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Abstract—All pairs similarity search (APSS) is the problem
of finding all the similar pairs of items, whose similarity is
above a given threshold. APSS algorithm is applied to many
data mining fields, such as document matching, collaborative
filtering. Due to a large scale of data in real life, some recent work
used partitioning, inverted indexing, parallel accumu- lation,
and hashing approximation to optimize the APSS algorithm. To
optimize the APSS problem, this paper analyzes and compares
two parallel approaches. To demonstrate the performance gain of
our optimization approaches, we implement our algorithms on
Spark and conduct the evaluation on a dataset of one million
movies, which gains better performance speedup than other
works.

Keywords-Distributed computing, similarity search, parallel
optimization, Spark, data mining

I. INTRODUCTION

All pairs similarity search (APSS) is a problem of finding

all the similar pairs of items within a dataset, whose similarity

is above a user-defined threshold. APSS is used in many data

mining applications. Common examples are as follows.

Document matching [13] is a process of matching similar

documents based on the similarity among different documents,

which is usually used in duplicated document detection de-

scribed in [16].

Collaborative Filtering [22] is a process of filtering infor-

mation or patterns by methods involving collaborative among

different user views, which makes recommendations according

to similar user taste. As a result, it is strongly dependent on

the all pair’s similarities among users.

Besides above examples, there are many other data mining

applications involving APSS such as search query suggestions,

spam detections, clustering [12], and social network [19]. It is

obvious that APSS is a general data mining problem. In recent

years, big Internet enterprises have always faced problems

involving a large scale of data. The naive solution of APSS

problem is to join item matrix with itself, and leads to O(I2F )
time consumption, where I represents the item size and F

represents the global feature dimensionality. According to the

APSS problem, researchers have pursued in two directions to

solve the problem. Some previous work tried to optimize the

APSS algorithm through distributed computing frameworks,

such as MapReduce model, while some recent work used par-

titioning, inverted indexing, parallel accumulation, and hashing

approximation to optimize the APSS algorithm. However, each

optimization has its own speedup. As a result, considering the

large-scale dataset, we should figure out a distributed solution

combining different optimization techniques.

In our work, we combine different optimization techniques

and introduces two optimization approaches. One partitions

item matrix, and computes each sparse matrix by inverted

index, and the other uses an approximate algorithm to compute

similarity pair candidates, and then filters the false positive

candidates by exact pair similarity computation. To further

evaluate the performance and accuracy of our solutions, we

implement our optimization algorithms on Spark, and use one

real-world million scale of movies in real life as dataset for

evaluations.

The structure of this paper is organized as follows. We

describe the background about APSS in Section II. We present

our algorithms in Section III. We list some evaluations and

analyze the result in Section IV, and finally conclude the paper

in Section V.

II. BACKGROUND

APSS is a general problem in data mining applications.

According to the work in [2], the APSS problem is defined

as following: Given a set of item vectors V = {v1, v2, ..., vn}
of fixed dimensionality of f , and a similarity function about

sim(x, y) in which x, y are item vectors included in set V, and

a similarity threshold t, we wish to compute the pair set of all

the similarity pairs (x, y), which satisfies sim(x, y) ≥ t.
There are a wide range of work on APSS problem, and

the naive solution to this problem is to make similarity joins.

But this solution performs time-consuming for large scale of

data. So there are many work related to the optimization

about this problem. One optimization approach is to use

inverted index, which is widely used in information retrieval

[7], [13], [17]. R. J. Bayardo [2] proposed a simple algorithm

based on novel indexing and optimization methods with exact

methods, and J. Lin [6] compared the brute force solution

with inverted-based solution, showing that inverted-based solu-

tion eliminates many unnecessary computations. Many recent

work considered approximation techniques [14]. One typical

approximation technique is the locality-sensitive hashing al-

gorithm [4], [15], which maps high-dimension-feature items

to low-dimension fingers by a few number of hash function

projections. Approximation should pay costs for accuracy

reduction, and F. Ture [8] compared a brute-force approach

with a locality-sensitive hashing approach, and showed that
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the approximation approach reduce accuracy of similarity pairs

much. As a result, to further improve the performance of

approximation approach, V. Satuluri [9] proposed a principled

Bayesian algorithm for the subsequent phase of similarity

search through LSH, involving candidate pruning by Bayesian

algorithm, but this approach further reduces the accuracy by

Bayesian approximation pruning.

