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Abstract—The balanced Boolean functions satisfying the
strict avalanche criterion (SAC) are widely used in stream
cipher and block cipher. By introducing the representation
matrix of the transition function of Boolean function, we
provide a special method for seeking the Boolean functions
satisfying the SAC. Moreover, the strong strict avalanche
criterion (SSAC) of balanced Boolean function is defined and
the general formula of the number of the Boolean functions
satisfying SSAC is obtained.
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I. INTRODUCTION

With the development of computer technique and internet,

the block cipher is becoming one of the main methods to

guarantee the information security. As one of the cores of

cryptography, S-box is an important technique for block

cipher and has been widely used in some famous block cryp-

tographic systems, such as data encryption standard (DES)

and advanced encryption standard (AES). Basically, an S-

box is a collection of Boolean functions with some criterions

of cryptographic significance, which are balancedness, strict

avalanche criterion (SAC), and other properties.

The SAC is an important property of the Boolean function

in the cryptographic systems. Firstly, Webster and Tavares

introduced the SAC in the design criteria for cryptographic

functions [1]. Then, Feistel, Kam and Davida combined

two earlier criteria for cryptographic applications [2], [3].

Forre extended the SAC by defining higher-order SAC [4].

Lloyed showed the characterizing and counting functions

satisfying a higher order SAC [5], [6], [7]. O’Connor gave

an upper bound for the number of functions satisfying the

SAC [8], [9]. Thereafter, Cusick gave a lower bound for

the number of functions satisfying the SAC and provided an

improvement of lower bound [10]. Furthermore, Youssef and

Tavares presented a detailed proof for Cusick’s conjecture

and modified the lower bound [11], [12], [13], [14]. Gupta

and Sarkar considered the problem of constructing perfect

nonlinear multiple-output Boolean functions satisfying high-

er order strict avalanche criteria(SAC)[15]. Tang, Zhang and

other people gave a method to construct balanced Boolean

functions with high nonlinearity and good autocorrelation

properties[16]. Zhang, Jiang and Tang proposed a method to

construct the highly nonlinear resilient Boolean functions on

n variables( n is even) satisfying strict avalanche criterion

[17]. Indeed, it is meaningful to count the balanced Boolean

functions satisfying the SAC when the number of the input

variables increases.

In this paper, we proposed some representation matrices of

the transition function of Boolean function, which are used

to get the Boolean functions satisfying the SAC. Moreover,

the strong strict avalanche criterion (SSAC) of balanced

Boolean function is defined and the general formula of

the number of Boolean functions satisfying SSAC is also

obtained.

The rest of the paper is organized as follows. Section II

introduces the representation matrices for the bit transforma-

tion of Boolean function. Section III gives some conditions

which offer a standard for us to judge if a balanced Boolean

function satisfies the SAC, and discusses the expansion

of this kind of functions. In section IV, the number of

balanced Boolean functions satisfying SSAC is studied.

Finally, Section V gives the conclusion.

II. REPRESENTATION OF TRANSITION FUNCTION

An n-bit (or n-dimension) Boolean function is a map f :
{0, 1}n → {0, 1}, y = f(x), where x = (x1, x2, · · · , xn) ∈
Zn
2 = {0, 1}n and y ∈ Z2 = {0, 1}. Let k =

∑n
i=1 xi ·2n−i,

then k is the decimal code of x, x is named the input window

of the function. There are 2n different input windows,

denoted by x(k) (k = 0, 1, · · · , 2n − 1). Thus, the map f
can be rewritten as f(x(k)) = yk+1 (k = 0, 1, · · · , 2n − 1).
Obviously, such a map can generate an output symbol

tape (y1, y2, · · · , y2n) consisting of symbols “0” and “1”.

