
Accelerating the Development of Health and Social
Services Systems Through Model-Driven Engineering

Two Case Studies

Ismaïl Khriss
Université du Québec à Rimouski

300, allée des Ursulines
Rimouski (Québec) G5L 3A1, Canada

1 (418) 723-1986 ext. 1455
ismail_khriss@uqar.ca

André McKibben
CISSS de la Gaspésie - PETRAAS

124 B, route 132 Ouest
Percé (Québec) G0C 2L0, Canada

1 (418) 782-2270 ext. 50343
andre.mckibben.chchandler@ssss.gouv.qc.ca

Abstract— The Integrated Center for Health and Social
Services in Gaspesia, Québec (CIHSSG) needed new software
systems in order to better serve its customers and offer new
services. However, as a small organization, resources, both
human and financial, are limited. This is why CIHSSG mandated
us to come up with a solution that enables the development and
acquisition of software systems with the lowest possible cost. We
proposed the development of the new systems through the
adoption of a model-driven engineering approach (MDE). In this
paper, we present the case studies, our MDE approach and the
results which show how our approach has accelerated the
development of the new systems while reducing the cost of their
development and maintenance.

Keywords—model-driven engineering, model-driven
architecture, enterprise patterns, design patterns, software
framework, multi-layered architecture.

Type of the submission: Full/Regular Research Papers

Acronym of the symposium: CSCI-ISHI

I. INTRODUCTION
Organizations rely heavily on software systems to increase

productivity of their employees and streamline their business
processes. The Integrated Center for Health and Social
Services in Gaspesia, Québec (free translation, CIHSSG in
short), a regional Ministry of Health agency, does not come out
of this reality. In order to better serve its customers and offer
new services, CIHSSG needed new software systems.
However, as a small organization, human and financial
resources are limited. This is why CIHSSG mandated us to
come up with a solution that enables the development and
acquisition of software systems with the lowest possible cost.
We proposed the development of the new systems through the
adoption of a model driven engineering approach (MDE). The
latter refers to the systematic use of models as primary
engineering artifacts throughout the engineering lifecycle [1].
The Model-Driven Architecture (MDA) [2], an initiative
proposed by the Object Management Group (OMG), is an
example of MDE. As MDE, MDA is an approach of
development where the principal elements are the models
representing the various aspects of the software system at
various levels of abstraction. The development process is based
on successive models transformations resulting in the source

code [2]. MDA distinguishes between two important levels of
abstraction models: the platform independent model (PIM) and
the platform specific model (PSM). The PIM describes the
system independently of a platform of implementation. The
PSM represents the elements of a PIM in a point of view,
specific to an implementation platform. The interesting aspect
of the MDA initiative is that the PSM can be obtained by a
model to model (M2M) transformation of the PIM. This kind
of transformation requires that the knowledge of the
implementation platform is captured in a model called a
platform description model (PDM). The source code of a
system is easily obtained by a model to text (M2T)
transformation of the PSM. Another case could be to obtain the
source code directly from the PIM after application of a PDM
through a M2T transformation. In this case, the PSM is
obtained from the source code through a text to model (T2M)
transformation.

Two new systems were developed through the adoption of
an MDE approach. The two systems belong to two social
service programs, both very different from the other. These
programs are under the authority of CIHSSG. It may be
relevant to say that, nevertheless the differences between the
programs; they are managed by the same person, the co-author
of the current paper, an employee of CIHSSG.

This paper is organized as follows. Section 2 presents the
case studies (the two new systems). Section 3 gives an
overview of our MDE approach. Section 4 presents some
results that show our approach has accelerated the development
of the new systems, while reducing the cost of their
development and maintenance. Section 5 discusses some
related works. Finally, section 6 provides some concluding
remarks.

II. THE CASE STUDIES
In this section, we present the two social programs where

originated the two new systems.

