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Abstract—Distributed memory systems (DMS) (clusters) are 
one of the tools being used by researchers to solve a wide 
spectrum of computational intensive problems in a fraction of the 
time of a sequential approach. The nature of a DMS does not 
enforce intense data sharing among computational nodes, this 
will occur if the problem under analysis happens to be data 
dependent in nature. The latency associated with dynamic data 
sharing in a DMS is well known to increase the total execution 
time. One of the possible techniques that can be used to reduce 
the negative effects associated with this latency is overlapping. In 
this paper we show why a characterization of the overlapping 
capabilities of a cluster is important to justify results. 

Keywords—cluster; communication-computation overlapping; 
synchronization-computation overlapping; latency; data-dependent  

I. INTRODUCTION 
A very important and commonly used strategy in scenarios 

where dynamic data sharing among multiple participant 
processes is required is overlapping of communication and 
computation. The purpose of overlapping is to contribute to the 
reduction of the negative effects associated with the latency 
generated by intense data sharing in a multicore environment 
by allowing the processes to engage in useful computation 
while some additional activities such as communication take 
place [13]. The authors in this paper present a study of 
overlapping in two different clusters, by using two variants of 
overlapping, overlapping of synchronization and computation, 
and overlapping of communication and computation. The first 
cluster is a multi-user research oriented cluster (MUC), while 
the second is a one-user cluster with older technology (OUC). 

II. TESTING ENVIRONMENTS 
Initially we used two different clusters as our testing 

environments. The first cluster corresponds to a multi-user 
cluster which provides scientific computational capabilities to a 
research community. The second testing environment is a 
personal cluster with only one user and a maximum of 9 nodes.  

A. Multi User Cluster (MUC) 
This cluster has 12TB of public shared lustre storage and 

three groups of public and private nodes, all connected by SDR 
InfiniBand and Gigabit Ethernet. The quad-core nodes have 
Infinihost III Lx (PCI-e) cards, and the older nodes have 
Infinihost (PCI-X) cards. 

1) Public quad-core (512 cpu, 4.77 TF).  
64 nodes with dual quad-core Intel 5345 processors (2.33 

GHz) and 12GB of memory each. Designated compute-1-x, 2-
x.  

2) Public single-core (128 cpu, 0.82 TF).  
64 nodes with dual single-core Intel "Irwindale" processors 
(3.2 GHz) and 4 GB of memory each. Designated compute-3-
x, 4-x, 5-x.  

3) Public AMD dual-core (8 cpu, .04 TF).  
1 node with quad dual-core AMD 8218 processors (2.60 GHz) 
and 64GB of memory. Designated compute-8-1 
 

B. One User Cluster (OUC) 
Each one of the computational nodes in this cluster has the 

following hardware characteristics: one Intel(R) Pentium(R) 4 
CPU at 1.70GHz, one 3Com PCI 3c905C Tornado network 
card. All the nodes in this cluster are interconnected via a 
3Com® Super Stack® 3 Switch 3300 12-Port. Table 1 
summarizes the major hardware differences between nodes. 

Table 1: Hardware Differences among Nodes for OUC 

Node Memory 
(MB) 

Hard Disk 

0, 3 511.46 40020 MB-T340016A, ATA  
1 1023.4 40020 MB-T340016A, ATA 

2,4, 5  1023.4 20547 MB-MAXTOR 6L020J1, ATA  

6 1023.4 40020 MB-WDC WD400BB-
75DEA0, ATA  

7, 8 1023.4 40027 MB-MAXTOR 6L040J2, ATA  
 

III. OVERLAP TESTS 
Two overlap tests were implemented to characterize both 

clusters, MUC and OUC. The first of these tests examines the 
support of synchronization with computation, while the second 
evaluates the support of overlap of communication with data 
transfer. 

A. Overlap of Synchronization with Computation  
According to [12], overlap of synchronization with 

computation  in a MPI implementation is supported if a 
message can be sent from process A to process B without 
requiring a previous synchronization step between A and B.  

For this test two processes are considered. Processes 0 and 
1, executed in workstations 0 and 1 respectively. The test is 
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structures as follows; process 0 will send a message to process 
1 using a non-blocking send instruction, and process 1 will 
receive the message using a blocking receive.  The 
synchronization between both processes is enforced with a 
barrier, as shown in figure 1.  

