
An Algorithm for k-pairwise Cluster-fault-tolerant Disjoint Paths in
a Burnt Pancake Graph

Masato Tokuda, Yuki Hirai, and Keiichi Kaneko*
Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan

{50014646126@st,yhirai@cc,k1kaneko@cc}.tuat.ac.jp

Abstract— In this paper, we focus on the pairwise cluster-
fault-tolerant disjoint path routing problem in a burnt
pancake graph, and propose an algorithm that solves the
problem in a polynomial time of the degree of the graph.
That is, in an n-burnt pancake graph with n−2k+1 faulty-
cluster whose diameters are at most 3, the algorithm can
construct fault-free disjoint paths between k pairs of nodes.
The time complexity of the algorithm is O(kn3) and the
maximum path length is 2n+ 15.

Keywords: pancake graph, multicomputer, interconnection net-
work, parallel processing

1. Introduction
In the near future, processing performance of a sequential

computer is expected to reach a ceiling because of limitations
in technology. With this expectation, the field of parallel and
distributed computation is taking on increasing importance,
and studies on massively parallel computers are eagerly
conducted recently. An interconnection network provides a
topology to construct a massively parallel computer, and
many topologies have been proposed and studied to inter-
connect many computers.

One of the factors that determine the performance of an
interconnection network is fault tolerance. As the number of
processors in a parallel computer increases, the probability of
existence of faulty processors also increases. In practice, we
face with the situation where not only the single processor
fault but also a set of faulty nodes will arise. To address
a fault-torelant routing problem has a merit to estabilish
a fault-free communication, and there are many research
activities about it. Similaly, to address a disjoint path routing
problem has a merit to estabilish communication that gets no
interference from other communication, and it is also studied
very hard.

In this paper, we have focused on a burnt pancake graph
[1], [2], [3], [4], [5], which is derived from a pancake graph
[6], [7], [8], [9], [10], [11], [12] of a Cayley graph. A
burnt pancake graph can connect many nodes with a small
degree. Also, burnt pancake graphs are expected to fill in
the gaps of incremental expandability of pancake graphs
because they can connect different numbers of nodes from
pancake graphs. However, there are many unsolved problem
with a burnt pancake graph such as the shortest-path routing

problem, the pairwise cluster-fault-tolerant routing problem,
and so on.

In this paper, we pick up the pairwise cluster-fault-tolerant
routing problem among the unsolved problems in a burnt
pancake graph. For this problem, we propose an algorithm
that solves it in a polynomial time of the degree of the burnt
pancake graph. That is, in a n-burnt pancake graph with at
most n−2k+1 faulty clusters whose diameters are at most
3, for k pairs of the source and destination nodes, we prove
that our algorithm can construct k fault-free disjoint paths
between them. We also prove that the time complexity of
the algorithm is O(kn3) and the maximum path length is
2n+ 15.

2. Preliminaries
In this section, we first introduce a definition of a burnt

pancake graph and related definitions.

Definition 1: A permutation u = (u1, u2, . . . , un) that
satisfies that {|u1|, |u2|, . . . , |un|} = 〈n〉 is called a signed
permutation where 〈n〉 = {1, 2, . . . , n}.

Definition 2: For a signed permutation u =
(u1, u2, . . . , un) and an integer i (1 ≤ i ≤ n), the
signed prefix reversal opeartion u(i) is defined by
u(i) = (−ui,−ui−1, . . . ,−u2,−u1, ui+1, . . . , un).

We use the notation u(i,...,j,k) as a short hand of a signed
prefix reversal operation u(i,...,j)(k). A signed prefix reversal
operation is invertible and u(i,i) = u holds.

Definition 3: If a graph G(V,E) satisfies the conditions
that V = {(u1, u2, . . . , un)|(u1, u2, . . . , un) is a signed
permutation of 〈n〉} and E = {(u,u(i))|u ∈ V, 1 ≤ i ≤ n},
G is called an n-burnt pancake graph.

In this paper, we denote Bn and i to represent an n-burnt
pancake graph and −i, respectively.

A Bn is a symmetric graph, and the number of nodes,
the number of edges, the degree, and the connectivity are
n! × 2n, n! × n × 2n−1, n, and n, respectively. There is
no shortest-path routing algorithm found for a Bn in time

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.117

652

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.117

651

11

1

(a)B1.