Conversely, a symbol tape (y1, y2, · · · , y2n) completely de-

termines a Boolean function. Hence, there exist a total of

22
n

n-bit Boolean functions. Let y = (y1, y2, · · · , y2n)T ,
named the output vector of y = f(x), the decimal code of

y is defined as N =
∑2n

i=1 yi · 2i−1.
In the following, the symbol tape y will be considered to

be equivalent to the Boolean function y = f(x), W (x) and

W (f(x)) (or W (y)) denote the Hamming weight of x and

y respectively. Several commonly used definitions are:

Definition 1: An n-bit Boolean function y = f(x) is said

to satisfy balancedness if

W (f(x)) =
2n−1∑
k=0

f(x(k)) =
2n∑
k=1

yk = 2n−1. (1)
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Definition 2: An n-bit Boolean function y = f(x) (n ≥
3) is said to satisfy the strict avalanche criterion (SAC) if

complementing a single input bit results in changing the

output bit with probability exactly one half, i.e.,

W (f(x⊕ e)⊕ f(x)) =
2n−1∑
k=0

[f(x(k) ⊕ e)⊕ f(x(k))]

= 2n−1 (2)

where e ∈ Zn
2 with W (e) = 1 and “⊕ ” denotes the XOR

operation.

For a given Boolean function y = f(x), complement-

ing a single input bit means the input x is changed to

x⊕ e (W (e) = 1), at the same time, y = f(x) is converted

to y = f(x⊕ e). Thus, a new definition can be got:

Definition 3: Let ei = (0, · · · , 0, 1,
i−1︷ ︸︸ ︷

0, · · · , 0) (i =
1, 2, · · · , n), then y = f(x ⊕ ei) is called the i-th bit

transition function of y = f(x).
Obviously, if y = f(x) is balanced, so is y = f(x⊕ ei),

and if y = f(x) satisfies the SAC, so does y = f(x⊕ei) i =
(1, 2, · · · , n).

Theorem 1: For Boolean function y = f(x) with output

vector y, the relationship between y and ỹi, the output

vectors of the i-th bit transition function y = f(x⊕ei) (i =
1, 2, · · · , n), is

ỹi = Aiy, i = 1, 2, · · · , n, (3)

where

Ai =

⎛
⎜⎜⎜⎜⎝

Bi 0 · · · 0 0
0 Bi · · · 0 0
...

...
. . .

...
...

0 0 · · · Bi 0
0 0 · · · 0 Bi

⎞
⎟⎟⎟⎟⎠

2n×2n

(4)

and

Bi =

(
0 Ci

Ci 0

)
2i×2i

(5)

as well as

Ci =

⎛
⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

⎞
⎟⎟⎟⎠

2i−1×2i−1

(6)

The proof of this theorem can be directly obtained from

the expressions of y = f(x) and y = f(x ⊕ ei), (i =
1, 2, · · · , n), the details are omitted here. Clearly, every

matrix Ai is symmetric.

Thus, for a given Boolean function y = f(x) with output

y, There must be another n Boolean functions with outputs

ỹi, i = (1, 2, · · · , n), which will be generated by the

theorem. Furthermore, the condition in (2) is transformed

into

W (y ⊕Aiy) = 2n−1, i = (1, 2, · · · , n). (7)

In addition, 2n Boolean functions will be obtained

via these Ai( i = 1, 2, · · · , n). In fact, for a given

output vector y of a Boolean function (or directly

called y as a Boolean function), we have A1y
by A1, thus (y, A1y) are two Boolean functions.

Then based on these two Boolean functions, we have

(A2y, A2A1y) by A2, thus (y, A1y, A2y, A2A1y) are

four Boolean functions. By A3, gets eight Boolean functions

(y, A1y, A2y, A2A1y, A3y, A3A1y, A3A2y, A3A2A1y).
In a similar way, we finally get 2n Boolean functions

(y, A1y, A2y, A2A1y, · · · , Any, AnA1y, · · · , AnAn−1 · · ·
A2A1y). Enumerating them

(y(1),y(2), · · · ,y(2n)) = (y, A1y, A2y, A2A1y, · · · ,
· · · , Any, AnA1y, · · · , AnAn−1 · · ·A2A1y). (8)

Obviously, for y and ỹi in Theorem 1, it’s easy to got y =
y(1) and ỹi = y(2i−1+1) (i = 1, 2, · · · , n).