With increasing scale of dataset, one single machine cannot

solve the APSS problem itself, so we need to resort to dis-

tributed solutions. Many recent work [3], [10] used the Hadoop

MapReduce framework to solve the problem, but the new

data processing framework Spark has a better performance

than Hadoop MapReduce. One problem which will come with

distributed framework, is about how to partition the dataset, in

order to reduce the redundant computations [21]. M. Alabdul-

jalil [1] proposed a scalable approach called partition-based

similarity search, which used a static partitioning algorithm

considering the load balance [20] to place dissimilar vectors

into different groups, and execute comparison tasks in parallel

in each partition. Then according to web search problem, E.

Kayaaslan [5] proposed a novel inverted index partitioning

model on hypergraph partitioning. Furthermore, in order to

fast match similarity pairs, A. Awekar proposed a three-phase

framework [11] of data preprocessing, pairs matching, and

indexing, effectively reducing the size of the search space

through some filtering conditions and heuristic optimizations.

To improve the performance of fast matching, A. Awekar

then proposed an incremental all pair’s similarity search [18]

for fast matching problem which developed efficient I/O

techniques to manage computation history, and efficiently

identified and pruned redundant computations.

In our work, we introduced two scalable APSS approaches

by combining common optimizations in recent work, and then

implement and optimize them on Spark.

III. ALGORITHMS

In recent work, there are many optimization approaches

on APSS problem. Our work mainly involves two APSS

optimization approaches. One is a two-stage partition-based

approach with inverted index, and the other is a filter-based

locality-sensitive hashing approach. The former is an exact ap-

proach, which uses partitioning to avoid unnecessary network

and I/O costs, and inverted index to eliminate unnecessary

computations, and the other is an approximation approach

which takes less time to compute the results with much

less resources consumption at the cost of accuracy. The two

approaches are discussed in the subsection A & B.

A. Partition-based Approach with Inverted Index

When the scale of input dataset is quite large, one single

machine cannot solve such a big problem, thus we need to

resort to distributed solutions. When it comes to distributed

solutions on APSS problem, it is an intuitive thought to

partition the dataset into different blocks. The naive APSS

solution is to join item matrix with itself, and each partition

involves the pairs between one vector and another vector. As a

1: procedure AVERAGEPARTITION(V, b)
2: P0, P1, ..., Pb2−1 ← ∅

3: for i = 0 to b− 1 do
4: for j = 0 to b− 1 do
5: if i = j then
6: for k = 0 to

|V |
b − 1 do

7: Pib+j = Pib+j

⋃
v |V |

b i+k

8: end for
9: else

10: for k = 0 to
|V |
b − 1 do

11: Pib+j = Pib+j

⋃
v |V |

b i+k

⋃
v |V |

b j+k

12: end for
13: end if
14: end for
15: end for
16: return P0, P1, ..., Pb2−1

17: end procedure

Fig. 1. Average Partition Strategy

result, in this solution, it needs to transmit all the item vectors

into all the partitions, which would make large network and

I/O overhead. In our work, we divide the item similarity matrix

into blocks through averagely partitioning by row and column,

where V is the sparse vectors described in Section II, and b
is defined as the partition number by rows or columns. Our

average partition algorithm is presented as pseudo-code in Fig.

1. Through this average partitioning strategy, the transmission

costs of one vector reduce from b2 to 2b− 1.

Besides the partition strategy of item vectors, there are

still several inefficiencies in this approach: 1) each similarity

pair is pairwise so that sim(x, y) is equals sim(y, x), and

it wastes computation effort to both compute pairwise pairs.

2) considering that the data scale is still quite large in each

partitioned block, a naive brute force APSS solution still pull

down the performance of our partition-based approach.

For the former issue, we split the blocks by the diagonal

line, and the computation scale would be halved. For the latter

issue, a better approach is to build an inverted list index of

the input vectors.