Process 0 returns almost immediately after the MPI_Isend 
[7, 8, 10], and proceeds to process its workload before issuing 
an MPI_Wait. When process 0 reaches MPI_Wait, the 
execution of further instruction at process 0 will be blocked 
until the message is totally sent. At the same time, right after 
the barrier, process 1 will compute a quarter of the workload 
computed by process 0, as soon as process 1 has finished its 
quarter of workload, it will block further instructions until the 
reception of the message is completed [12]. Figure 1 is based 
on a figure shown in [12]. 

 
Figure 1: Test for Overlap of Synchronization with Computation. 

 
The completion time of the MPI_Recv right after the 

barrier on process 1, will be considered the outcome of this test 
[12]. It is possible to infer that the time needed by process 0 to 
complete its workload will be more than the time needed by 
process 1 to complete the processing of a quarter of the same 
workload.  

The results will confirm if overlap has been supported or 
not. If the completion time of delivery at process 0 is almost 
the same time needed by process 1 to compute its quarter of 
workload, then overlap has been supported. Different 
conclusions are achieved from those other cases where the 
completion time is almost equal to the time required by process 
0 to process its workload. In cases like this, it is possible to 
conclude that overlap has not been supported.  

This procedure which we refer to as case-1, will be 
executed 1000 times, and the average values of these 1000 
executions will be used  to generate our conclusions. The code 
executed by process 0 has been structured in such a way that it 
makes an attempt for overlapping of computation with data 
transfer “if supported”.  

In order to conclude whether overlap of communication 
and computation exists in process 0, the following steps need 
to be followed. Step 1 (case-2), remove the workload from 
process 0, and send the message 1000 times using MPI_Isend. 
The time needed to complete a sending will be saved, this 
means that by the end of the 1000 iterations, 1000 execution-
time-samples will be available, and an accurate average value 
can be estimated.  

Step two (case-3), consider the workload once again,  
execute the routine,  record the time needed to complete the 

processing of a single workload, repeat until you have 
collected all 1000 samples,  next compute the average time.   

Step three, add the average values obtained in case-2 and 
case-3. The summation of these two values implies the non-
existence of overlapping, next, compare this no-overlap value 
against the value computed where both MPI_Irecv and 
workload worked together in the same application (case-1). 
Thus, if a difference exists, it is because overlap of 
computation and data transfer was supported. 

B. Overlap of Data Transfer with Computation 
According to [2, 4, 12], a MPI implementation capable of 

performing useful computation while data is in transit between 
processes is said to support overlap of data transfer with 
computation. The percentage of improvement achieved by the 
overlap can be computed by using equation (1) [12]. 
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 This approach is based on a test referenced by [12]. 
Although based on ideas presented in [12], our approach does 
not make use of matrix multiplication; instead the authors 
replaced matrix multiplication with a different workload of 
reduced programming complexity. In a similar way as 
explained in [12], this second overlap procedure consists of 
two tests. The first test handles an scenario where the program 
has been written in such a way that it will get no benefit from 
overlap, it is shown in figure 2, and is called the non-overlap 
test. 

 
Figure 2: Non-overlap Test. 

 
Figure 3: Overlap Test. 

The second test, covers the same scenario, except it will 
make an attempt for overlapping of computation with 
communication. In this case, the whole workload has been 
divided into two parts, one quarter and three quarters. This 
procedure is called the overlap test, and is shown in figure 3.  
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IV. RESULTS 

A. Synchronization and Computation Overlap 
1) Using Delays as Workload: The size of the message 

sent from process 0 to process 1  was approximately 39.06 KB 
or 10000 integers. This technique was carried out 100 times in 
both clusters, a script was used to automatize the executions 
[9], and its nature is shown in figure 4, which has been taken 
from [12] . 

 

 
Figure 4: Test for Overlap of Synchronization with Computation. 

 

The results are summarized in tables 2 and 3. From these 
two tables, it is clear that no overlap of synchronization with 
computation is supported by any of these two clusters. 

Table 2: Synchronization and Computation Overlap for MUC 

Multi User Cluster (MUC) 
Collected 
Samples 

Process Min (secs) Max (secs) Average (secs) 

106 
0 3.99E+00 4.06E+00 4.00E+00 
1 3.99E+00 4.06E+00 4.00E+00 

 
Table 3: Synchronization and Computation Overlap for OUC 

One User Cluster (OUC) 
Collected 
Samples 

Process Min (secs) Max (secs) Average (secs) 

100 
0 3.99E+00 4.01E+00 4.00E+00 
1 3.99E+00 4.02E+00 4.00E+00 

 
It is meaningful to mention that both systems, MUC and 

OUC have a MPICH2 compiler. In order to find out if the 
overlap of synchronization with computation was potentially 
hardware related, the same test was executed on a third cluster, 
a multi-user Solaris cluster, which we refer to as MSC. This 
third cluster uses LAM and a MPICH1 compiler. 