1,2

2,1

2,12,12,1

1,21,21,2

2,12,1

1,21,22,12,1

1,21,2

(b)B2.

#A

#A

#B

#B

#G #C #D #H

#K
#G

#I #J

#I

#K #L
#F

#E

#L

#E

#F

#C #J

#D

#H

1,2,3

1,2,31,2,31,2,3

1,3,21,3,2

1,2,31,2,3

2,1,32,1,3

2,1,3

1,2,31,2,3 1,2,31,2,3

2,1,32,1,3

2,1,32,1,3

1,2,31,2,31,2,31,2,3

2,1,32,1,32,1,32,1,3

2,1,32,1,32,1,3

2,1,32,1,3

1,2,31,2,3 1,2,31,2,3

2,1,32,1,3

1,3,2 3,1,23,1,2

3,1,2

1,3,21,3,21,3,21,3,2

3,1,23,1,2

3,1,23,1,2

2,3,12,3,12,3,12,3,1

3,2,13,2,13,2,13,2,1 3,2,13,2,13,2,1

2,3,12,3,12,3,1

3,2,13,2,1

2,3,12,3,1

3,2,13,2,1

2,3,12,3,1

3,1,23,1,23,1,23,1,2

1,3,21,3,21,3,21,3,23,1,23,1,23,1,2

1,3,21,3,21,3,2

1,3,21,3,2

3,1,23,1,2

1,3,21,3,2

3,1,23,1,2

2,3,1

3,2,13,2,13,2,1

2,3,12,3,1

3,2,13,2,1

2,3,12,3,1

3,2,13,2,1

2,3,12,3,1

(c)B3.

Fig. 1: Examples of burnt pancake graphs.

complexity of the polynomial order of n. However, the fact
that d(Bn) ≤ 2n is proved.

Definition 4: In a Bn, for an arbitrary node u =
(u1, u2, . . . , un) and an arbitrary integer k (1 ≤ |k| ≤ n),
an extended signed prefix reversal operation u([k]) is defined
by

u([k]) =

{
u→ u(i) if ui = k,
u→ u(i) → u(i,1) if ui = k.

Definition 5: In a Bn, the sub graph induced by the
subset of nodes that have k at the rightmost positions in
their permutations is isomorphic to a Bn−1. The sub graph
is specified by Bn−1(k) by using the k as its index. A Bn

is decomposable into 2n Bn−1’s that are mutually disjoint.
Each sub graph is called a sub burnt pancake graph. In
addition, the sub burnt pancake graph that contains the node
u(∈ Bn) is denoted by Bn−1(u).

Definition 6: A connected sub graph in a graph is called
a cluster. If all of the nodes in a cluster are faulty, the cluster
is called a faulty cluster. In addition, in a graph G(V,E) the
nodes defined by argminc∈V

∑
v∈V d(c,v) are called the

centers of the graph G.

Definition 7: In a Bn with faulty clusters, if a Bn−1(k)
does not include any center of the faulty clusters, it is
called a candidate sub burnt pancake graph and denoted by
CBn−1(k).

Definition 8: The set that consists of the nodes that have
j and i at the leftmost and rightmost positions in their
permutations, respectively, is called a portset from Bn−1(i)
to Bn−1(j), and denoted by P (i, j).

Definition 9: In a Bn, for an arbitrary node u =
(u1, u2, . . . , un), if ui and ui+1 satisfies the following
condition, ui and ui+1 are called adjacent:

ui+1 =

⎧⎨
⎩

1 if ui = n,
n if ui = 1,
ui + 1 if ui �= 1, n.

An element that is not adjacent to any other elements or
elements that are successively adjacent are called a block. If
a node consists of multiple blocks, two blocks can be put into
one block by at most two signed prefix reversal operations.
Therefore, in a Bn, routing between two arbitrary nodes can
be reduced by at most two signed prefix reversal operations
into routing in a Bn−1.

Theorem 1: In a Bn, for two non-faulty nodes s =
(s1, s2, . . . , sn), t = (t1, t2, . . . , tn) and a set of faulty nodes
F (|F | ≤ n−1), we can construct a fault-free path between
s and t of length at most 2n+4 in time complexity O(n2).

3. Algorithm
In this section, we describe an algorithm that solves the

pairwise cluster-fault-tolerant disjoint paths problem in a
burnt pancake graph.

