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Abstract—This communication presents an evolutionary soft-
ware prototype of a user-centered Highly Efficient Pipelined
Framework, HEP-Frame, to aid the development of sustainable
parallel scientific code with a flexible pipeline structure. HEP-
Frame is the result of a tight collaboration between computational
scientists and software engineers: it aims to improve scientists
coding productivity, ensuring an efficient parallel execution on
a wide set of multicore systems, with both HPC and HTC
techniques. Current prototype complies with the requirements of
an actual scientific code, includes desirable sustainability features
and supports at compile time additional plugin interfaces for
other scientific fields. The porting and development productivity
was assessed and preliminary efficiency results are promising.

Index Terms—High Throughput Computing, Pipeline, Coding
Environment, Execution Efficiency.

I. INTRODUCTION

Computational sciences in the context of this work address

the resolution of complex science and technology problems

through the intensive use of computing resources. This inten-

sive use may address one or both targets: to shorten the time

to get a result, or to to obtain more results per time unit. The

former is known as high performance computing (HPC) while

the latter is commonly known as high throughput computing

(HTC). Scientific applications often include both needs.

A current societal requirement is sustainable computing,

which aims to minimize the cost of using intensive computing

now and in future generations. This goal compels computa-

tional scientists to give higher priority to the efficiency of

their scientific code on any computing platform, applying a

merge of HPC and HTC techniques without compromising

the accuracy and robustness of the software application. The

design of sustainable scientific code in any multicore platform,

either current or in the future, relies on a set of key features:

(i) knowledge of its science/engineering domain, (ii) clear

definition of the application requirements and (iii) adequate

design of sustainable software, both the algorithms and the

data structures, to be efficiently executed on a wide range of

HPC/HTC computing environments.

Common complex scientific applications are related to mod-

eling/simulation and quantitative data analysis and these often

rely on a set of pipelined tasks, where tasks execution may

depend on previous conditions and their execution order may

vary. These flexible pipelined applications can be described

through propositions in linear temporal logic with the structure

displayed in figure 1, where a proposition is a simple or

complex computational task applied to a dataset element and

an optional verification of a given criteria to decide if that

element is further processed or simply discarded.

Fig. 1. Structure of a typical flexible pipelined application.

A computational scientist is the best expert in the do-

main of her/his scientific field and has a clear understanding

of the software requirements under development. However,

she/he often has a limited knowledge of the updated methods

and techniques to develop sustainable parallel code, while

a software engineer may be an expert on software design,

clearly specifying the requirements of a sustainable software

application, but often hardly grasp the end user domain and

his view of the requirements may not match the scientist

view. A successful approach to the development of sustainable

scientific software requires an adequate bridge between the

science/engineering domain and the underlining computing
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environments, a user-centered framework, developed through

a tight cooperation between a (computational) scientist and a

software engineer expert.

Some general purpose libraries and frameworks already aid

the development of parallel code on multicore systems. Li-

braries, such as those in OpenMP [1] or TBB (Intel Threading

Building Blocks) [2], address the workload distribution on

multicore systems but require computing expertise to handle

data consistency, avoid race conditions, and ensure the correct-

ness of the application, features that often lack in scientists.

Frameworks, such as StarPU [3] or Legion [4], dynamically

manage the workload distribution among computing units on

heterogeneous platforms with both multicore CPU and GPU

devices, but require applications to be rewritten according to

their restrictive specifications. They also require a high level

of expertise to take full advantage of the efficiency potential

of these frameworks, and scientists do not feel comfortable

with their learning curve.

A successful approach to the development of sustainable

scientific software requires an adequate bridge between the

science/engineering domain and the underlining computing

environments, a user-centered framework, developed through

a tight cooperation between a (computational) scientist and a

software engineer expert.

Pipelined applications typically have the structure presented

in figure 1. In the context of this work, a proposition is a

computational task, which is applied to a dataset element,

and an evaluation of a given dataset element characteristic

that may restrict the execution of subsequent propositions.

The tasks may be computationally simple or complex, and

the criteria may discard different amounts of dataset elements.

The work presented on this paper is also capable of addressing

performance issues of pipelined applications that do not have

the criteria component.

This communication address an evolutionary software pro-

totype of an Highly Efficient Pipelined Framework, HEP-

Frame, a user-centered framework to aid the development

of sustainable parallel scientific code with a flexible pipeline

structure. HEP-Frame aims to improve scientists coding pro-

ductivity and robustness, while ensuring an efficient parallel

execution of the resulting application on a wide set of mul-

ticore computing platforms. The design complies to the re-

quirements of an actual scientific code (an event data analysis

code in the search of the Higgs Boson, at LIP/CERN1), its

implementation includes the desirable sustainability features,

and it may be later refined. The framework supports at compile

time additional plugin interfaces for other specific scientific

fields, providing an easier and less error prone development

environment. The impact of porting and development produc-

tivity is briefly assessed, and the HPC/HTC efficiency results

of this prototype are presented and evaluated.