As a result, we use an inverted-index-based similarity ac-

cumulation approach in the second stage based on [2]. As

shown in Fig. 2, V is the input set of sparse vectors and t
is the similarity threshold described in Section II. The feature

lists are represented as F = {F1, F2, ..., Fn}, and the inverted-

index lists are represented as I = {I1, I2, ..., In}. Ii consists of

all the non-zero feature-weight pairs (c, w), where c[i] = w,

w �= 0. In the inverted-index-based similarity accumulation

approach, we scan all the inverted lists to do the similarity

accumulation, and it returns all the similarity pairs whose

similarity is above threshold t, while we collect all the returned

similarity pairs into union set S, and build the inverted-index

list dynamically.

Considering that in the dataset there are I items, and totally

F different features, and each item has averagely A features.
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1: procedure FINDALLPAIRS(V, t)
2: S ← ∅

3: I1, I2, ..., I|F | ← ∅

4: for each vi ∈ V do
5: S ← S

⋃
FindSimilarityPair(vi, I, t)

6: for each j such that vi[j] > 0 do
7: Ii = Ii

⋃
(vi, vi[j])

8: end for
9: end for

10: return S
11: end procedure
12: procedure FINDSIMILARITYPAIRS(v, I, t)
13: M ← Empty Map, P ← ∅

14: for each i such that v[i] > 0 do
15: for each (x, x[i]) ∈ Ii do
16: M [x] = M [x] + v[i] ∗ x[i]
17: end for
18: end for
19: for each (x,w) ∈M do
20: if w ≥ t then
21: P = P

⋃
(v, x, w)

22: end if
23: end for
24: return P
25: end procedure

Fig. 2. Accumulated Inverted-index Approach

The computation cost is shown in (1), in comparison to

I2F computation consumption. Given a certain I and F , the

function Cost(A, I, F ) is a monotonically increasing function,

so that the computation cost increases with the average feature

amount.

Cost(A, I, F ) = (1− (1− A

F
)A)I2F (1)

Through the inverted index, we can find all the non-zero

matching pairs as if it were an O(1)-time query, and view

related items as candidate similar items, which would avoid

many unnecessary non-zero matching comparisons.

Our two-stage APSS approach offers locality improvement,

avoids unnecessary network and I/O overhead by partition

strategy in the first stage, and eliminates non-zero matching

computations by inverted index in the second stage.

B. Filter-based Locality-sensitive Hashing Approach

Equation (1) indicates that the computation cost of the

inverted-index algorithm is O(CI2F ), where C = 1 − (1 −
A
F )A. Given a certain A, C can be considered a constant. As

a result, with the increasing scale of items and features, the

fully exact APSS solution would be still bound to O(I2F ).
To meet with this problem, there are intuitively two solutions

as following: 1) Increase the compute resources for more

partitioning blocks. 2) Without the increasing of computing

resources, we should focus on the algorithm itself. Due to

the fact that exact APSS should compute all the non-zero

1: procedure FILTERBASEDLSH(b, r, t)
2: Generate random numbers from a Gaussian distribu-

tion by using Box-Muller transformation [25], in which

the average is 0 and STD is 1, and finally generate k

numbers of random hashing vectors.

3: Compute the Cartesian product of item vector and

random hashing vectors, and generate a 0-1 fingerprint

for each item by sign of the Cartesian product.

4: Divide the fingerprint into b bands, and there are r
finger in each band, s.t. k = b ∗ r.

5: Partition each item into different buckets by fingers in

each band.

6: Get all item combinations of each bucket, like

pair(x, y), which means pair(x, y) is a candidate pair, and

then merge it together.

7: Filter all the false positive pairs whose similarity is

under t, and return all the qualified pairs

8: end procedure

Fig. 3. Filter-based LSH approach

similarity pairs, the scale of item is always taken into con-

sideration. Then one intuitive solution is to reduce the large

scale of feature. There is a common algorithm named locality-

sensitive hashing (LSH) based on the latter solution. It is an

approximation algorithm, in which the large scale of feature

for each item is reduced to user-defined number k, satisfying

k � F .