3.1 Lemmas
Lemma 1: For two distinct nodes u and v in a port set

P (l,m) (1 ≤ |l|, |m| ≤ n, |l| �= |m|), the distance between
them L(u,v) is no less than 3.

Lemma 2: There is not a cycle in a Bn whose length is
less than 8.

Lemma 3: In a Bn, if there are at most n−2k+1 faulty
clusters whose diameters are at most 3, there are at least
4k − 2 candidate sub burnt pancake graphs.
(Proof) The centers of a faulty cluster of diameter 3 exist at
most 2 sub burnt pancake graphs. If there are n − 2k + 1
faulty clusters, the centers of the faulty clusters exist at most
2n − 4k + 2 sub burnt pancake graphs. Therefore, because
there are 2n sub burnt pancake graphs in a Bn, there are at
least 4k − 2 candidate sub burnt pancake graphs.

Lemma 4: In a Bn, for a node u = (u1, u2, . . . , un), we
can construct n disjoint paths of length at most 3 from u to
n distinct sub burnt pancake graphs Bn−1(k) (k �= |un|) in
O(n2) time complexity.
(Proof) We can construct the following paths:
u→ u(n) ∈ Bn−1(u1) (i = n),
u→ u(i) → u(i,n) ∈ Bn−1(ui) (1 ≤ i ≤ n− 1).
Among the latter paths, for n−2 paths except for Bn−1(u1),
we can construct paths as follows:
u→ u(i) → u(i,1) → u(i,1,n) ∈ Bn−1(ui) (2 ≤ i ≤ n− 1).
Hence, for n of 2n− 2 Bn−1(k) except for Bn−1(un) and

653652

Bn−1(un), we can construct disjoint paths except for u. It
takes O(n) time to construct one path, it takes O(n2) time
in total.

Figure 2 shows n disjoint paths from a node u to n distinct
sub burnt pancake graphs.

u

u(i)

u(j,1)
u(1)

Bn-1(ui)

u(j)

u(i,1)

Bn-1(u1)

B (u)

Bn-1(ui)

Bn-1(uj)

Bn-1(un)

Bn-1(u1)

Bn-1(uj)

j

Fig. 2: n disjoint paths from a node u to n distinct sub burnt
pancake graphs constructed in Lemma 4.

Lemma 5: In a Bn, for a non-faulty node u =
(u1, u2, . . . , un) and n candidate sub burnt pancake graphs
CBn−1(k) (k �= |un|), a faulty cluster whose diameter is at
most 3 can overlap at most one of the n paths of length at
most 3 that are given in Lemma 4.
(Proof) Assume that there is a faulty cluster that blocks
two among the paths given by Lemma 4. Assume that
the blocked paths are u → u(i) → u(i,1) → u(i,1,n)

and u → u(j) → u(j,1) → u(j,1,n) (2 ≤ i ≤ n − 1,
2 ≤ j ≤ n − 1). From Lemma 2, there is no faulty cluster
that blocks u(i,1) and u(j,1) simultaneously. For an arbitrary
pair of paths among the paths given by Lemma 4, similar
discussion holds.

Lemma 6: In a Bn, for a node u = (u1, u2, . . . , un) and
a sub burnt pancake graph Bn−1(k), (k �= u1, |un|), we can
construct n disjoint paths of length at most 5 from u to the
Bn−1(k) in O(n2) time complexity.
(Proof) We cosider three cases depending on k.
Case 1 |k| �= |u1|, |un|
We can construct n paths as follows.
u→ u(i) � u(i,[k]) → u(i,[k],n) (1 ≤ i ≤ n, k �= ui)
u→ u(i) → u(i,n) (k = ui)
u→ u(i) → u(i,1) → u(i,1,n) (k = ui)
Then, the lengths of these n paths are at most 4.

Case 2 k = un

We can construct n paths as follows.
u→ u(i) → u(i,n) → u(i,n,1) → u(i,n,1,n) (1 ≤ i ≤ n− 1)
u→ u(n) → u(n,1) → u(n,1,n) (i = n)
Then, among n paths, there is one path whose length is 3
and there are n− 1 paths whose lengths are 4.
Case 3 k = u1

We can construct n paths as follows.
u→ u(1) → u(1,n) (i = 1)
u→ u(i) → u(i,1,i) → u(i,1,i,1) → u(i,1,i,1,i) (2 ≤ i ≤ n)
Then, among n paths, there is one path whose length is 1
and there are n− 1 whose lengths are 5.

