
An Overlap study for Cluster Computing

Eduardo Colmenares1
Department of Computer Science

Midwestern State University
Wichita Falls, Texas

eduardo.colmenares@mwsu.edu

Per Andersen2

High Performance Computing
Center (HPCC)

Texas Tech University
Lubbock, Texas

per.andersen@ttu.edu

Bingyang Wei3

Department of Computer Science
Midwestern State University

Wichita Falls, Texas
bingyang.wei@mwsu.edu

Abstract—Distributed memory systems (DMS) (clusters) are
one of the tools being used by researchers to solve a wide
spectrum of computational intensive problems in a fraction of the
time of a sequential approach. The nature of a DMS does not
enforce intense data sharing among computational nodes, this
will occur if the problem under analysis happens to be data
dependent in nature. The latency associated with dynamic data
sharing in a DMS is well known to increase the total execution
time. One of the possible techniques that can be used to reduce
the negative effects associated with this latency is overlapping. In
this paper we show why a characterization of the overlapping
capabilities of a cluster is important to justify results.

Keywords—cluster; communication-computation overlapping;
synchronization-computation overlapping; latency; data-dependent

I. INTRODUCTION
A very important and commonly used strategy in scenarios

where dynamic data sharing among multiple participant
processes is required is overlapping of communication and
computation. The purpose of overlapping is to contribute to the
reduction of the negative effects associated with the latency
generated by intense data sharing in a multicore environment
by allowing the processes to engage in useful computation
while some additional activities such as communication take
place [13]. The authors in this paper present a study of
overlapping in two different clusters, by using two variants of
overlapping, overlapping of synchronization and computation,
and overlapping of communication and computation. The first
cluster is a multi-user research oriented cluster (MUC), while
the second is a one-user cluster with older technology (OUC).

II. TESTING ENVIRONMENTS
Initially we used two different clusters as our testing

environments. The first cluster corresponds to a multi-user
cluster which provides scientific computational capabilities to a
research community. The second testing environment is a
personal cluster with only one user and a maximum of 9 nodes.

A. Multi User Cluster (MUC)
This cluster has 12TB of public shared lustre storage and

three groups of public and private nodes, all connected by SDR
InfiniBand and Gigabit Ethernet. The quad-core nodes have
Infinihost III Lx (PCI-e) cards, and the older nodes have
Infinihost (PCI-X) cards.

1) Public quad-core (512 cpu, 4.77 TF).
64 nodes with dual quad-core Intel 5345 processors (2.33

GHz) and 12GB of memory each. Designated compute-1-x, 2-
x.

2) Public single-core (128 cpu, 0.82 TF).
64 nodes with dual single-core Intel "Irwindale" processors
(3.2 GHz) and 4 GB of memory each. Designated compute-3-
x, 4-x, 5-x.

3) Public AMD dual-core (8 cpu, .04 TF).
1 node with quad dual-core AMD 8218 processors (2.60 GHz)
and 64GB of memory. Designated compute-8-1

B. One User Cluster (OUC)
Each one of the computational nodes in this cluster has the

following hardware characteristics: one Intel(R) Pentium(R) 4
CPU at 1.70GHz, one 3Com PCI 3c905C Tornado network
card. All the nodes in this cluster are interconnected via a
3Com® Super Stack® 3 Switch 3300 12-Port. Table 1
summarizes the major hardware differences between nodes.

Table 1: Hardware Differences among Nodes for OUC

Node Memory
(MB)

Hard Disk

0, 3 511.46 40020 MB-T340016A, ATA
1 1023.4 40020 MB-T340016A, ATA

2,4, 5 1023.4 20547 MB-MAXTOR 6L020J1, ATA

6 1023.4 40020 MB-WDC WD400BB-
75DEA0, ATA

7, 8 1023.4 40027 MB-MAXTOR 6L040J2, ATA

III. OVERLAP TESTS
Two overlap tests were implemented to characterize both

clusters, MUC and OUC. The first of these tests examines the
support of synchronization with computation, while the second
evaluates the support of overlap of communication with data
transfer.