Table 4. Synchronization and Computation Overlap for “Solaris-Cluster” 

Multi User Solaris Cluster (MSC) 
Collected 
Samples 

Process Min (secs) Max (secs) Average (secs) 

100 
0 3.99E+00 4.47E+00 4.03E+00 
1 1.99E+00 2.05E+00 2.00E+00 

 

Comparing Tables 2, 3, and 4, it is possible to conclude that 
support for overlapping of synchronization and computation 
existed in the cluster that uses MPICH1, the Solaris cluster.  

It is essential to find a reason to justify this behavior, for 
such purpose a new test is proposed and implemented. It is 
called “Message size sweep”. 

2) Message Size Sweep: This test is based on 
recommendations and ideas mentioned in [10]. This technique 
has some similarities with the previously introduced 
synchronization and computation overlap approach, however,  
some important modifications are considered.  

 
The first modification is that both processes, process 0 and 

process 1 will only use non-blocking instructions, MPI_Isend 
and MPI_Irecv respectively.  The second consideration is that 
process 0 will be the only process with a computational 
workload that does not use a delay. Finally, process 1 just 
needs to process the MPI_Irecv and then wait for its 
completion. 

Figure 5 presents the nature of the procedure to be 
repeated several times, for different message sizes. The initial 
size was 10 KB, with increments of 10 KB, until a final size of 
85 KB was reached.  The repetition of this core procedure is 
what the authors of this paper have named “message size 
sweep” and constitutes an original contribution. This 
contribution was developed based on comments and ideas 
provided by [10], and the nature of the frequency sweep test in 
electronics [3]. 

 
For process 0, the elapsed time from MPI_Isend to 

MPI_Wait has been called TP0. For process 1, the time from 
MPI_Irecv to MPI_wait has been called TP1, both are given in 
seconds [3]. This test will help to determine if the size of the 
message plays a critical role in the support for overlapping of 
synchronization with computation. 

 
Figure 5: Core Procedure for the Message Size Sweep Test. 

Table 5 shows the results of the proposed “message size 
sweep” method in two different clusters. The code used in both 
clusters is the same, and the differences in processing time are 
consequence of the different computational capabilities 
between clusters.  

A comparison between both halves of table 5, will lead to 
the conclusion that the size of the message plays a relevant role 
for the achievement of overlapping of synchronization and 
computation.  

It is clear that in each system, the size of the buffer used to 
send and receive messages has a different limit. If the size of 
the message to be sent, is smaller than the limit, the system is 
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able to support overlap of synchronization with computation, 
otherwise the support will not be available [3].   

Table 5: Message Size Sweep Results on (MSC) and (OUC) 
SOLARIS-CLUSTER - “MPICH1” OUC - “MPICH2” 

Message Size  
(KB) 

TP0  
(secs) 

TP1  
(secs) 

TP0  
(secs) 

TP1  
(secs) 

10 61.0 1.08E-03 3.8 1.24E-03 
20 61.0 1.54E-03 3.8 3.8 
30 61.0 1.92E-03 3.8 3.9 

40 61.0 2.69E-03 3.8 3.8 
50 97.6 3.62E-03 3.8 3.8 

60 61.0 2.82E-03 3.8 3.8 
70 61.0 61.0 3.8 3.8 

80 61.0 61.1 3.8 3.8 
 

The first half of table 5 shows that for the multi-user Solaris 
Cluster (MSC), the limit is a value between 60KB and 70KB. 
The second half of table 6 shows a limit between 10KB and 
20KB for OUC. 

According to [7, 10], when non-blocking instructions are 
being used to establish communication between processes and 
the size of the message is larger than the socket buffer size; 
non-blocking instruction will no longer behave as non-blocking 
and the support of overlap of synchronization with 
computation is no longer available.  

The previous finding explains why during the 
synchronization and computation overlap test that uses a two, 
and four seconds delays, overlap was supported by MSC. This 
is shown in table 4, section IV-A1. It is also significant to 
mention that the size of the message used for this procedure 
was 39.06 KB; and 39.06 KB is greater than the 10 KB limit 
supported by OUC, but less than the 70 KB limit supported by 
MSC [3].  

The synchronization and computation overlap using the 2 
seconds and 4 seconds delays was repeated in OUC for a 
message size of 10 KB using a script to automatize the 
executions [9]. The results are presented in table 6. 

