
A Parallel Distributed Genetic Algorithm for the
Prize Collecting Steiner Tree Problem

Francisco Rojas∗, Federico Meza†
School of Engineering, Universidad de Talca

Camino Los Niches Km. 1 s/n - Curicó - CHILE

Email: ∗frojas@alumnos.utalca.cl, †fmeza@utalca.cl

Abstract—Combinatorial optimization problems are commonly
tackled through the use of metaheuristics aimed to improve
the way the search space is explored (diversification) and how
promising areas are exploited (intensification), in order to obtain
good-quality solutions. We present a distributed genetic algorithm
to solve the Prize Collecting Steiner Tree Problem, a classical
combinatorial optimization problem. The proposed algorithm
improves the quality of the solutions by asynchronously combin-
ing distributed populations that evolve in parallel, starting from
initial heterogeneous configurations. To show the effectiveness of
this approach an empirical study that considers both execution
time and solution quality is presented. Results show that better
solutions are reached when initial populations combine configu-
rations with high and low fitness.

Keywords-Distributed Genetic Algorithms, PCST, Prize Col-
lecting Steiner Tree Problem, Parallel Metaheuristics.

I. INTRODUCTION

The Prize-Collecting Steiner Tree Problem (PCST) is a

classical combinatorial optimization problem that can be stated

as follows. Given a undirected graph G = (V,E), with non-

negative edge costs and non-negative vertex profits, the aim

is to find a subtree T of G minimizing the sum of the total

cost of the edges in T while maximizing the total profit of the

vertices not contained in T [1].

The PCST has been proved to be NP-complete [2]. In

practice, approximate techniques –such as metaheuristics– are

used to obtain suboptimal solutions in a reasonable time.

However, large-size instances could derive in excessively large

execution times to obtain solutions of acceptable quality.

Hence, parallelization arises as a natural approach to reduce

execution time while improving the quality of the solutions.

In this work, we present a parallel genetic algorithm to solve

the PCST, along with a study that shows its effectiveness in

improving execution time and quality of the solutions.

Genetic Algorithms (GAs) fall in the category of Evolu-

tionary Computation algorithms, which are inspired by na-

ture’s capability to evolve living beings well adapted to their

environment. Feasible solutions are modeled as individuals

that interact in an environment [3]. Thus, the population of

individuals corresponds to the set of feasible solutions of a

problem instance. Iteratively, a set of operators are applied

to the population to generate a new generation of individuals.

Crossover operators recombine existing individuals to produce

new individuals. Mutation operators emulate self-adaption of

individuals. Natural selection of individuals is implemented

through a fitness function, so individuals with a higher fitness

have a higher probability to survive to the next generation.

Parallel GAs found in the literature can be classified in three

categories [4]: Single-population master-slave GAs, Cellular

GAs, and Multiple-population distributed GAs (dGAs). There

are also hybrid architectures. This work follows the dGA

model, with a unidirectional ring to accomplish communica-

tion between the islands while facilitating scalability.

We performed an empirical evaluation of the dGA and

proved that parallelization improve the quality of the solutions

by using an heterogeneous set of populations that evolve

in parallel and interact asynchronously. A sequential imple-

mentation of the GA reached better-quality solutions when

better-quality initial populations were used, that is, populations

with higher fitness. However, the parallel dGA obtained better

solutions when a mixture of high and low fitness initial

populations were used for the islands. Thus, it is possible to

conclude that heterogeneity of the initial populations is a key

issue to guarantee an adequate exploration of the search space.

II. THE GENETIC ALGORITHM

To represent solutions (individuals) we use a binary encod-

ing σ = (σ1, σ2, . . . , σn) of size |V |, where each σk valued 1

represents a vertex present in the solution. The cost for each

solution is given to each individual through a fitness function.

The tree representing a solution is built using Algorithm 1,

which is based on Prim’s algorithm for finding the minimum

spanning tree. In certain circumstances this algorithm could

produce a disjoint graph. In that case the subtree with higher

fitness is chosen.

Algorithm 1 Algorithm to create a feasible solution

Require: A graph G = (V,E).
Require: Set of vertices VT ⊆ V in the solution.

Vnew = {x}, where x ∈ VT a randomly selected vertex.
Enew = {}
repeat

Choose a edge (u, v) with less weight u ∈ Vnew ∧ v /∈ Vnew ∧
v ∈ VT . {if there’s multiple edges with the same weight, one
is chosen randomly.}
Vnew = Vnew + v
Enew = Enew + (u, v)

until Vnew = VT

return G = (Vnew, Enew)

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.67

644

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.67

643

We apply two mechanisms to create the initial population.