A. Overlap of Synchronization with Computation
According to [12], overlap of synchronization with

computation in a MPI implementation is supported if a
message can be sent from process A to process B without
requiring a previous synchronization step between A and B.

For this test two processes are considered. Processes 0 and
1, executed in workstations 0 and 1 respectively. The test is

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.103

627

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.103

626

structures as follows; process 0 will send a message to process
1 using a non-blocking send instruction, and process 1 will
receive the message using a blocking receive. The
synchronization between both processes is enforced with a
barrier, as shown in figure 1.

Process 0 returns almost immediately after the MPI_Isend
[7, 8, 10], and proceeds to process its workload before issuing
an MPI_Wait. When process 0 reaches MPI_Wait, the
execution of further instruction at process 0 will be blocked
until the message is totally sent. At the same time, right after
the barrier, process 1 will compute a quarter of the workload
computed by process 0, as soon as process 1 has finished its
quarter of workload, it will block further instructions until the
reception of the message is completed [12]. Figure 1 is based
on a figure shown in [12].

Figure 1: Test for Overlap of Synchronization with Computation.

The completion time of the MPI_Recv right after the

barrier on process 1, will be considered the outcome of this test
[12]. It is possible to infer that the time needed by process 0 to
complete its workload will be more than the time needed by
process 1 to complete the processing of a quarter of the same
workload.

The results will confirm if overlap has been supported or
not. If the completion time of delivery at process 0 is almost
the same time needed by process 1 to compute its quarter of
workload, then overlap has been supported. Different
conclusions are achieved from those other cases where the
completion time is almost equal to the time required by process
0 to process its workload. In cases like this, it is possible to
conclude that overlap has not been supported.

This procedure which we refer to as case-1, will be
executed 1000 times, and the average values of these 1000
executions will be used to generate our conclusions. The code
executed by process 0 has been structured in such a way that it
makes an attempt for overlapping of computation with data
transfer “if supported”.

In order to conclude whether overlap of communication
and computation exists in process 0, the following steps need
to be followed. Step 1 (case-2), remove the workload from
process 0, and send the message 1000 times using MPI_Isend.
The time needed to complete a sending will be saved, this
means that by the end of the 1000 iterations, 1000 execution-
time-samples will be available, and an accurate average value
can be estimated.

Step two (case-3), consider the workload once again,
execute the routine, record the time needed to complete the

processing of a single workload, repeat until you have
collected all 1000 samples, next compute the average time.

Step three, add the average values obtained in case-2 and
case-3. The summation of these two values implies the non-
existence of overlapping, next, compare this no-overlap value
against the value computed where both MPI_Irecv and
workload worked together in the same application (case-1).
Thus, if a difference exists, it is because overlap of
computation and data transfer was supported.

B. Overlap of Data Transfer with Computation
According to [2, 4, 12], a MPI implementation capable of

performing useful computation while data is in transit between
processes is said to support overlap of data transfer with
computation. The percentage of improvement achieved by the
overlap can be computed by using equation (1) [12].

100(%) ×
��

�
�
�

��

�
�
� −

=
nonoverlap

nonoverlapoverlap

T
TT

timprovemen (1)

 This approach is based on a test referenced by [12].
Although based on ideas presented in [12], our approach does
not make use of matrix multiplication; instead the authors
replaced matrix multiplication with a different workload of
reduced programming complexity. In a similar way as
explained in [12], this second overlap procedure consists of
two tests. The first test handles an scenario where the program
has been written in such a way that it will get no benefit from
overlap, it is shown in figure 2, and is called the non-overlap
test.

Figure 2: Non-overlap Test.

Figure 3: Overlap Test.

The second test, covers the same scenario, except it will
make an attempt for overlapping of computation with
communication. In this case, the whole workload has been
divided into two parts, one quarter and three quarters. This
procedure is called the overlap test, and is shown in figure 3.

628627

IV. RESULTS

A. Synchronization and Computation Overlap
1) Using Delays as Workload: The size of the message

sent from process 0 to process 1 was approximately 39.06 KB
or 10000 integers. This technique was carried out 100 times in
both clusters, a script was used to automatize the executions
[9], and its nature is shown in figure 4, which has been taken
from [12] .

Figure 4: Test for Overlap of Synchronization with Computation.