Table 6: Synchronization and Computation Overlap for “My Cluster-10 KB” 

One User Cluster OUC 
Collected 
Samples 

Process Min (secs) Max (secs) Average (secs) 

10 
0 3.99 4.01 4.00 
1 1.99 2.00 1.99 

 

B. Communication and Computation Overlap 
1) Using Computation as Workload and Based on 

Synchronization and Computation Overlap Test: According to 
[3], the work performed by process 0 during the 
synchronization and computation overlap test can also be used 
to estimate if some percentage of computation and 
communication overlap is achieved by process 0 during such 
test.  In order to find this out, two actions need to be 
completed. The first one, is to partition the task performed by 

process 0 into two sub-tasks. The first of these sub-tasks 
provides the time needed to send a message from process 0 to 
process 1 without considering the workload to be processed by 
process 0, this time has been called Tmessage-P0. The second sub-
task contribute with the time needed by process 0 to process 
its workload, this time has been called Tworkload-P0.   

Once Tmessage-P0 and Tworkload-P0 have been computed we add 
them up, and the result will be the time needed by process 0 to 
complete its task when no overlap of computation and 
communication has been supported. This time has been called 
Tnon-overlap. 

For the completion of the second step, it is necessary to 
compute the time required by process 0 to complete its task 
considering the possibility of overlap. This time has been 
called Toverlap and it is the time to go from MPI_Isend to 
MPI_Wait on process 0.  

 
Figure 6: Synchronization and Computation Overlap Test Using Workloads. 

 
The workloads used for this test are shown on figure 7. The 

one called work_load( ) has been assigned to process 0, while 
work_load_quater( ) has been assigned to process 1.  The value 
assigned to “maximum” is 100000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Entire Workload and a Quarter of Workload. 
 

Table 7 and table 8 show the results for the previous 
described test. These tests were conducted on OUC, for two 
different message sizes, 10 KB and 65K respectively. 

Each one of the sub-tasks was executed 1000 times, all 
executions were hardcoded and no script was used. A total of 
1000 samples were collected per parameter, and no single 
outlier was removed.  

The percentage of improvement was computed by using 
equation (1) [12], and corresponds to the rightmost column in 
tables 8 and 9. A positive value means that no improvement 
was achieved. Careful observation of tables 8 and 9 will show 
that Toverlap is greater than Tnonoverlap for two different message 
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sizes. This means that the effectiveness of the overlap version 
is not as good as the effectiveness of the non-overlap version.  

It should be possible to observe, that independent of the 
size of the message, the overlap of communication and 
computation is not supported by OUC, when this procedure is 
followed.   

One additional conclusion that can be derived, is that 
support for overlap of synchronization and computation does 
not imply support for overlap of communication and 
computation. 

Table 7: Communication-Computation Overlap results for a Message of 
10KB. 

Statistics NO OVERLAP OVERLAP Eq (1) 
1000  

samples 
Tmessage-P0 

(secs) 
Tworkload-P0 

(secs) 
Tnon-overlap 

(secs) 
Toverlap 
(secs) % 

Minimum 4.60E-05 3.77E-04 4.23E-04 4.23E-04 - 
Maximum 3.03E-04 9.33E-03 9.63E-03 7.11E-03 - 
Average 8.10E-05 4.15E-04 4.96E-04 5.14E-04 3.61 

Stdev 1.10E-05 2.99E-04 3.10E-04 2.40E-04 - 

 

Table 8: Communication-Computation Overlap results for a Message of 
65KB. 

Statistics NO OVERLAP OVERLAP Eq 
(1) 

1000  
samples 

Tmessage-P0 
(secs) 

Tworkload-P0 
(secs) % Toverlap 

(secs) % 

Min 3.31E-04 3.77E-04 7.08E-04 7.77E-04 - 
Max 3.03E-03 9.33E-03 1.24E-02 3.04E-03 - 
Avg 3.90E-04 4.15E-04 8.05E-04 8.32E-04 3.29 

Stdev 1.17E-04 2.99E-04 4.16E-04 9.37E-05 - 

 

2) A Better Test to Evaluate the Overlap of 
Communication with Computation: There are two major 
differences between this test and the one presented in section 
IV (A2). The first major difference is that now both processes 
are using non-blocking instructions. The second and probably 
the most important difference is that now it is possible to 
check if overlap of communication and computation has been 
supported not only in process 0 but also process 1. 

 
This approach compares two versions of the same program. 

The first version named non-overlap, shown in see figure 8, 
does not attempt to achieve overlapping of communication and 
computation.  The second and complementary version shown 
in figure 9, was structured to take advantage of overlap of 
computation and communication. This method is based on 
ideas provided by [12], but important differences are 
implemented. The authors discarded the use of matrix 
multiplication, instead an equally effective workload of 
reduced programming complexity was used. 