A. The Assessment, Treatment and Research Program For
Authors of Sex Agresssion (ATRPASA)
The first program is a national program where persons

convicted to sentences lower than two years for sexual crimes

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.25

727

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.25

726

are sent for assessment and treatment of their behavior.
Delivering a program in such a format had never been done
before. This is a short (26 weeks) but intensive and highly
specialized program offered to persons coming from the 15
different correctional facilities in the province of Québec to
participate in the program. Gathering data on offender like
crime or victims' characteristics, attainment of treatment goals
to be eventually associated with recidivism or non-recidivism,
is an important goal of this program designed for this very
heterogeneous population.

Issues of rapid screening in the correctional facilities of
persons motivated for treatment, transferring them, validating
the motivation at the arrival to the program and, on that basis,
running assessment and treatment for a very short period of
time while measuring the attainment of treatment goals are
extremely important. Issues of making these data and
information on this process available to the Ministry of Health
and Correctional Services (under the authority of the Public
Safety Ministry) are also significant.

The first participants arrived for the program on the 17th
day of May 2009. The general characteristics and needs of the
population had been identified and helped to define the process
through which the participants would pass. Five phases were
identified. For each phase, specific aspects of functioning of
participants had been formalized on scales and screen tests to
support the decisions to be made (refusal, admission or
interruption of the participation) at each specific phase to
ensure that the treatment would be offered and completed by
participants who would collaborate correctly and attain the
treatment goals. The actors involved in each phase (treatment
operators, treatment director, correctional authorities,
participant), the documents necessary to gather and transmit
information between actors and, finally, the moments and the
lines of communication had been built and were available.

B. General Psycho-Social Services program (GPSS)
The second program is a classic social services program

based in the community, named General Psycho-Social
Services (GPSS). Members of the community are free to come
to receive help, support or counseling in order to address
different personal, familial or social problems such as mood
disorder resulting of the death of a close relationship, discipline
problems with a child, anxiety associated to unemployment.

The main problem was that the methods used in the
program to achieve the tasks and theoretical goals of this kind
of programs can be qualified of highly-unstandardized
methods. Professionals of different social sciences disciplines,
of different ages, sex and experience, meet members of the
community coming with various problems. The clinical data
are commonly written on pen-and-paper notes from a narrative
method. No prioritization is defined and no agreement is made
about the relative value and the extent of information. The
professionals, according to their subjectivity, consign data, not
always relevant, presented without any prioritization.
Significant amounts of data randomly constituted, highly
subjective and “impressionist”, are introduced into the clinical
files.

The planning of the interventions is then compromised and
run through the same process. The problem itself of the
person, the risk and protection factors, the goals of the
intervention, the means available to the person and the
strategies used by the professional to support the attainment of
the goals are not standardized. The objective measurement of
the person’s evolution on any aspect of his functioning is thus
corrupted.

These numerous and deep bias lead to « errors » from a
methodological standpoint, fragmentation on a clinical level
and failures of the organizations to achieve their tasks. In
reality, numerous notes are absent from the files or unreadable.
Intervention plans are often « copy-paste versions » of anterior
plans or irrelevant.

For these reasons, it has been decided to formalize on a
continuum, ranging in levels from 1 to 5, four specific axis of
functioning of the persons coming to the program.

It is important to specify that, before the implementation of
the system, inter-judges agreement had been verified. It has
been demonstrated that, using these scales, the professionals
had a statistically significant tendency to score the axis equally.

It became reasonable to believe that « priority clinical
constructs » were measured or, in other words, that what is to
be changed to improve the situation by making the risk factors
lower and improving the protection factors, enabling the person
to move from an initial to a superior level, was formalized
through objective indicators.

On this basis, consensuses have been established among
professionals. Objectives, means available to the person,
strategies to be used by the professionals to support positive
changes have been specified and computerized. The system
generates, from the score attributed by a professional to a
person on one axis or another, a list of these objectives, means
and strategies that are, by definition, less subjective and more
consensual. This list is the intervention plan, presented on a
formulary, to be signed by the person, according to the Law on
Health and Social Services.