The results are summarized in tables 2 and 3. From these
two tables, it is clear that no overlap of synchronization with
computation is supported by any of these two clusters.

Table 2: Synchronization and Computation Overlap for MUC

Multi User Cluster (MUC)
Collected
Samples

Process Min (secs) Max (secs) Average (secs)

106
0 3.99E+00 4.06E+00 4.00E+00
1 3.99E+00 4.06E+00 4.00E+00

Table 3: Synchronization and Computation Overlap for OUC

One User Cluster (OUC)
Collected
Samples

Process Min (secs) Max (secs) Average (secs)

100
0 3.99E+00 4.01E+00 4.00E+00
1 3.99E+00 4.02E+00 4.00E+00

It is meaningful to mention that both systems, MUC and

OUC have a MPICH2 compiler. In order to find out if the
overlap of synchronization with computation was potentially
hardware related, the same test was executed on a third cluster,
a multi-user Solaris cluster, which we refer to as MSC. This
third cluster uses LAM and a MPICH1 compiler.

Table 4. Synchronization and Computation Overlap for “Solaris-Cluster”

Multi User Solaris Cluster (MSC)
Collected
Samples

Process Min (secs) Max (secs) Average (secs)

100
0 3.99E+00 4.47E+00 4.03E+00
1 1.99E+00 2.05E+00 2.00E+00

Comparing Tables 2, 3, and 4, it is possible to conclude that
support for overlapping of synchronization and computation
existed in the cluster that uses MPICH1, the Solaris cluster.

It is essential to find a reason to justify this behavior, for
such purpose a new test is proposed and implemented. It is
called “Message size sweep”.

2) Message Size Sweep: This test is based on
recommendations and ideas mentioned in [10]. This technique
has some similarities with the previously introduced
synchronization and computation overlap approach, however,
some important modifications are considered.

The first modification is that both processes, process 0 and

process 1 will only use non-blocking instructions, MPI_Isend
and MPI_Irecv respectively. The second consideration is that
process 0 will be the only process with a computational
workload that does not use a delay. Finally, process 1 just
needs to process the MPI_Irecv and then wait for its
completion.

Figure 5 presents the nature of the procedure to be
repeated several times, for different message sizes. The initial
size was 10 KB, with increments of 10 KB, until a final size of
85 KB was reached. The repetition of this core procedure is
what the authors of this paper have named “message size
sweep” and constitutes an original contribution. This
contribution was developed based on comments and ideas
provided by [10], and the nature of the frequency sweep test in
electronics [3].

For process 0, the elapsed time from MPI_Isend to

MPI_Wait has been called TP0. For process 1, the time from
MPI_Irecv to MPI_wait has been called TP1, both are given in
seconds [3]. This test will help to determine if the size of the
message plays a critical role in the support for overlapping of
synchronization with computation.

Figure 5: Core Procedure for the Message Size Sweep Test.

Table 5 shows the results of the proposed “message size
sweep” method in two different clusters. The code used in both
clusters is the same, and the differences in processing time are
consequence of the different computational capabilities
between clusters.

A comparison between both halves of table 5, will lead to
the conclusion that the size of the message plays a relevant role
for the achievement of overlapping of synchronization and
computation.

It is clear that in each system, the size of the buffer used to
send and receive messages has a different limit. If the size of
the message to be sent, is smaller than the limit, the system is

629628

able to support overlap of synchronization with computation,
otherwise the support will not be available [3].

Table 5: Message Size Sweep Results on (MSC) and (OUC)
SOLARIS-CLUSTER - “MPICH1” OUC - “MPICH2”

Message Size
(KB)

TP0
(secs)

TP1
(secs)

TP0
(secs)

TP1
(secs)

10 61.0 1.08E-03 3.8 1.24E-03
20 61.0 1.54E-03 3.8 3.8
30 61.0 1.92E-03 3.8 3.9

40 61.0 2.69E-03 3.8 3.8
50 97.6 3.62E-03 3.8 3.8

60 61.0 2.82E-03 3.8 3.8
70 61.0 61.0 3.8 3.8

80 61.0 61.1 3.8 3.8

The first half of table 5 shows that for the multi-user Solaris
Cluster (MSC), the limit is a value between 60KB and 70KB.
The second half of table 6 shows a limit between 10KB and
20KB for OUC.