An interesting fact is that the 2n × 2n order matrix

consisted of y(i) (i = 1, 2, · · · , 2n) is a symmetric matrix.

Corollary 1: If a Boolean function is balanced, there

would exist 2n ones which are also balanced, and if a

Boolean function satisfies the SAC, then there exist 2n ones

which also satisfy the SAC.

For example, when n = 3, then Ai, i = 1, 2, 3, are

respectively:

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

If y = (y1, y2, y3, y4, y5, y6, y7, y8)
T is a balanced Boolean

function satisfying the SAC, then
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(y(1),y(2), · · · ,y(8))

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 y2 y3 y4 y5 y6 y7 y8
y2 y1 y4 y3 y6 y5 y8 y7
y3 y4 y1 y2 y7 y8 y5 y6
y4 y3 y2 y1 y8 y7 y6 y5
y5 y6 y7 y8 y1 y2 y3 y4
y6 y5 y8 y7 y2 y1 y4 y3
y7 y8 y5 y6 y3 y4 y1 y2
y8 y7 y6 y5 y4 y3 y2 y1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

At the same time,

y(1) = (y1, y2, y3, y4, y5, y6, y7, y8)
T = y,

y(2) = (y2, y1, y4, y3, y6, y5, y8, y7)
T = A1y,

y(3) = (y3, y4, y1, y2, y7, y8, y5, y6)
T = A2y,

y(5) = (y5, y6, y7, y8, y1, y2, y3, y4)
T = A3y.

(13)

Remark 1: There would not exist any Boolean func-

tion satisfying the SAC when n = 2. In fact, if y =
(y1, y2, y3, y4) is the output of a 2-bit Boolean function

y = f(x), there are

A1 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ ,

A2 =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠

and

(y(1),y(2),y(3),y(4)) =

⎛
⎜⎝

y1 y2 y3 y4
y2 y1 y4 y3
y3 y4 y1 y2
y4 y3 y2 y1

⎞
⎟⎠ ,

then the function satisfies the SAC if and only if W (y(1) ⊕
y(2)) = 2[(y1 ⊕ y2) + (y3 ⊕ y4)] = 2 and W (y(1) ⊕ y(3)) =
2[(y1 ⊕ y3) + (y2 ⊕ y4)] = 2, but this is a contradiction.

III. CONDITIONS SATISFYING BALANCEDNESS AND THE

SAC

In this section, we give some conditions which guarantee

the Boolean function satisfies the SAC, and discuss the

number of the Boolean functions satisfying the SAC.

A well known result is:

Lemma 1: If y is a balanced Boolean function satisfying

the SAC, then ȳ = 1 − y = (ȳ1, ȳ2, · · · , ȳ2n)T is also

balanced and satisfies the SAC, where ȳi = 1 − yi, i =
(1, 2, · · · , 2n).

Theorem 2: For a 3-bit Boolean function y =
(y1, y2, y3, y4, y5, y6, y7, y8)

T ,
(a) If (y1, y2, y3, y4) is balanced, i.e., W (y1, y2, y3, y4) = 2,

then y is a balanced Boolean function satisfying the SAC if

it satisfies {
(y1, y2, y3, y4) = (ȳ4, ȳ3, ȳ2, ȳ1)
(y5, y6, y7, y8) = (ȳ8, ȳ7, ȳ6, ȳ5).

(14)

(b) If (y1, y2, y3, y4) is not balanced, then y is a balanced

Boolean function satisfying the SAC if it satisfies one of

the following conditions:

(1) (y1, y2, y3, y4) = (ȳ6, ȳ5, ȳ8, ȳ7). (15)

(2) (y1, y2, y3, y4) = (ȳ7, ȳ8, ȳ5, ȳ6). (16)

(3) (y1, y2, y3, y4) = (ȳ8, ȳ7, ȳ6, ȳ5). (17)

The proof of this theorem is easy, due to space limitations,

the details are omitted here.

