“calculate”) = false,

∃e ∈ DF : {e.src, e.trg} ∩ {a} �= ∅}, (8)

F = {(e.src, xe), (xe, e.trg) | xe ∈ P ∪ T, e ∈ KF } (9)

∪ {(e.src, e.trg) | e ∈ KF , e.trg /∈ E ,
e ⊆ (P × T) ∪ (T × P) } (10)

∪ {(e.src, pend) | e ∈ KF , e.trg ∈ E } (11)

∪ {(te, pend) | e ∈ KF , e.src ∈ S, e.trg ∈ A } (12)

∪ {(ta, pend) | a ∈ A } (13)

∪ {(pe, te.target) | e.target ∈ A }. (14)

According to (3), the initial node S of the UML activity

is transformed into a place of the Petri net. The activities’

final nodes E are not translated to places – instead one single

place pend is added to the net structure. B denotes the set

of branch nodes, i.e. for every decision- and merge node a

place is added to the Petri net.

Furthermore (4), activity edges between two actions of

A, between two concurrency nodes of C or between actions

and concurrency nodes are translated into places as well.

Every place pe is indexed by the corresponding activity edge

e. Indexing is necessary for being able to derive the flow

relation F for the newly added places. Please note that a

directed edge from a source node e.src to a target node e.trg
is given by the edge e = (e.src, e.trg), where {e.src, e.trg}
denotes the set of a source- and a target node.

In (5) all actions and concurrency nodes of the UML

activity are transformed into transitions of the Petri net.

Additionally, in (6) transitions are added for activity edges

between branch nodes, initial node and end nodes. Another

transition is added for an edge from the initial node to the

first action of the UML activity in (7). In our case this

first action is always entitled with “suspicion of . . . ”. This

transition is needed to bypass/redirect tokens to pend iff a

diagnosis has been already set. In (8) further transitions are

added for actions holding an input- or output pin, i.e. for

actions that are the target or the source of an object flow.

This procedure is only performed for actions not containing

“calculate” in their name. That is because these actions rep-

resent a deterministic decision that can be implemented by

the evaluation of a specific rule. All newly added transitions

are indexed to allow the specification of the flow relation F .

For newly added nodes xe ∈ P∪T (i.e. places or transitions),

the flow relation F can be derived (9) by the corresponding

index e: there is an edge (e.source, xe) having node xe as

target and there is another edge (xe, x.target) having node

xe as source. The second part of the flow relation (10-11)

defines edges between places and transitions that are directly

translated/derived from a UML activity node. Activity edges

leading to pend have to be considered separately (11). That

is because the resulting Petri net structure has only a single

end node pend – consequently all former edges leading to

E are transformed by bending them to pend. In the third

part of the flow relation (12-14) the edges for the newly

added transitions and places are defined. The transition from

(7) and all transitions ta are connected with pend (12,13).

Finally (14) adds edges between newly added places pe and

transitions.

The Σ-Algebra of the CPN (2) determines all operations,

functions and types that are used in the net:

Σ ={ STRING,

PATIENT = h(o1)× · · · × h(oi)× d1 × · · · × dn

{fte : (patient:PATIENT) −→ (advice:STRING) |
te ∈ T, e ∈ KF , e.target = pend}}

where

oi ∈ O, h(oi) =

{
INT, if oi.value ∈ {0, 1}
REAL, if oi.value ∈ R≥0

and

dn ∈ {−1, 0, 1} for n = 1 ... |E|.

In our case Σ comprises the predefined type STRING, and

another type called PATIENT. This type is defined by the

Cartesian product of h(oi) and the values {d1, · · · , dn}.