From above, we can construct n paths of length at most
5 from u to Bn−1(k) that are disjoint except for u. Since it
takes O(n) time to construct one path, it takes O(n2) time
to construct n paths.

Lemma 7: In a Bn with at most n−2 faulty nodes, from
arbitrary nodes uli in n−1 distinct CBn−1(li) (1 ≤ |ii| ≤ n,
1 ≤ i ≤ n where |lj | �= |li| if i �= j), we can construct n−1
disjoint fault-free paths of length at most 7 via CBn−1(p)
(|p| �= ∀|li|).
(Proof) For each uli , let us consider n paths of lengths at
most 5 to CBn−1(p) given by Lemma 6. Then, there is at
least one fault-fee path uli � vli ∈ P (p, li) among the
paths that do not include u

(n)
li

. Then, we can construct a
path vli → v

(1)
li
∈ P (p, li) → v

(1,n)
li

∈ CBn−1(li). Since
port sets are mutually disjoint, the n− 1 paths are disjoint.
Then, the lengths of the constructed paths are at most 7.

Lemma 8: In a Bn with n − 2 faulty nodes, we can
construct n− 1 fault-free disjoint paths of length at most 7
from n−1 non-faulty nodes uli in distinct n−1 CBn−1(li)
(1 ≤ |li| ≤ n 1 ≤ i ≤ n where |li| �= |lj | if i �= j) to
CBn−1(li) via a CBn−1(p) (|p| �= ∀|li|).

Figure 3 shows the n−1 fault-free disjoint paths of length
at most 7 constructed in Lemma 8.

3.2 Algorithm
In this section, we show an algorithm for a cluster-fault-

tolerant k-pairwise disjoint path routing, and estimate the
maximum path length and its time complexity. In a Bn, for
k pairs of source and destination nodes (3 ≤ k ≤ 	n/2
), the
algorithm first constructs paths si � s′i and ti � t′i where
s′i and t′i belong to a same Bn−1 and the paths do not include
any node on the other paths sj � s′j nor tj � t′j where
j �= i. Then, it connects s′i and t′i by a fault-free path in
the Bn−1 by using the fault-tolerant routing algorithm. The
Bn−1 is called the target sub burnt pancake graph for the pair
of nodes si and ti, and denoted by Bn−1(li) (1 ≤ |li| ≤ n,
1 ≤ i ≤ k). Also, in the rest of this paper, we assume thta
the candidate sub burnt pancake graph for si satisfies the

654653

s2’

CBn-1(li) CBn-1(li)

CBn-1(lk)

CBn-1(lj)

CBn-1(lk)

CBn-1(lj)

CBn-1(p)

P(p, li) P(p, li)

P(p, lk)

P(p, lj)P(p, lj)

P(p, lk)

Fig. 3: n − 1 fault-free disjoint paths of length at most 7
constructed in Lemma 8.

condition that it does not include any nodes on the other
paths sj � s′j nor tj � t′j in addition to the condition that
it does not include any center of faulty clusters.

The algorithm consists of the following four steps.
Step 1) If there is a Bn−1(m) that contains si or ti and the
Bn−1(m) is a candidate sub burnt pancake graph for si or
ti, assign the Bn−1(m) to the target sub burnt pancake graph
Bn−1(li). If si and ti are included in distinct Bn−1(p) and
Bn−1(q), respectively, and both of Bn−1(p) and Bn−1(q)
satisfy the conditions of candidate sub burnt pancakes for
si and ti, either of them are assigned to Bn−1(li). We can
assign a target sub burnt pancake graph for each pair of
source and destination nodes in O(n) time.
Step 2) For each pair of the source node si =
(si1, si2, . . . , sin) and the destination nodes ti to which any
target sub burnt pancake graph is not assigned, construct
a path from either of the source or destination nodes to a
candidate sub burnt pancake graph for it. Here, we assume
that we found a candidate sub burnt pancake graph for si.
Then, we can assign a target sub burnt pancake graph and
construct a path by the following three sub steps.
Sub Step 2a) If the Bn−1(si1) is a candidate sub burnt
pancake graph for si, we assign Bn−1(si1) to the target sub
burnt pancake graph Bn−1(li), construct a path si � s