According to the conditions in Theorem 2, first, four

balanced Boolean functions satisfying the SAC can be found,

which are respectively:

(0, 0, 1, 1, 0, 1, 0, 1), (0, 0, 0, 1, 1, 1, 0, 1),
(0, 0, 0, 1, 1, 0, 1, 1), (0, 0, 0, 1, 0, 1, 1, 1).

(18)

Through Theorem 1 and its corollary, totally 32 Boolean

functions which are balanced and satisfy the SAC are

obtained. They are divided into 4 groups, each group of

which contains 8 Boolean functions. They are respectively:

(0, 0, 1, 1, 0, 1, 0, 1), (0, 0, 1, 1, 1, 0, 1, 0),
(1, 1, 0, 0, 0, 1, 0, 1), (1, 1, 0, 0, 1, 0, 1, 0),
(0, 1, 0, 1, 0, 0, 1, 1), (1, 0, 1, 0, 0, 0, 1, 1),
(0, 1, 0, 1, 1, 1, 0, 0), (1, 0, 1, 0, 1, 1, 0, 0).

(19)

(0, 0, 0, 1, 1, 1, 0, 1), (0, 0, 1, 0, 1, 1, 1, 0),
(0, 1, 0, 0, 0, 1, 1, 1), (1, 0, 0, 0, 1, 0, 1, 0),
(1, 1, 0, 1, 0, 0, 0, 1), (1, 1, 1, 0, 0, 0, 1, 0),
(0, 1, 1, 1, 0, 1, 0, 0), (1, 0, 1, 1, 1, 0, 0, 0).

(20)

(0, 0, 0, 1, 1, 0, 1, 1), (0, 0, 1, 0, 0, 1, 1, 1),
(0, 1, 0, 0, 1, 1, 1, 0), (1, 0, 0, 0, 1, 1, 0, 1),
(1, 0, 1, 1, 0, 0, 0, 1), (0, 1, 1, 1, 0, 0, 1, 0),
(1, 1, 1, 0, 0, 1, 0, 0), (1, 1, 0, 1, 1, 0, 0, 0).

(21)

(0, 0, 0, 1, 0, 1, 1, 1), (0, 0, 1, 0, 1, 0, 1, 1),
(0, 1, 0, 0, 1, 1, 0, 1), (1, 0, 0, 0, 1, 1, 1, 0),
(0, 1, 1, 1, 0, 0, 0, 1), (1, 0, 1, 1, 0, 0, 1, 0),
(1, 1, 0, 1, 0, 1, 0, 0), (1, 1, 1, 0, 1, 0, 0, 0).

(22)

In a similar way, some conditions of the Boolean function

satisfying the SAC can be given when n = 4. However, the

form would be more complex, and the details are omitted

here. It can be known that the number of balanced 4-bit

Boolean functions satisfying the SAC is 1368. All these

Boolean functions can be divided into 105 groups, which

are shown in decimal form in TABLE I.
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Table I
A PARTIAL LIST OF THE DECIMAL CODE OF 4-BIT BALANCED BOOLEAN FUNCTIONS SATISFYING THE SAC

No Decimal Code

1 {59232, 59142, 56208, 56073, 48528, 48393, 37083, 37053, 32352, 32262, 24807, 24702, 2523, 2493, 1767, 1662}
2 {60768, 60681, 56976, 56838, 46992, 46854, 37086, 37047, 31584, 31497, 24813, 24699, 2541, 2427, 1758, 1719}
3 {60256, 60169, 55184, 55046, 48784, 48646, 37079, 37054, 32096, 32009, 24811, 24701, 2539, 2429, 1751, 1726}
4 {58992, 57462, 55728, 53433, 47568, 45273, 40203, 39693, 30432, 28902, 28167, 26382, 3687, 3483, 2973, 1902}
...