The communication is structured as follows: section II

introduces the design features of HEP-Frame and the current

1Laboratório de Instrumentação e Fı́sica Experimental de Partı́culas, LIP, is
an associated laboratory of the European Organization for Nuclear Research,
CERN, which operates the Large Hadron Collider particle accelerator.

prototype; section III presents an actual pipelined application

to evaluate the HEP-Frame; section IV discusses development

productivity issues complemented with performance porta-

bility analysis of the resulting multicore code; section V

concludes the communication with a critical analysis and

suggestions for future developments.

II. THE HEP-FRAME

Two main approaches to development frameworks are cur-

rently claiming to aid the design and deployment of scientific

code: a resource-centered approach, closer to the computing

platforms, stressing efficiency and performance portability, but

forcing the scientists to rewrite the existing code to adapt

it to their constraints, being the most relevance StarPU and

Legion; an alternative user-centered approach that stresses the

interface to domain experts to improve their productivity and

code robustness, at the same time including the desirable

sustainability features. The user-centered HEP-Frame aims to

motivate scientists to adopt a user-friendly framework that

dynamically addresses the efficiency concerns across different

types of parallel computing platforms.

This section presents the design of a user-centered frame-

work that automatically parallelizes scientific pipelined appli-

cations, bridging the gap between code execution efficiency

and development productivity. It provides a user-friendly inter-

face without requiring any specific tuning for each individual

scientific code or computing platform. Optimization efforts

focus on improving both the execution throughput of an input

dataset and the execution time of each element in the dataset,

in offline quantitative analyses. In its final development stage,

HEP-Frame will also address performance issues of compute,

memory and I/O bound applications, through techniques al-

ready present in its design. It can be later extended to process

continuous streams of online data and produce results in real-

time.

Subsection II-A presents the design of the HEP-Frame, in

terms of data structuring, user interface, programming model,

and optimization techniques. Subsection II-B discusses some

efficiency features. Subsection II-C introduces the current

evolutionary prototype of HEP-Frame with a set of already

implemented functionalities.

A. The Design

The framework design focus on the development and effi-

cient execution of compute and memory bound pipelined ap-

plications. It aids the code development, implementing several

application-specific features with an user-friendly interface. It

also automatically produces efficient code, tuned at runtime

for any computing platform, taking advantage of the code

structure and domain knowledge to optimize data processing

throughput, in a transparent way to the user. The structure of

the framework is presented in figure 2.

The framework operates at compile time, by the use of tools

to provide several abstractions to the developer and translate

those abstractions into working code, and at runtime, by imple-

menting several parallelization and optimization mechanisms
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Fig. 2. HEP-Frame modular structure.

to dynamically deal with regular and irregular workloads. The

user is able to create a new application code skeleton through

the Pipelined Application Generator, with all the

files required for the propositions code, configuration, and

the data to be recorded per proposition. The Record Data
Parser automatically uses the latter file to create the required

code to store information for each dataset element specified by

the user. The dataset structure, specified by the user, is parsed

by the Data Structure Interface Generator to

create an interface to hide the complexities of the data structure

from the user, giving the illusion that the information of each

dataset element is stored on global memory. The Specific
Field Interface is a tool that can be integrated with the

framework and can ease the scientists development environ-

ment by providing specific functionalities or by automatically

creating the dataset structure.

The Framework Core encapsulates all functionalities re-

quired to develop the application and efficiently execute the

code. At this stage, the user codes the propositions as func-

tions, considering that they do not receive any inputs and return

a boolean (true if the criteria is met and false otherwise), and

submits them to the framework. When executing the code,

the framework loads the data from the input file to memory,

initialises timers, performs initial parallelism configurations,

and applies the user coded propositions to the each dataset

element. This execution flow is presented in figure 3.

B. Efficiency Features

To embed efficiency features in the final code that the

framework generates, some key approaches must be followed,

including (i) removal of algorithmic and data structures in-

efficiencies, (ii) taking advantage of the underlying parallel

hardware and (iii) adequate ordering of the pipeline tasks

(propositions). The former was already addressed on a dis-

cussion of an actual particle physics pipelined application [5]

and the automatic removal of most reported inefficiencies will

be later included in HEP-Frame.

Two main types of parallelization techniques can be ap-

plied in an application: process intra-dataset elements, which

will favour HPC, or process inter-dataset elements, to favour

Fig. 3. HEP-Frame execution flow.

HTC code. Intra-dataset element optimizations are oriented

to complex processing of each dataset element, which can

be identified and optimized, namely in multicore CPUs or

offloaded to accelerator devices, such as the Intel Xeon Phi or

NVidia GPUs. Inter-dataset element parallelism may be easier

to implement; the absence of dependencies among dataset

elements makes this an embarrassingly parallel problem and

if the code has little dependencies on external libraries the

dataset element processing can be offloaded to accelerator

devices. When the required performance of an application

requires both HPC and HTC optimizations, a balance between

both approaches requires careful study, as discussed ahead.