According to [7, 10], when non-blocking instructions are
being used to establish communication between processes and
the size of the message is larger than the socket buffer size;
non-blocking instruction will no longer behave as non-blocking
and the support of overlap of synchronization with
computation is no longer available.

The previous finding explains why during the
synchronization and computation overlap test that uses a two,
and four seconds delays, overlap was supported by MSC. This
is shown in table 4, section IV-A1. It is also significant to
mention that the size of the message used for this procedure
was 39.06 KB; and 39.06 KB is greater than the 10 KB limit
supported by OUC, but less than the 70 KB limit supported by
MSC [3].

The synchronization and computation overlap using the 2
seconds and 4 seconds delays was repeated in OUC for a
message size of 10 KB using a script to automatize the
executions [9]. The results are presented in table 6.

Table 6: Synchronization and Computation Overlap for “My Cluster-10 KB”

One User Cluster OUC
Collected
Samples

Process Min (secs) Max (secs) Average (secs)

10
0 3.99 4.01 4.00
1 1.99 2.00 1.99

B. Communication and Computation Overlap
1) Using Computation as Workload and Based on

Synchronization and Computation Overlap Test: According to
[3], the work performed by process 0 during the
synchronization and computation overlap test can also be used
to estimate if some percentage of computation and
communication overlap is achieved by process 0 during such
test. In order to find this out, two actions need to be
completed. The first one, is to partition the task performed by

process 0 into two sub-tasks. The first of these sub-tasks
provides the time needed to send a message from process 0 to
process 1 without considering the workload to be processed by
process 0, this time has been called Tmessage-P0. The second sub-
task contribute with the time needed by process 0 to process
its workload, this time has been called Tworkload-P0.

Once Tmessage-P0 and Tworkload-P0 have been computed we add
them up, and the result will be the time needed by process 0 to
complete its task when no overlap of computation and
communication has been supported. This time has been called
Tnon-overlap.

For the completion of the second step, it is necessary to
compute the time required by process 0 to complete its task
considering the possibility of overlap. This time has been
called Toverlap and it is the time to go from MPI_Isend to
MPI_Wait on process 0.

Figure 6: Synchronization and Computation Overlap Test Using Workloads.

The workloads used for this test are shown on figure 7. The

one called work_load() has been assigned to process 0, while
work_load_quater() has been assigned to process 1. The value
assigned to “maximum” is 100000.

Figure 7: Entire Workload and a Quarter of Workload.

Table 7 and table 8 show the results for the previous
described test. These tests were conducted on OUC, for two
different message sizes, 10 KB and 65K respectively.

Each one of the sub-tasks was executed 1000 times, all
executions were hardcoded and no script was used. A total of
1000 samples were collected per parameter, and no single
outlier was removed.

The percentage of improvement was computed by using
equation (1) [12], and corresponds to the rightmost column in
tables 8 and 9. A positive value means that no improvement
was achieved. Careful observation of tables 8 and 9 will show
that Toverlap is greater than Tnonoverlap for two different message

630629

sizes. This means that the effectiveness of the overlap version
is not as good as the effectiveness of the non-overlap version.

It should be possible to observe, that independent of the
size of the message, the overlap of communication and
computation is not supported by OUC, when this procedure is
followed.

One additional conclusion that can be derived, is that
support for overlap of synchronization and computation does
not imply support for overlap of communication and
computation.

Table 7: Communication-Computation Overlap results for a Message of
10KB.

Statistics NO OVERLAP OVERLAP Eq (1)
1000

samples
Tmessage-P0

(secs)
Tworkload-P0

(secs)
Tnon-overlap

(secs)
Toverlap
(secs) %

Minimum 4.60E-05 3.77E-04 4.23E-04 4.23E-04 -
Maximum 3.03E-04 9.33E-03 9.63E-03 7.11E-03 -
Average 8.10E-05 4.15E-04 4.96E-04 5.14E-04 3.61

Stdev 1.10E-05 2.99E-04 3.10E-04 2.40E-04 -

Table 8: Communication-Computation Overlap results for a Message of
65KB.