In this test, each process will complete its task in a time 
equal to Ttotal. The comparison between the non-overlap 
version and the overlap-version will be used to determine the 
percentage of overlap achieved by the overlap version. The 

percentage of improvement was computed by using equation 
(1) as suggested  by [12]. 

 
Figure 8: Non-Overlap Version. 

 
Figure 9: Overlap Version. 

This approach was executed a total of 1000 times in OUC, 
for a message size of 7KB. No script was used to automatize 
the test, instead its execution was hardcoded in the program. 
This means that Ttotal was recorded 1000 times for process 0 
and a 1000 more for process 1. The statistics associated with 
this test are shown in table 9 and table 10. 

Table 9: Statistics for Process 0–Communication and Computation Overlap - 
7 KB 

Statistics Ttotal for P0  
(secs) Overlap 

1000  
Samples Non-Overlap version Overlap version (%) 

Minimum 5.28E-04 5.23E-04 - 
Maximum 4.66E-02 7.01E-03 - 

Average 1.08E-03 7.95E-04 -26.27 

Stdev 1.68E-03 3.12E-04 - 

Table 10: Statistics for Process 1–Communication and Computation Overlap - 
7 KB 

Statistics Ttotal for P1 
(secs) Overlap 

1000  
Samples Non-Overlap version Overlap version (%) 

Minimum 1.24E-03 9.60E-04 - 
Maximum 9.89E-02 9.27E-03 - 
Average 1.80E-03 1.22E-03 -32.23 

Stdev 3.71E-03 4.11E-04 - 
 

The rightmost column in tables 9 and 10, show a negative 
percentage of improvement for both processes. This means that 
the system has achieved overlap of computation and 
communication [12].  

631630



It is relevant to recall that the main criteria to compute the 
percentage of overlap, is the average value, and no outliers 
have been removed from the set of collected samples. It is also 
valuable to consider that the acquired numerical values are 
small (in the order of milliseconds) and that the slightest 
difference might be interpreted as a reasonable percentage of 
improvement.   

This test was repeated once again on OUC, but this time for 
a message size of 70 KB. The statistics associated with this test 
are shown in table 11 and table 12. 

Table 11: Statistics for Process 0–Communication and Computation Overlap–
70 KB 

Statistics Ttotal for P0  
(secs) Overlap 

1000  
Samples Non-Overlap version Overlap version (%) 

Minimum 1.25E-03 1.23E-03 - 
Maximum 4.86E-02 2.50E-02 - 
Average 6.92E-03 6.65E-03 -3.97 

Stdev 2.69E-03 1.20E-03 - 

Table 12: Statistics for Process 1–Communication and Computation Overlap-
70 KB 

Statistics Ttotal for P1 
(secs) Overlap 

1000  
Samples Non-Overlap version Overlap version (%) 

Minimum 7.07E-03 6.79E-03 - 
Maximum 2.21E-01 6.95E-02 - 
Average 8.45E-03 7.77E-03 -8.07 

Stdev 9.69E-03 2.32E-03 - 
 

For a message size of 70 KB, the percentage of overlap 
achieved decreases drastically if compared to the percentage 
achieved when a message which size is smaller than the system 
socket buffer [3]. It is essential to highlight that only two 
processes were used for this test, and because of that, the 
sequentialization introduced by the network switch is 
minimum.  

CONCLUSIONS  
According to results presented in section IV-B2, MPICH-2 

provides some support for the overlapping of communication 
with computation. However, section IV-B2 presents an overlap 
test where only two processes are used, and the exchange of 
information between two processes does not present the same 
amount of traffic required by a system with a larger number of 
processes.  

It is clear that as the number of participant processes grow, 
the highest the level of sequentialization required to coordinate 
the interchange of information, and it is possible that this might 
reduce the level of overlap [3, 7]. As concluded by [3], overlap 
of communication and computation provided by MPICH-2 
might have poor scalability and its support is also hardware 
dependent.  

Non-blocking instructions in MPICH-2 and non-blocking 
instructions on MPICH-1 provide limited support for 
overlapping of computation and communication. This support 
is directly related to the size of the message and/or the 
cumulative size of all messages to be sent. If the message size 
is larger than the system socket buffer, then non-blocking 
instructions no longer will behave as expected and the support 
for overlap will be negatively impacted [3]. For these reasons, 
choosing the right type of data for an application becomes 
more difficult. 
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