736735

G(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fAND ((oi ≥ 0), · · · , (oj ≥ 0)) , if t ∈ A with

{oi, · · · , oj} ∈ O, {(oi, t), · · · , (oj , t)} ∈ DF ,
fAND ((oi ≥ 0), · · · , (oj ≥ 0)) = false, if t = ta with a ∈ A,

{oi, · · · , oj} ∈ O, {(oi, a), · · · , (oj , a)} ∈ DF ,
fOR ((di = 1), · · · , (dn = 1)) , if t = te : e = (e1, e2) ∈ KF , e1 ∈ S, e2 ∈ A,
fOR ((di = 1), · · · , (dn = 1)) = false, if t ∈ A with ∃(s, a) ∈ KF , s ∈ S,
e.guard, if t = te : e = (e1, e2) ∈ KF , e1 ∈ B,

� (v, e1) with v ∈ A ∪ B ∪ S, v.contains(“verify”)

(15)

The function h(oi) maps object nodes oi to the types INT

or REAL. The values {d1, · · · , dn} are added for each

diagnosis di (i.e. a UML action that is directly linked with a

final node ∈ E). The value −1 indicates that a diagnosis has

not yet been set, whereas the values 0 and 1 are representing

a negative or positive result.

The function fte (which is assigned to a specific transition

te) maps a variable of the type PATIENT on a variable of

type STRING. If a transition te occurs, an advice for the

medical expert of type STRING is being generated.

V = { patient:PATIENT, advice:STRING } (16)

C(p) =

{
STRING, if p = pend

PATIENT, otherwise
(17)

V is a finite set of typed variables (2). We used a variable

patient of type PATIENT and a variable advice of type

STRING (16). The function C(p) assigns a type (i.e. colour

set) to each place p of the CPN (2). In our model, all places

are of type PATIENT except for pend, which is of type

STRING (17).

The guard function G(t) assigns a guard to each transition

t ∈ T . The guard is an expression which can evaluate to true
or false. In the latter case the transition can not be enabled

and therefore is not able to occur.

If a transition has been directly generated from a UML

action (i.e. t ∈ A), the guard function assigns the guard

expression fAND ((oi ≥ 0), · · · , (oj ≥ 0)) (15). Where fAND

uses the Boolean expression AND to combine the arguments

of the function: (oi ≥ 0), · · · , (oj ≥ 0). The set {oi, ... , oj}
represents those object nodes, that are connected to the

corresponding action. That is, there is a directed edge from

object node oi to action t: (oi, t). Or in other words: only if

all values of an examination have been set, the corresponding

transition can be enabled and therefore can occur.

E(f) =

{
1’advice, if f.target = pend

1’patient, otherwise
(18)

I(p) =

{
1’patient, if p ∈ S
emptymultiset, otherwise

(19)

E(f) assigns an expression to all edges f ∈ F (18). If the

target of the edge is pend (which is of type STRING), the

resulting type of the assigned expression must evaluate to

STRING, too. In all other cases, a patient is bound to a value

of type PATIENT. I(p) assigns an initialization expression

to all places p ∈ P and therefore specifies the initial marking

of the CPN (19). The place p that corresponds to the UML

initial node contains one token, whereas all other places are

empty (i.e. they are assigned to an empty multiset).

V. VERIFICATION AND VALIDATION

To validate the Petri net model based on the CPG of

CML, we used a patient record from our former work

[2]. Some examination values were removed, namely “neu-

trophilic leukocytes” (originated from differential blood

count), “philadelphia chromosome” (originated from cyto

genetics) and bcr-abl (originated from molecular genetics).

The token containing the modified patient record is put

on the start place of the CPN. Because the diagnosis is

not set and all examination values of “anamnesis” (case

history), “physical examination” and “complete blood count

(CBC) without differential” are present within the token –

the corresponding transitions can occur. The token arrives

at the pre-set of the transitions “differential blood count”

and “suggest differential blood count” (see Subfigure 5a)).

Because the examination value “neutrophilic leukocytes”

is missing, the guard expression for “differential blood

count” evaluates to false and therefore this transition is not

enabled. The transition “suggest differential blood count”

is enabled since the guard expression evaluates to true.

By firing this transition a new token of type STRING is

generated at the final place of the CPN (see Subfigure 5b)).

The token contains the recommendation which examination

value to take next to complete the patient details according

to the guideline model.

If a differential blood count has been performed, the

patient details and the corresponding token are updated. To

generate a new recommendation, the token is put on the start

place again. Because the value of “neutrophilic leukocytes”

is set, the corresponding transitions can occur.

Now, tokens appear in the pre-set of the transitions “bone

marrow (BM) cytology”, “suggest molecular genetics” and

737736

Figure 5. Resulting CPN after applying translations rules to the UML
activity in Figure 3. Subfigures (a-c) depict the flow of tokens for a patient
with fragmentary examination values.