A common solution for LSH [24] is to map one item vector

into a k-length fingerprint by k hash functions. The core

principle of LSH is that the fingerprint of similar items would

be more likely to be similar. We divide items into buckets

by fingerprint, and then we consider those pairs hashed to

the same bucket as a candidate group. This hashing approach

lead to poor accuracy. A more accuracy way is to use the

band strategy, in which we divide the fingerprint matrix into

b bands consisting of r rows each. For each band, there is a

hash function that takes vectors of r integers and hashes them

to different buckets by fingerprint. Through the band strategy,

LSH approach gains better precision and recall rate [9].

However, the precision and recall rate for LSH approach

is still not very good. As a result, an intuitive approach is

to check the candidate pairs by exact APSS approach. In our

work, we propose a two-stage approximation approach. In the

first stage, we use a locality-sensitive hashing approach to

map each item into different fingerprint, and then partition

each item into different buckets by its fingerprint. In the

second stage, we use an exact APSS solution to filter all the

false positive pairs. The complete solution of our two-stage

approximation approach on cosine similarity metric appeared

as pseudo-code in Fig. 3.

In this two-stage approach, we compute the all item combi-

nations of each bucket, and then filter the false positive pairs.

Equation (2) shows the computation cost of this approach,

where |Bij | represents the size of the jth bucket in the ith

band.

640639



Cost(b, r, I, F ) =
b∑

i=1

2r∑

j=1

|Bij |2F
2

(2)

Supposing that items in each band satisfies a Gaussian

distribution with mean I
2r and variance σ, Equation (2) can

be transformed to (3).

Cost(b, r, I, F, σ) =
bF

2
(
I2

2r
+ 2rσ2) (3)

When there is a large scale of data, considering the fact that

r is usually set less than 16 and σ � I , the computation cost

of two-stage approximation approach is considered O( b
2r I

2F ),
and greatly improve the performance in comparison to the

exact approach.

IV. EVALUATIONS

In this section, we design and conduct to evaluate different

optimization approaches used in our work, and compare our

APSS optimization approaches with the previous APSS algo-

rithms. In our experiments, we implement our optimization

approaches as Spark applications in Scala, with one real-

world dataset of one million scale. All the experiments in

the subsections were performed on a Yarn cluster in which

there are 736 maximum cores and 2.57 TB maximum memory.

The CPU on each machine on the cluster is about 2.00 GHz

Intel(R) Xeon(R) CPU E5-2640 class.

A. Datasets

Our dataset consists of one million real-world movies,

which are stored on HDFS, and totally includes 1024 blocks

of data, with 64M size per block. The format of our input

dataset is <N, (C1:Wn1, C2:Wn2, ..., Cn:Wnn)>. Each item

is composed of two parts. One is the ID of the item vector,

and the other is the sparse vector of this item after the ETL

preprocessing. The ID represents real movies id, and the first

column of the sparse vector represents the tags of the movies,

and the second column of the sparse vector represents the

weight of given tag.

B. Evaluation on Partition-based and Inverted-index Ap-
proach

In this subsection, we compare our partition-based and

inverted-index algorithm separately, and evaluate on the per-

formance of the combination approach.

Firstly, according to the partition-based algorithm, we com-

pare it with the brute-force (BF) algorithm. To implement the

brute-force algorithm on Spark, we use Spark SQL. We firstly

write our dataset into one NoSQL database, and use a SQL

query like ’select sim(x, y) s from V va, V vb where s > t’
to select all the similar pairs, where V is the vector lists, and

t is the user-defined threshold.

Fig. 4 shows the running time of BF approach and partition-

based approach for different input block sizes. In this ex-

periment, we used 32 executors, with 20 cores and 32GB

memory per executor, and separately tested the two solution

Fig. 4. Partition-based APSS approach

Fig. 5. Shuffle write on GroupByKey transformation

on 1-1024 blocks of dataset. It shows that the partition-based

algorithm gains much faster than the BF algorithm. In our

analysis in Section III, we drew a conclusion that partition-

based algorithm can avoid much necessary network and I/O

overhead. In Spark, most network and I/O communications

happen in the shuffle process between different stages, which

indicates the shuffle scale is determined by the network and

I/O cost. As a result, we conduct an experiment on the scale

of shuffle write in the GroupByKey transformation, in order to

compare the network and I/O cost between the two algorithms.