In summary, the measurement of the « clinical constructs »
is more reliable and can be repeated on each axis to verify the
evolution of individuals’ clinical situations and, by extension,
the efficiency of the intervention plan. Fields open to research
are numerous and the communication of clinical data is made
easier. The system is also a useful instrument of training for
new employees and supports the development of common
language and work methods.

III. OUR MODEL-DRIVEN ENGINEERING APPROACH
A new system, called ePetraas, was developed to support

the first program. Another new system, called SRADC, was
implemented for the second program. We have adopted MDA,
an MDE approach, for the development of the two new
systems. Recall that MDA distinguishes between two
important levels of abstraction models: the platform
independent model (PIM) and the platform specific model
(PSM). The PIM describes the system independently of a
platform of implementation. The PSM represents the elements

728727

of a PIM in a point of view, specific to an implementation
platform. The PSM is easily obtained from the source code
through a T2M transformation. Several UML (Unified
Modeling Language [3]) modeling tools can perform this kind
of transformations. The source code is obtained from the PIM
through a M2T transformation. This kind of transformation
requires that the knowledge of the implementation platform is
captured in a model called a platform description model
(PDM).

We have also decided to use the same implementation
platform for the new systems. Figure 1 shows our MDE
approach for the construction of the new systems.

 In the rest of this section, we describe the components of
our approach.

A. The platform independent models
Figure 2 shows an excerpt of the PIM of the system

ePetraas. The PIM is captured in a UML class diagram and
shows some aspects related to data reported by the infirmary. A
participant has a medical card, which is regularly updated.
Periodically, a staff member � a nurse � takes the vital signs of
the participant. In case of hospitalization, a nurse fills out a
hospitalization form that will contain some important
information of the participant before and after hospitalization.
When a participant leaves the prison of Percé for another
prison, a medical transfer sheet is filled with relevant
information on participant health.

Figure 3 shows an excerpt of the PIM of the system
SRADC described in a UML class diagram. On a given date, a
customer is assigned to a service program. A member of the
therapeutic staff will play the intervening pivot of the
customer. Several members of the therapeutic staff may be
involved during treatments of the customer. A staff member
may supervise other staff members.

Fig. 1. Our MDE approach

Fig. 2. Excerpt of the PIM of the ePetraas system (operations are not shown)

PIMePetraas PIMSRADC

PDMour impl. platform

PSMePetraas PSMSRADC

SourceCodeSRADC SourceCodeePetraa

M2T M2T

T2M T2M

729728

Fig. 3. Excerpt of the PIM of the SRADC system (perations are not shown)

B. The platform description model
We developed an in-house software framework to be our

implementation platform for the two new systems. This
framework uses a multilayered architecture: presentation,
domain logic and data access.

The presentation layer is responsible for the delivery and
formatting of information to the user. The domain logic
captures the real-world business rules that determine how data
can be created, displayed, stored, and updated. The data access
layer (DAL) simplifies the access to data stored in databases.
The layers have been implemented by using a set of enterprise
patterns. Recall that an enterprise pattern is a design pattern
which gives a reusable solution to a commonly occurring
problem within a given context in the development of
enterprise systems [4]. Examples of enterprise patterns are
Front Controller and Data Mapper. The Front Controller
pattern provides a centralized entry point for handling requests
of users in web applications [4]. The Data Mapper pattern is a
layer of correspondence that moves data between the database
and the objects in the domain logic layer while keeping them
independent of each other [4].