Statistics NO OVERLAP OVERLAP Eq
(1)

1000
samples

Tmessage-P0
(secs)

Tworkload-P0
(secs) % Toverlap

(secs) %

Min 3.31E-04 3.77E-04 7.08E-04 7.77E-04 -
Max 3.03E-03 9.33E-03 1.24E-02 3.04E-03 -
Avg 3.90E-04 4.15E-04 8.05E-04 8.32E-04 3.29

Stdev 1.17E-04 2.99E-04 4.16E-04 9.37E-05 -

2) A Better Test to Evaluate the Overlap of
Communication with Computation: There are two major
differences between this test and the one presented in section
IV (A2). The first major difference is that now both processes
are using non-blocking instructions. The second and probably
the most important difference is that now it is possible to
check if overlap of communication and computation has been
supported not only in process 0 but also process 1.

This approach compares two versions of the same program.

The first version named non-overlap, shown in see figure 8,
does not attempt to achieve overlapping of communication and
computation. The second and complementary version shown
in figure 9, was structured to take advantage of overlap of
computation and communication. This method is based on
ideas provided by [12], but important differences are
implemented. The authors discarded the use of matrix
multiplication, instead an equally effective workload of
reduced programming complexity was used.

In this test, each process will complete its task in a time
equal to Ttotal. The comparison between the non-overlap
version and the overlap-version will be used to determine the
percentage of overlap achieved by the overlap version. The

percentage of improvement was computed by using equation
(1) as suggested by [12].

Figure 8: Non-Overlap Version.

Figure 9: Overlap Version.

This approach was executed a total of 1000 times in OUC,
for a message size of 7KB. No script was used to automatize
the test, instead its execution was hardcoded in the program.
This means that Ttotal was recorded 1000 times for process 0
and a 1000 more for process 1. The statistics associated with
this test are shown in table 9 and table 10.

Table 9: Statistics for Process 0–Communication and Computation Overlap -
7 KB

Statistics Ttotal for P0
(secs) Overlap

1000
Samples Non-Overlap version Overlap version (%)

Minimum 5.28E-04 5.23E-04 -
Maximum 4.66E-02 7.01E-03 -

Average 1.08E-03 7.95E-04 -26.27

Stdev 1.68E-03 3.12E-04 -

Table 10: Statistics for Process 1–Communication and Computation Overlap -
7 KB

Statistics Ttotal for P1
(secs) Overlap

1000
Samples Non-Overlap version Overlap version (%)

Minimum 1.24E-03 9.60E-04 -
Maximum 9.89E-02 9.27E-03 -
Average 1.80E-03 1.22E-03 -32.23

Stdev 3.71E-03 4.11E-04 -

The rightmost column in tables 9 and 10, show a negative
percentage of improvement for both processes. This means that
the system has achieved overlap of computation and
communication [12].

631630

It is relevant to recall that the main criteria to compute the
percentage of overlap, is the average value, and no outliers
have been removed from the set of collected samples. It is also
valuable to consider that the acquired numerical values are
small (in the order of milliseconds) and that the slightest
difference might be interpreted as a reasonable percentage of
improvement.

This test was repeated once again on OUC, but this time for
a message size of 70 KB. The statistics associated with this test
are shown in table 11 and table 12.

Table 11: Statistics for Process 0–Communication and Computation Overlap–
70 KB

Statistics Ttotal for P0
(secs) Overlap

1000
Samples Non-Overlap version Overlap version (%)

Minimum 1.25E-03 1.23E-03 -
Maximum 4.86E-02 2.50E-02 -
Average 6.92E-03 6.65E-03 -3.97

Stdev 2.69E-03 1.20E-03 -

Table 12: Statistics for Process 1–Communication and Computation Overlap-
70 KB

Statistics Ttotal for P1
(secs) Overlap

1000
Samples Non-Overlap version Overlap version (%)

Minimum 7.07E-03 6.79E-03 -
Maximum 2.21E-01 6.95E-02 -
Average 8.45E-03 7.77E-03 -8.07

Stdev 9.69E-03 2.32E-03 -

For a message size of 70 KB, the percentage of overlap
achieved decreases drastically if compared to the percentage
achieved when a message which size is smaller than the system
socket buffer [3]. It is essential to highlight that only two
processes were used for this test, and because of that, the
sequentialization introduced by the network switch is
minimum.