Fig. 5 shows the shuffle size of BF approach and partition-

based approach for different input block sizes. The result

indicates that the BF algorithm takes quadratic scale of shuffle

write than the partition-based method, which is consistent with

our analysis in Section III.

Secondly, we compare the inverted-index-based algorithm

with BF algorithm. In this experiment, we used 1 core and

1G memory on Yarn cluster, and ran our experiments on a

sub-dataset of 1-10 thousands scale of movies, in order to

fairly compare the performance of the two algorithms.

The result is presented in Fig. 6, which shows the running

time of BF approach and invert-index-based approach for dif-

ferent item sizes. It indicates that the inverted-index approach

641640



Fig. 6. Inverted-index approach

Fig. 7. The performance of APSS approaches

gains nearly 10x faster than the BF algorithm.

After the evaluation on partition-based approach and

inverted-index-based approach separately, we conducted an

evaluation on the performance of the combination approach

(PI approach), in which we used 32 executors, with 20 cores

and 32GB memory per executor, and separately tested the

approaches on 1-1024 blocks of dataset, while we used 16

executors, with 8 cores and 24G memory per executor on the

evaluation of the LSH approach discussed in next subsection.

Fig. 7 shows the running time of different approaches for

different input block sizes, and indicates that the combination

approach performs better than the separate approach.

C. Evaluation on LSH Approach

In this subsection, we evaluate the performance and accu-

racy of LSH approach. In this experiment, we implemented

our LSH approach on cosine similarity metrics, and set the

default b (number of bands) to 8 and default r (number of

fingers per band) to 8, and used 16 executors, with 8 cores and

24G memory per executor. As shown in Fig. 7, we can draw

a conclusion that the LSH approach gains better performance

with much less resources consumption.

In the next experiment, we tested our LSH approach on

different similarity metrics with different numbers of b and

Fig. 8. The precision rate of LSH approach on different similarity metrics

r with the restriction that b ∗ r = 64, although our algorithm

explicitly exploits the cosine similarity metrics tested in Fig. 7.

In this experiment, we measure the accuracy of our approach

by precision and recall rate. The computation of precision and

recall rate is defined as (4) & (5), where PredSet represents

the set we predicted, and RefSet represents the set of pairs

whose similarity is above the user-defined threshold.

Precision =
|PredSet

⋂
RefSet|

|PredSet| (4)

Recall =
|PredSet

⋂
RefSet|

|RefSet| (5)

Fig. 8 shows the evaluation result of LSH approach with

different numbers of b and r on different similarity metrics.

It indicates that 1) the LSH approach perform better for

large scale of data, due to the cost of accuracy. 2) LSH

approach on Jaccard distance metric has better performance of

precision and recall rate. But on cosine distance, the average

precision and recall rate are not very well, as Anand Rajaraman

discussed in [24].

After the evaluation of the performance of LSH approach,

we find the precision and recall rate is not very well on typical

LSH approach, especially on cosine similarity metric. As a

result, in our work, we implement a filter-based LSH approach,

which filters the false positive candidates, to improve the

precision of our approach at less cost of recall rate, and then

compare the accuracy with a Bayesian LSH approach based

on [9].

Fig. 9 shows the F1 rate of different LSH approaches for

different item sizes. The F1 rate is computed by precision and

recall rate with (6).

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(6)

In this experiment, we tested filter-based LSH approach on

cosine similarity metric, with the parameters that b=8 and r=8.

The result indicates that the filter-based LSH approach observ-

ably improve the accuracy of LSH approach in comparison to

Cosine LSH and Bayesian LSH [9].
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Fig. 9. The optimization of LSH approach

V. CONCLUSIONS

The contribution of this paper is the design and imple-

mentation of two effective parallel algorithms on distributed

data processing framework Spark. From the evaluations, we

find that 1) the partition-based solution runs 10x faster than

the brute-force solution, due to the fact that it avoids more

unnecessary network and I/O overhead among different par-

titions, 2) the combining approach based on average-partition

and inverted-index gains better performance speedup than each

separate technique, 3) the approach used locality-sensitive

hashing works faster and takes much less resources, due to

the dimension reduction from large scale to limited scale of

hash functions, 4) with the false positive filtering, the result

of approximation solution are made much more accurate.
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