“suggest cyto genetics”, all of which can occur. By firing,

two advices are generated, i.e. two tokens of type STRING

are created in the final place of the CPN (see Subfigure 5c)).

VI. CONCLUSION

In this paper we introduced a framework to facilitate the

implementation of diagnostic processes (the processes are

given by CPGs). UML activities are used as an interface for

the models that provide the actual assistance functions.

The assistance function provided by a Petri net guides the

medical practitioner through the whole diagnostic process. In

case of fragmentary patient details, it is able to recommend

suitable examination values needed to complete the assess-

ment suggested by the CPG. In the near future, our approach

will be integrated in a real world diagnostic application

that helps to overcome barriers in CPG implementation and

reduces the gap between theoretical medical knowledge and

practical solutions.

REFERENCES

[1] National Center for Biotechnology Information, U.S.
National Library of Medicine, “Pubmed,” September
2015, Accessed: 2015/09/16. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed

[2] P. Philipp, Y. Fischer, D. Hempel, and J. Beyerer, “Modeling
of clinical practice guidelines for interactive assistance in
diagnostic processes,” in WorldComp 2015, World Congress
in Computer Science, Computer Engineering, and Applied
Computing : HIMS 2015, International Conference on Health
Informatics and Medical Systems, july 27-30, Las Vegas,
Nevada, USA, 2015, pp. 3–9.

[3] E. Steinberg, S. Greenfield, M. Mancher, et al., Clinical
Practice Guidelines We Can Trust. National Academies
Press, 2011.

[4] E. Field and K. Lohr, Guidelines for Clinical Practice: From
Development to Use. National Academies Press, 1992.

[5] P. Philipp, Y. Fischer, D. Hempel, and J. Beyerer, “Framework
for an interactive assistance in diagnostic processes based
on probabilistic modeling of clinical practice guidelines,” in
Emerging Trends in Computational Biology, Bioinformatics,
and Systems Biology (In Press). Elsevier, 2016.

[6] H. Kirchner, M. Fiene, and G. Ollenschläger, “Bewertung und
Implementierung von Leitlinien,” Die Rehabilitation, vol. 42,
no. 2, pp. 74–82, 2003.

[7] H. Störrle, “Semantics of control-flow in UML 2.0 activities,”
in Visual Languages and Human Centric Computing, 2004
IEEE Symposium on, 2004, pp. 235–242.

[8] H. Störrle and J. Hausmann, “semantics of uml 2.0 activities,”
in Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing, 2004.

[9] H. Störrle, “Semantics and verification of data flow in UML
2.0 activities,” Electronic Notes in Theoretical Computer
Science, vol. 127, no. 4, pp. 35–52, 2005.

[10] OMG, “OMG Unified Modeling Lan-
guage(OMG UML) Superstructure Version 2.4.1,”
2011, Accessed: 2014/08/28. [Online]. Available:
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

[11] C. Rupp, S. Queins, et al., UML 2 glasklar. Mnchen: Carl
Hanser Verlag GmbH Co KG, 2012.

[12] C. A. Petri, “Kommunikation mit Automaten,” Ph.D. disser-
tation, Universität Bonn, 1962.

[13] W. van der Aalst, “Three good reasons for using a Petri-
net-based workflow management system,” in Proceedings of
the International Working Conference on Information and
Process Integration in Enterprises, 1996, pp. 179–201.

[14] W. van der Aalst, “The application of Petri nets to workflow
management,” Journal of circuits, systems, and computers,
vol. 8, no. 01, pp. 21–66, 1998.

[15] K. Jensen, “Coloured Petri nets and the invariant-method,”
Theoretical computer science, vol. 14, pp. 317–336, 1981.

[16] F. DiCesare, G. Harhalakis, J.-M. Proth, M. Silva, and F. Ver-
nadat, Practice of Petri nets in manufacturing. Springer,
1993.

[17] W. Reisig, Understanding Petri Nets. Springer, 2013.
[18] K. Jensen and L. M. Kristensen, Coloured Petri Nets. Dor-

drecht: Springer, 2009.

738737