First, a random-based procedure followed by pruning the ver-

tices that increase the cost of the solution while not improving

the total income (see Algorithm 2). Second, Dijkstra’s Shortest

Path Algorithm is used on every vertex with positive prize,

giving as result a tree that can be pruned using Algorithm 2.

Algorithm 2 Pruning leafs that add more cost than income.

procedure prune(v, T = (V,E))

for all For all children u of v do
prune(u, G)
if c(u, v) > p(u) and isLeaf(u) then

V = V − v
E = E − (u, v) {remove the edge (u, v) and u from G}

end if
end for

The algorithm evolves iteratively by applying several

stochastic operators –such as selection, crossover and

mutation– to the current population producing a new gener-

ation of individuals. Selection chooses two individuals from

the current population to be the parents of a new individual.

The probability of selection is proportional to its fitness so the

individual with the highest fitness has a higher probability of

survival. Once the parents are selected, crossover and mutation

are applied with a probability of pcross and pmut, respectively. In

order to guarantee a minimal degree of diversity, an offspring

is discarded if there is an identical solution in the population.

Algorithm 3 illustrates the steps followed by the GA.

Algorithm 3 GA to solve the PCST Problem

t← 0;
Init(P(0));
Eval(P(0));
repeat

repeat
I1, I2 = Select(P (t));
if random > pcross then

I ← Crossover(I1, I2);
end if
if random > pmut then

I ← Mutation(I);
end if
if I /∈ P (t) then

Eval(I);
Replace(I , P (t));

end if
until there are k new individuals in the iteration
t← t+ 1;

until A better solution was not found after Ω iterations

Crossover aims to preserve in the offsprings most of the

genetic characteristics of theirs parents. We used Two-point
crossover in our work. Given two positions that define a region

inside the encoding string, an offspring that preserves the outer

chromosomes from one parent and the inner chromosomes

from the other is generated. Mutation is applied to the off-

springs in order to include random innovation in the search

Instance |V | |E| |Vwithout clients| |E|
|V |

C5-A 500 625 250 1,25
C18-A 500 12500 417 25
D2-B 1000 1250 990 1,25
D8-B 1000 2000 833 2
D13-A 1000 5000 833 5
K400.5 400 1457 324 3,64
E3-A 2500 3125 2082 1,25

TABLE I: Instances used in the parameter tuning

process thus avoiding early convergence to a local optimum.

We applied bit-flop mutation, randomly altering a chromosome

within the code of the offspring [3].

III. THE PARALLEL GENETIC ALGORITHM

Our Parallel GA follows the multiple-population distributed

GA model. Population is divided into several subpopulations

–called islands– that exchange individuals through migration.

For the selection of the migrants we used an elite approach,

that is, only the best individuals of the source island are

selected to migrate. Immigrant individuals that already exist

in the population are rejected in order to improve diversity.

Communication is supported by an unidirectional ring topol-

ogy that exhibits high scalability. Communication is asyn-

chronous to allow the arrival of individuals at any time. We

used the ProActive library, a parallel computing framework

supporting the distributed objects model, exhibiting a high

level of portability and performance [5].

IV. EXPERIMENTAL DESIGN

We used five sets of instances found in the literature:

• Johnson, et al., used two sets of randomly generated

instances [6]. In the first set –Group P– instances lack

of structure. On the other hand, Group K consists of

instances whose graphs emulate city maps [7].

• Canuto, et al., created test sets derived from the well

known OR-Library, called Groups C and D [7].

• Ljubić generated a set of 40 instances from the E group

of the OR-Library [8].

We used the percentual error –GAP– to measure the quality

of the solutions. Let f(optimal solution) be the cost of the

known optimal solution, and let f(found solution) be the cost

of the approximated solution found by the algorithm. The GAP

for the approximated solution is defined as:

GAP =
f(found solution)− f(optimal solution)

f(optimal solution)
. (1)

Some parameters must be tuned empirically. To avoid

bias we selected representative samples from every group of

instances for this adjustment.

We tested 16 configurations using two methods to generate

the initial populations: random setup and using Dijkstra’s

algorithm. The resulting 32 configurations were tested with

the 7 problem instances shown in Table I. In order to avoid

noise deviations and to consider the stochastic nature of the

645644

Genetic Algorithm Distributed Genetic Algorithm
Group %-gap t[s] σ %-gap t[s] σ

C 2.39% 441.58 0.84% 0.96% 205.29 0.55%
D 2.95% 2258.25 0.66% 1.41% 1154.77 0.39%
K 0.71% 13.74 0.06% 0.64% 15.97 0.03%
P 2.10% 146.49 0.97% 0.91% 87.95 0.22%
E 6.26% 21194.27 0.29% 3.56% 10779.52 0.64%

TABLE II: Average results for instance groups C, D, K and P

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution

1 population
2 population
4 population
6 population
8 population

12 population
16 population

Fig. 1: Empirical time-to-target distribution obtained by the

dGA for the C13-A instance pursuing an easy target.

algorithm, each experiment was run 5 times resulting in 1120
executions of the sequential GA to do the parameter tuning.