Our in-house framework was described in a platform
description model. The latter consists of a set of XSLT
templates which performs the M2T transformation from a
system’s PIM to its source code. Recall that XSLT (Extensible
Stylesheet Language Transformations) is a language for
transforming XML documents into other XML documents, or
other formats such as HTML or plain text [5]. Each XSLT
template captures a design concern in our framework. For
instance, an XSLT template generates classes for the domain
logic layers while other templates generate classes for the DAL
by implementing the Data Mapper pattern. The use of XSLT as
a language for transformations is possible since an UML model
(such our PIMs and PSMs) can be captured in a XML format
using the standard language XMI (XML Model Interchange
[6]).

C. The platform specific models
Figure 4 shows an excerpt of the PSM of the system

ePetraas captured in a UML class diagram. This excerpt shows
the application of the Data Mapper enterprise pattern in our

implementation platform. All domain logic classes inherit from
a new class called DomainObject. This new class is the result
of the use of the design pattern Identity Field. The ID attribute
is used to maintain identity between an in-memory object and a
database row [4]. Another pattern called Foreign Key Mapping
is used to implement associations between domain logic
classes.

The application of the Data Mapper results also in two
kinds of new components: a set of interfaces and a set of
classes (their names have the key word Mapper as a suffix).
The interfaces give the abstract operations needed when
accessing to a database. Those operations are implemented in
the mapper classes. Their code is dependent to a certain
technology. That is why those classes are in a package called
MSSQL (for Microsoft SQL Server). The mapper classes have
access to a façade class called Database. This class has a
generic code to perform any SQL CRUD (Create, Read,
Update and Delete) request.

Finally, note the presence of DALFactory and
MSSQLDataFactory classes. These classes are the result of the
application of the Abstract Factory design pattern [7].

Figure 5 shows a small excerpt of the PSM of the system
SRADC expressed in a UML class diagram. This excerpt shows
the application of the Front Controller enterprise pattern in our
implementation platform. This pattern uses the Command
design pattern [7]. The handler receives the HTTP Post or Get
request from the Web server and retrieves relevant parameters
from the request. The handler uses the parameters from the
request to choose the correct command and then it transfers the
control to the command for processing [4].

IV. THE RESULTS
The implementation platform uses the following

technologies:

• C#, ASP.Net and JavaScript as programming
languages.

• The database server is Microsoft SQL Server.

The size of the system ePetraas is 38851 lines of code
(LOC) captured in 680 classes (see Table I). 19169 LOC

730729

(respectively, 603 classes) were automatically generated which
yield to 49.33% (respectively, 88.67%) of the total of the
system.

The size of the system SRADC is 10231 lines of code
(LOC) captured in 231 classes (see Table I). 5205 LOC

(respectively, 197 classes) were automatically generated which
yield to 50.87% (respectively, 85.28%) of the total of the
system.

Fig. 4. Excerpt of the PSM of the ePetraas system (operations are not shown)

Fig. 5. Excerpt of the PSM of the SRADC system

731730

TABLE I. SOME STATISTICS

 # of lines
of code

(LOC)

of classes # of generated
lines of code

(LOC)

% of
generated code

(%)

of generated
classes

% of
generated

classes

(%)

ePetraas 38851 680 19169 49,33 603 88,67

SRADC 10231 231 5205 50,87 197 85,28

As we can observe, the classes automatically generated
have in most cases a small size compared to those written
manually. These are web form classes and therefore contain
more code. Note that our results can be better if we chose to
generate regular Web form classes. Only forms that have a
complex user interface requires manual labor. By adopting
MDE, CIHSSG has significantly reduced the cost for the
development of these new systems. This economy is not only
due to the degree of automatic source code generation, but
also to the fact that the developed systems require very little
maintenance effort. Our experience with the ePetraas system,
in operation since early 2012, except for the first few weeks
in the run-in period of the system, almost no intervention was
required since then. The SRADC system, meanwhile, has
been in operation since late 2013, has more required the
implementation of new features than fixing existing bugs.