CONCLUSIONS
According to results presented in section IV-B2, MPICH-2

provides some support for the overlapping of communication
with computation. However, section IV-B2 presents an overlap
test where only two processes are used, and the exchange of
information between two processes does not present the same
amount of traffic required by a system with a larger number of
processes.

It is clear that as the number of participant processes grow,
the highest the level of sequentialization required to coordinate
the interchange of information, and it is possible that this might
reduce the level of overlap [3, 7]. As concluded by [3], overlap
of communication and computation provided by MPICH-2
might have poor scalability and its support is also hardware
dependent.

Non-blocking instructions in MPICH-2 and non-blocking
instructions on MPICH-1 provide limited support for
overlapping of computation and communication. This support
is directly related to the size of the message and/or the
cumulative size of all messages to be sent. If the message size
is larger than the system socket buffer, then non-blocking
instructions no longer will behave as expected and the support
for overlap will be negatively impacted [3]. For these reasons,
choosing the right type of data for an application becomes
more difficult.

REFERENCES
[1] B. Barret, G. Shipman, and A. Lumsdaine. “Analysis of

Implementation for MPI-2 One-Sided”. In EuroPVM/MPI, 2007,
pp. 242-250.

[2] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. “Optimizing

Bandwith Limited Problems Using One-sided Communication and
Overlap”. Parallel and Distributed Processing Symposium, Apr.
29, 2006.

[3] E. Colmenares, "Overlapping Communication and Computation

with MPI-2 for Floyd's Algorithm," master's thesis, Dept.
Computer Science, Texas Tech University, 2008.

[4] A. Danalis, K. Kim, L. Polloc, and M. Swany. “Transformations to

Parallel Codes for Communication Overlap”. Proc. of the 2005
ACM/IEEE SC|05 Conference. (SC 05), IEEE CS Press, pp 58-58.

[5] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced

Features of the Message-Passing Interface, MIT Press, 1999.

[6] J. Hein, S. Booth and M. Bull, Exchanging Multiple Messages via

MPI, HPCx Consortium, EPCC University of Edinburgh, 2003.

[7] T. Hoefler, A. Lumsdaine, W. Rehm. “Implementation and

performance Analysis of Non-Blocking Collective Operations for
MPI”. International Conference for High Performance
Computing, Networking, Storage and Analysis. Reno, Nevada,
2007.

[8] T. Hoefler, J. Squyres, G. Bosilca, G. Fagg, A. Lumsdaine, and W.

Rehm. “Non-Blocking Collective Operations for MPI-2”.
Presentation at the High Performance Computing Center Stuttgart
(HLRS), Stuttgart, Germany, Dec. 2007.

[9] Rice University - Information Technology. “Advanced Unix

Scripts”, Sep. 2003. Available:
http://www-teaching.physics.ox.ac.uk/Unix+Prog/rice/pdf/unix18.pdf

[10] T. Saif, and M. Parashar. “Understanding The Behavior and

Performance of Non-blocking Communications in MPI”. 10th
International Euro-Par Conference, Italy, 2004, pp.173-182.

[11] L. Schneidenbach, and B. Schnor. “Design Issues in the

Implementation of MPI2 One Sided Communication in Ethernet
Based Networks”. In IASTED International Multi-conference of
Parallel and Distributed Computing and Networks, 2007, pp. 277-
284.

[12] J. White III and S. Bova. (1999). Where is the Overlap? an

Analysis of Popular MPI Implementations. Available:
http://citeseer.ist.psu.edu/297838.html

[13] K. Tomko, H. Subramoni, A. Awan, K. Hamidouche, D.

Pekurouvski, A. Venkatesh, S. Chakrabort, D. Panda. Designing
Non-Blocking Personalized Collectives with Near Perfect Overlap
for RDMA-Enabled Clusters. High Performance Computing,
2015, pp. 434-453.

632631