The most important criteria used to rank the parameter

configurations was the quality of the obtained problem so-

lution and not the execution time. The quality of a parameter

configuration was computed as the sum of the best GAP and

the average GAP for the 5 runs for this configuration.

The experiments were run on a 2-node/16 cores system.

Each node has 2 Intel Xeon Quad Core E5430 processors

running at 2.66 GHz, 8GBytes RAM, 2x6MB Cache, and an

Intel 82566DM-2 Gigabit Network Interface Card. The front-

end was an Intel Core 2 Duo E8300 PC running at 2.83 GHz,

with 4GBytes RAM, 6 MBytes Cache, and an Intel 82566DM-

2 Gigabit Network Interface Card. Both, the cluster and the

front-end PC, run the Linux Rocks v5.2.2 operating system.

V. RESULTS

Table II shows average results using instance groups C, D,

K, and P. It can be seen that the dGA not only exhibits better

execution time by finding solutions 50% faster –except for

the K group– but it also obtains better solutions with lower

standard deviation, even 76% better for the P group.

Fig. 1 shows the empirical distribution time-to-target for the

C13-A instance for a medium-difficulty target of 267, using

different population sizes. N = 200 independent runs were

obtained for each algorithm. Configurations with 6, 8, 12, and

16 populations exhibit better performance, finding solutions in

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution

6 processor
8 processor

10 processor
12 processor
14 processor
16 processor

Fig. 2: Empirical time-to-target distribution obtained by the

dGA for the C13-A instance pursuing a hard target.

less than 50 seconds with probability 1. On the other hand,

the configuration with 1 population required 300 seconds.

It should be noted that not all the configurations succeeded

in achieving the target solution after the 200 runs. Configu-

rations with a higher number of populations were not only

faster, but more robust in terms of finding solutions.

Fig. 2 shows the time-to-target distribution for the same

instance but making the dGA pursue a more ambitious target.

The dGA with 12 populations showed again the highest

performance. This is probably due to the small impact on

diversification and intensification associated to populations

beyond the 12th, combined with a higher communication

overhead introduced by additional populations.

VI. CONCLUSIONS AND FUTURE WORK

The sequential GA performed better with high-quality ini-

tial populations, that is, when the individuals of the initial

population had better fitness In this case, a high-quality initial

population is required to produce high-quality solutions.

Results obtained with the sequential GA are encouraging,

showing an average percentual error of 2.39%, 2.95%, 0.71%,

2.10%, and 6.26% for the instances C, D, K, P, and E,

respectively. Please notice that no preprocessing of the graphs

was performed, as it is common to find in the literature for

these instances.

The behavior of the parallel dGA was significantly different.

Better results were produced when a mixture of high and low

quality initial populations was used, because of the positive

influence that diversity introduced on the search process. In

particular, the heterogeneity of the populations increased the

intensification on certain regions of the search space. Also,

migration of individuals between populations contributed to

diversification, causing that some populations change their

search focus to unexplored regions of the search space.

646645

Scalability respect to the number of populations is an

important issue for a dGA. As the number of populations

grows the probability of finding better solutions is higher.

However, there is a threshold for this growth. Adding more

populations beyond this threshold will not improve the quality

of the solutions found. This can be explained because there

could be several populations exploring the same region of

the search space, or searching on regions with low value in

terms of the solutions produced. Besides, a higher number

of populations involves a higher communication overhead

resulting in higher execution times.

Results obtained with the dGA are consistent with conclu-

sions found in other studies, in terms that the use of parallel

metaheuristics based on cooperative search lead to more robust

implementations [9]. The parallel dGA exhibits a significant

improvement with respect to the sequential GA, producing an

average porcentual error of 0.96%, 1.41%, 0.64%, 0.91%, and

3.56% for the instances C, D, K, P, and E, respectively. Execu-

tion time was also improved in the dGA, taking approximately

half of the time taken by its sequential counterpart.

We intend to explore alternative encoding schemes, includ-

ing a tree based encoding that appears to be more suitable for

this problem. With such a scheme the solution-decoding cost

could be reduced allowing variations to a solution with fast

ad-hoc operations. We also plan to evaluate new procedures to

generate the set of initial populations looking for higher quality

solutions that could benefit both the result of the sequential

GA and the heterogeneity of the populations in the dGA.