(n)
i of

length 1 to the sub burnt pancake graph, and let s(n)i = s′i.
Sub Step 2b) If the Bn−1(sip) (1 ≤ p < n) is a candidate
sub burnt pancake graph for si, we try to construct a path
si � s

(p)
i � s

(p,n)
i of length 2. If this path is fault-free and

disjoint from other paths, we can assign Bn−1(sip) to the
target sub burnt pancake graph Bn−1(li), and let s(p,n)i = s′i.
Sub Step 2c) If the Bn−1(sip) (1 < p < n) is a candidate
sub burnt pancake graph for si, we try to construct a path
si � s

(p)
i � s

(p,1)
i � s

(p,1,n)
i of length 3. If this path

is fault-free and disjoint from other paths, we can assign

Bn−1(sip) to the target sub burnt pancake graph Bn−1(li),
and let s(p,1,n)i = s′i.

In Step 2, we can assign a target sub burnt pancake graph
for each pair of source and destination nodes by constructing
a path of length at most 3 in O(n3) time.
Step 3) By Steps 1 and 2, for k pairs of nodes si and ti,
target sub burnt pancake graphs Bn−1(li) are assigned and
at least one path from either of the nodes is constructed.
Here, we construct a path to Bn−1(li) from either of si or
ti from which a path to Bn−1(li) has not been constructed.
For simplicity, we assume that a path from si to Bn−1(li)
has been already contrcuted, and a path from ti has not been
constructed without loss of generality. Here, if ti1 = li, we
can construct a path ti → t

(n)
j of length 1. If tin �= li, we

first check the n paths of lengths at most 4 given by Lemma
6. Among the n − 1 paths of them that do not pass t(n),
if there is a path that is fault-free and disjoint from other
paths, let the path be ti � t′i. If ti1 = li, we check the path
tj → t

(1)
j → t

(1,n)
j of lenfth 2. If it is fault-free and disjoint

from other paths, let the path be tj � t′j . If there is not such
path, or if tin = li, we construct a path to a candidate sub
burnt pancake graph for ti as similar to the Sub Steps 2a),
2b), and 2c). Let this candidate sub burnt pancake graph be
Bn−1(l

′
i).

Then, this step is divided into two cases depending on li
and l′i to construct the path.
Case 1)(li = l′i) For pairs of the nodes such that li = l′i hold,
we can construct disjoint paths of lengths at most 7 that pass
a candidate sub burnt pancake graph Bn−1(p) that does not
include any source nor destination node from Lemma 7.
Case 2)(li �= l′i) If li �= l′i, there is a fault-free path among
the paths from Bn−1(l

′
i) to Bn−1(li) of length at most 5

given by Lemma 6.
In this step, we can construct a path of length at most 10

between a pair of a source node and a destination node in
O(n3) time.
Step 4) For k pairs of nodes si and ti (1 ≤ i ≤ k),
from Steps 1 to 3, we have constructed paths si � s′i(∈
Bn−1(li)) and ti � t′i(∈ Bn−1(li)) where Bn−1(li) is the
target sub burnt pancake graph for si and ti. Bn−1(li) does
not include any node on sj � s′j or tj � t′j (j �= i), and
contains at most n − 2k + 1 faulty nodes. Therefore, from
Theorem 1, we can construct a path s′i � t′i of length at
most 2n+ 2 in O(n2) time.

Consequently, our algorithm can construct each path si �
ti of length at most 2n + 15 in O(n3) time. Therefore, it
takes O(kn3) time to construct k paths.

4. Evaluation
To evaluate performance of our algorithm, we conducted

a computer experiment. The algorithm constructed k disjoint
fault-free paths between the k pairs of source and destination
nodes in a n-burnt pancake graph with n − 2k + 1 faulty

655654

clusters whose diameters are 3. In this section, we give the
method, the results, and consideration.

4.1 Method
In the experiment, we applied our algorithm to solve the

k-pairwise disjoint cluster-fault-free paths problem (3 ≤ k ≤
	n/2
) in a Bn (5 ≤ n ≤ 40). We repeated the following
steps for 10,000 times and measured the average execution
time and the maximum path length as well as the average
path length.

1) We first set up n−2k+1 disjoint faulty clusters whose
diameter is fixed to 3.

2) Then we select k source nodes s1, s2, . . ., sk and
k destination nodes t1, t2, . . ., tk among non-faulty
nodes.