V. RELATED WORK
Despite the fact that MDE has an excellent reputation in

the software engineering community, especially in academia,
its acceptance and use in industry is very limited. Different
studies have reported experiences of using MDE among both
large companies (such as in Baker et al. [8], Staron [9] and in
Hutchinson [10]) than in small and medium enterprises (such
as in Cuadrado et al. [11], Kapteijns et al. [12] and in Clark
and Muller [13]). Very few success stories have been
reported. As stated in [14], studies have shown that the MDE
adoption is facing “problems are as much to do with social
and organizational factors as with tooling issues”. The
tooling issues are particularly the high cost of MDE
commercial products, the need of learning a new language in
order to develop the transformations and the cost of building
the transformations. Reusing those transformations in more
than one project is often required in order to have a return of
investment.

In our experience, we have not faced the same problems
as we have used the same implementation platform in the
two case studies. We also chose XSLT as the language for
building the transformations. Several free tools supporting
the language are available. Learning a new language is not
needed as XSLT is commonly used.

VI. CONCLUSION
In this paper, we presented two case studies reporting the

adoption of a MDE approach in the development of two new

systems. For each system, we presented its business
requirements, an excerpt of its platform independent and
platform specific models. A common implementation
platform was used in both systems. Its model was also
presented. Finally, we discussed the results obtained and
showed how our approach has accelerated the development
of the new systems, while reducing the cost of their
development and maintenance.

REFERENCES
[1] D. C. Schmidt, "Guest Editor's Introduction: Model-Driven

Engineering," Computer, vol. 39, p. 25, 2006.
[2] J. Miller and J. Mukerji, "MDA Guide Version 1.0.1," Object

Management Group omg/2003-06-01, 2003.
[3] OMG, "Unifed Modeling Lanugage (UML) Specification :

Infrastructure, Version 2.0," December 2003 2003.
[4] M. Fowler, Patterns of Enterprise Application Architecture:

Addison-Wesley Longman Publishing Co., Inc., 2002.
[5] M. H. Kay, XSLT 2.0 Programmer's Reference: Wrox; 3rd edition,

2004.
[6] OMG, "XML Metadata Interchange (XMI), v2.1," 2005.
[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software: Addison-Wesley
Longman Publishing Co., Inc., 1995.

[8] P. Baker, S. Loh, and F. Weil, "Model-Driven Engineering in a
Large Industrial Context — Motorola Case Study," ed, 2005, pp.
476-491.

[9] M. Staron, "Adopting Model Driven Software Development in
Industry – A Case Study at Two Companies," in Model Driven
Engineering Languages and Systems. vol. 4199, O. Nierstrasz, J.
Whittle, D. Harel, and G. Reggio, Eds., ed: Springer Berlin
Heidelberg, 2006, pp. 57-72.

[10] J. Hutchinson, J. Whittle, and M. Rouncefield, "Model-driven
engineering practices in industry: Social, organizational and
managerial factors that lead to success or failure," Science of
Computer Programming, vol. 89, Part B, pp. 144-161, 9/1/ 2014.

[11] J. S. Cuadrado, J. L. C. Izquierdo, and J. G. Molina, "Applying
model-driven engineering in small software enterprises," Science of
Computer Programming, vol. 89, pp. 176-198, 2014.

[12] T. Kapteijns, S. Jansen, S. Brinkkemper, H. Houët, and R. Barendse,
"A comparative case study of model driven development vs
traditional development: The tortoise or the hare," From code centric
to model centric software engineering: Practices, Implications and
ROI, vol. 22, 2009.

[13] T. Clark and P.-A. Muller, "Exploiting model driven technology: a
tale of two startups," Software & Systems Modeling, vol. 11, pp. 481-
493, 2012/10/01 2012.

[14] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal,
"Industrial Adoption of Model-Driven Engineering: Are the Tools
Really the Problem?," in Model-Driven Engineering Languages and
Systems. vol. 8107, A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and
P. Clarke, Eds., ed: Springer Berlin Heidelberg, 2013, pp. 1-17.

732731