VII. RELATED WORK

Goemans and Williamson devised a combinatorial approxi-

mation method to solve network design problems [10]. Their

algorithm is based on a primal-dual schema and runs in

O(n2 log n) time (n = V). They also provide an extension of

their basic algorithm, for solving the unrooted PCST problem.

Other researchers improved the Goemans-Williamson al-

gorithm by enhancing the pruning phase. Their algorithm is

faster and provides solutions that are at least as good as those

obtained by the original algorithm [6].

Another work presented a multi-start local-search algorithm

with perturbations. Permutation are done by changing the pa-

rameters of the input graph and feasible solutions are obtained

by the Goemans-Williams optimization procedure [7].

Another study presented a genetic algorithm that incorpo-

rates primal and dual information produced by Lagrangian

decomposition. Their work used the same encoding used in the

proposed algorithms, as well as a modified Prim’s algorithm to

evaluate the fitness of the individual, similar to the mechamism

used by the authors [11].

Some approximated algorithms found in the literature priv-

ilege minimizing execution time over solution quality. Other

authors developed a heuristic based on minimum spanning

trees to solve the PCST in good overall time, but with a

considerable deviation from optimum [12].

Another research group reviewed existing theoretical models

to predict the effect of parameters setting on the perfor-

mance of parallel genetic algorithms [13]. Meanwhile, another

study explored the performance of heterogeneous island-model

dGAs using random-generated configurations [14]. Their strat-

egy exhibited a performance comparable to manually-tuned

algorithms.

REFERENCES

[1] I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, and P. Mutzel, “Solving
the Prize-Collecting Steiner Tree Problem to Optimality,” in Proceedings
of ALENEX, Seventh Workshop on Algorithm Engineering and Experi-
ments, 2005.

[2] I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and
M. Fischetti, “An Algorithmic Framework for the Exact Solution of
the Prize-Collecting Steiner Tree Problem,” Math. Program., vol. 105,
no. 2-3, pp. 427–449, 2006.

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[4] G. Luque, E. Alba, and B. Dorronsoro, “Parallel Genetic Algorithms,” in
Enrique Alba (Ed.). Parallel Metaheuristics: A New Class of Algorithms.
John Wiley and Sons, 2005, pp. 107–125.

[5] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and
R. Quilici, “Programming, Deploying, Composing, for the Grid,” in Grid
Computing: Software Environments and Tools, J. C. Cunha and O. F.
Rana, Eds. Springer-Verlag, 2006, pp. 205–229.

[6] D. S. Johnson, M. Minkoff, and S. Phillips, “The Prize Collecting
Steiner Tree Problem: Theory and Practice,” in SODA ’00: Proceedings
of the 11th. Annual ACM-SIAM Symposium on Discrete Algorithms.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2000, pp. 760–769.

[7] S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro, “Local Search with
Perturbations for the Prize-Collecting Steiner Tree Problem in Graphs,”
Networks, vol. 38, p. 2001, 2001.

[8] I. Ljubić, “Exact and Memetic Algorithms for Two Network Design
Problems,” Ph.D. dissertation, Technische Universitt Wien, Oct. 2004.

[9] V. dat Cung, S. L. Martins, C. C. Ribeiro, and C. Roucairol, “Strategies
for the Parallel Implementation of Metaheuristics,” in Essays and
Surveys in Metaheuristics. Kluwer Academic Publishers, 2002, pp.
263–308.

[10] M. X. Goemans and D. P. Williamson, “The Primal-Dual Method
for Approximation Algorithms and its Application to Network Design
Problems,” in Hochbaum, Dorit S. (Ed.), Approximation algorithms for
NP-hard problems. PWS Publishing Co., 1997, pp. 144–191.

[11] M. Haouari and J. C. Siala, “A Hybrid Lagrangian Genetic Algorithm
for the Prize Collecting Steiner Tree Problem,” Computers & Operations
Research, vol. 33, no. 5, pp. 1274 – 1288, 2006.

[12] M. Akhmedov, I. Kwee, and R. Montemanni, “A Fast Heuristic for the
Prize-Collecting Steiner Tree Problem,” Lecture Notes in Management
Science, vol. 6, pp. 207–216, 2014.

[13] E. Cantú-Paz, “Parameter Setting in Parallel Genetic Algorithms,” in
Parameter Setting in Evolutionary Algorithms, ser. Studies in Compu-
tational Intelligence, F. G. Lobo, C. F. Lima, and Z. Michalewicz, Eds.
Springer Berlin Heidelberg, 2007, vol. 54, pp. 259–276.

[14] Gong, Y. and Fukunaga, A., “Distributed Island-Model Genetic Al-
gorithms using Heterogeneous Parameter Settings,” in Evolutionary
Computation (CEC), 2011 IEEE Congress on, June 2011, pp. 820–827.

647646