3) We apply the algorithm to construct k disjoint fault-
free paths si � ti (1 ≤ i ≤ k) and measure the
execution time, the maximum path length, and the
average path length.

Note that, in Step 4, we need a routing algorithm to
construct a path between two arbitrary nodes in a non-faulty
burnt pancake graph Bn. We have adopted the algorithm
whose time complexity is O(n2) and the maximum path
length is 2n by Cohen and Blum [1]. Therefore, the the-
oretical maximum path length by our algorithm becomes
2n+ 15.

4.2 Results
Figure 4 shows the results of the maximum path lengths

and the average path lengths for 5 ≤ n ≤ 40. In addition,
Figure 5 shows the result of the average execution time for
5 ≤ n ≤ 40 and 3 ≤ k ≤ 	n/2
. From Figure 4, we can
see that there is no path whose length attained the theoretical
maximum path lengths. From Figure 5, the average execution
time seems to converge to O(n2.2).

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

P
at

h
 L

en
g

th

n

Ave. Path Length
Max Path Length

2n + 15

Fig. 4: Maximum and average path lengths of our algorithm

 4 6 8 10 12 14 16 18 20

 5 10 15 20 25 30 35 40

0.0000010

0.0000100

0.0001000

0.0010000

T
im

e(
s)

Ave. Time
O(n

2.2
)

k

n

T
im

e(
s)

Fig. 5: Execution time of our algorithm

Acknowledgments
This study is partly supported by a Grant-in-Aid for Sci-

entific Research (C) of the Japan Society for the Promotion
of Science (JSPS) under Grant No. 25330079.

References
[1] D. S. Cohen and M. Blum, “On the problem of sorting burnt

pancakes,” Discrete Applied Mathematics, vol. 61, no. 2, pp. 105–
120, 1995.

[2] T. Iwasaki and K. Kaneko, “Fault-tolerant routing in burnt pancake
graphs,” Information Processing Letters, vol. 110, no. 14-15, pp. 535–
538, Jul. 2010.

[3] K. Kaneko, “An algorithm for node-to-set disjoint paths problem
in burnt pancake graphs,” IEICE Transactions on Information and
Systems, vol. E86-D, no. 12, pp. 2588–2594, Dec. 2003.

[4] ——, “Hamiltonian cycles and hamiltonian paths in faulty burnt
pancake graphs,” IEICE Transactions on Information and Systems,
vol. E90-D, no. 4, pp. 716–721, Apr. 2007.

[5] K. Kaneko and N. Sawada, “An algorithm for node-to-node disjoint
paths problem in burnt pancake graphs,” IEICE Transactions on
Information and Systems, vol. E90-D, no. 1, pp. 306–313, Jan. 2007.

[6] S. B. Akers and B. Krishnamurthy, “A group-theoretic model for sym-
metric interconnection networks,” IEEE Transactions on Computers,
vol. 38, no. 4, pp. 555–566, Apr. 1989.

[7] D. W. Bass and I. H. Sudborough, “Pancake problems with restricted
prefix reversals and some corresponding cayley networks,” Journal
of Parallel and Distributed Computing, vol. 63, no. 3, pp. 327–336,
2003.

[8] W. H. Gates and C. H. Papadimitriou, “Bounds for sorting by prefix
reversal,” Discrete Mathematics, vol. 27, pp. 47–57, 1979.

[9] M. H. Heydari and I. H. Sudborough, “On the diameter of the pancake
network,” J. Algorithms, vol. 25, no. 1, pp. 67–94, 1997.

[10] K. Kaneko and Y. Suzuki, “Node-to-set disjoint paths problem in
pancake graphs,” IEICE Transactions on Information and Systems,
vol. E86-D, no. 9, pp. 1628–1633, Sep. 2003.

[11] K. Qiu, H. Meijer, and S. G. Akl, “Parallel routing and sorting on
the pancake network,” in Proceedings of International Conference on
Computing and Information, ser. Lecture Notes in Computer Science,
vol. 497. Springer Verlag, 1991, pp. 360–371.

[12] Y. Suzuki and K. Kaneko, “An algorithm for node-disjoint paths in
pancake graphs,” IEICE Transactions on Information & Systems, vol.
E86-D, no. 3, pp. 610–615, Mar. 2003.

656655