...

63 {58894, 57454, 55565, 53405, 47371, 45211, 40400, 39856, 30215, 28775, 28384, 26480, 3814, 3545, 3001, 1910}
64 {59088, 57561, 55776, 53478, 47472, 45174, 40206, 39687, 30384, 28857, 28173, 26379, 3741, 3438, 2919, 1947}
65 {59056, 57529, 55664, 53366, 47584, 45286, 40199, 39694, 30416, 28889, 28171, 26381, 3739, 3431, 2926, 1949}
66 {58887, 57447, 55563, 53403, 47373, 45213, 40368, 39888, 30222, 28782, 28272, 26592, 3702, 3513, 3033, 2022}
67 {63888, 63072, 40731, 37113, 28422, 24822, 2463, 1647}
68 {63840, 63120, 40710, 37110, 28425, 24825, 2415, 1695}
69 {63753, 62982, 40848, 37023, 28512, 24687, 2553, 1782}
70 {61593, 61542, 39408, 39183, 26352, 26127, 3993, 3942}
...

...

103 {51795, 50595, 44085, 41925, 23610, 21450, 14940, 13740}
104 {50090, 50005, 43715, 43580, 21955, 21820, 15530, 15445}
105 {51770, 50485, 44195, 41900, 23635, 21340, 15050, 13765}

IV. STRONG STRICT AVALANCHE CRITERION

So far, the number of balanced n-bit Boolean functions

satisfying the SAC has not been known. The existing works

just make estimations on the upper and the lower bound of

its number. In the following, we will define the SSAC, and

obtain the general formula of the number of n-bit Boolean

functions satisfying SSAC. This kind of functions are very

important in the cryptography.

Lemma 2: For two n-bit balanced Boolean functions,

y
′

= (y
′
1, y

′
2, · · · , y

′
n)

T and y
′′

= (y
′′
1 , y

′′
2 , · · · , y

′′
n)

T ,
satisfying the SAC, then y = (y

′
,y
′′
) =

(y
′
1, y

′
2, · · · , y

′
n, y

′′
1 , y

′′
2 , · · · , y

′′
n)

T is a (n + 1)-bit balanced

Boolean function satisfying the SAC.

This conclusion can be directly got by the definitions of

balancedness and the SAC.

Definition 4: A n-bit Boolean function with output

(y1, y2, · · · , y2n) is called balanced Boolean function sat-

isfying the SSAC, if all these m-bit Boolean functions

with output (y1, y2, · · · , y2m), (y2m+1, y2m+2, · · · , y2m+1),
· · ·, (y2n−2m+1, y2n−2m+2, · · · , y2n), (m = 3, 4, · · · , n−1),
are balanced and satisfy the SAC.

Compared with the Boolean functions satisfying the SAC,

the ones satisfying SSAC have higher anti-attacking in S-

box design in cryptography system. This kind of Boolean

functions have many advantages in the design and analysis

of block cipher. For example, the complexity of the Boolean

functions has something to do with every input, and since

all the sub-sequences from the Boolean function satisfy the

SAC, it can resist the differential attacking from the outputs.

Based on the number of 3-bit balanced Boolean function

satisfying the SAC and Lemma 2, the number of n-bit

Boolean functions satisfying SSAC is easy to be obtained.

Theorem 3: The number of n-bit Boolean functions sat-

isfying SSAC is 25×2n−3

.

V. CONCLUSION

In this paper, we discuss the balanced Boolean functions

satisfying the SAC, propose the representation matrix of

the transition function of Boolean function, and find some

conditions which offer a standard for us to judge if a

balanced Boolean function satisfies the SAC. Further, the

SSAC of Boolean function is defined, and the recursion

formula of the number of this kind of functions is obtained.

It can be predicted that these basic research works in this

paper will have a positive effect on the cryptography and

information science.
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