A flexible pipeline is described in linear temporal logic

as a formula FGP1 ∧ FGP2 ∧ ... ∧ FGPn, where each

proposition Pi is a task in the pipeline, F assumes that a

proposition will eventually be true in the future, and G states

that it will always hold its truth value. Propositions may

have dependencies among them, declared by the user in the

framework, which must be respected. If P2 depends on P1 the

formula changes to FGPn∧...∧FG(P1∧FGP2). This formula

states that the propositions can be executed in any order (the

conjunction is commutative), as long as P2 is executed after

P1. An element from the dataset D has to fulfil the formula

Di |= FGPni ∧ ... ∧ FG(P1i ∧ FGP2i) to pass all tasks in

the pipeline.

In the pipeline flow, the propositions execution order might

have a context to the user, but it may not be the most efficient

from the computational point of view. Propositions with a high

failure probability of the filtering criteria should be placed in

an early stage, while propositions with high execution time

might be best placed later in the pipeline flow. This reordering

of the propositions should be performed dynamically during

the application execution, as the filtering ratio and execution

times are not known at compile time and might vary during

the dataset processing.

The proposition reorder mechanism measures each proposi-

tion execution time and filtering ratio between specified check-

points. An ordering weight is attributed to each proposition

based on the filtering ratio, the execution time and the position
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in the pipeline flow, which is stored in an array. A simplified

starting approach does not account the proposition place in

the pipeline flow, hence the weights are stored in a matrix.

The best proposition order is obtained by finding the path that

passes through all propositions in the matrix, without returning

to the initial position, known as the directional Hamiltonian

path [6]: a path that visits each vertex of a graph exactly

once, an NP-complete problem. The weights for each new

checkpoint consider the best placement of propositions in

the pipeline flow after being reordered, converging to a near

optimal solution.

C. The Prototype

A preliminary prototype of the framework was developed,

and it is currently being used by a research group on particle

physics, which focused on implementing the features required

to aid the development of pipeline code, by providing a

user-friendly interface. Some code optimizations were also

implemented and are discussed later in this section. From

the framework modules presented in subsection II-A, only

the integration with automatic parallelization frameworks for

heterogeneous system was not performed.

The Pipelined Application Generator tool creates a sample

code skeleton based on an application name provided by

the scientist and an input file. This code skeleton contains

the constructor of the main class, the basic input parameters

reading (input event file and output file name for the variables

recorded), a proposition function prototype, and the
main

function. It also creates a second file where the user will later

define the dataset element variables to record per
proposition.

The Record Variable Parser parses this file to check if the

variables exist in the dataset structure. The scientist only has to

write the variable name inside the specified section of the file.

The tool creates the required code to store the information, and

supports scalars, array elements or entire arrays of any type. It

is also possible to specify simple arithmetic operations, such

as a[0] * a[1] - b, where the expression is computed

and then stored in a data structure with the appropriate type

to avoid losing numeric precision. An interface for high

energy particle physics was developed, which provides a set

of functionalities, interaction with specific libraries, and an

automatic data structure creation based on a given input file

for the application.

The Framework Core implements an execution flow where

the data is loaded into a specific structure and processed.

It is planned to later implement a stream-like flow, where

the dataset elements are being loaded simultaneously to the

processing of other events, and at that stage a more suitable

data structure will be used. The propositions function pointers

are stored into an array and are executed in their original order

by the loop method. These details are hidden from the user.

Inter-dataset elements parallelization was adopted in a first

stage, using OpenMP to manage the threads among the cores

of the CPUs. Due to the irregular nature of this domain, a

dynamic scheduler was used to perform the load balancing

among threads. The data to be saved for each
proposition

is stored locally to each thread, and is merged after the

processing of the entire dataset to minimize synchronizations.

Intra-dataset elements can be performed by either parallelizing

the execution of a complex proposition or executing multiple

propositions simultaneously. The former requires data struc-

tures to be created dynamically to store intermediate results,

thus applying the same proposition simultaneously to multiple

dataset elements, and the latter may not provide performance

improvements, as most propositions execution time is very

small and the overhead would restrict the performance. This

two alternatives will be addressed in later evolutions of the

HEP-Frame prototype.

HEP-Frame implements a backtracking algorithm, whose

flow is presented in figure 4, to obtain the best proposition
order with the simplified design presented in subsection II-A.

The paths where proposition dependencies are violated are

interpreted with an infinite cost. The user has the option to

save the best proposition order to be later loaded as an initial

order for other executions of the application.

Fig. 4. Proposition reorder backtracking algorithm.

III. AN ACTUAL CODE TO EVALUATE HEP-FRAME

An actual pipelined scientific code was selected to assess

the HEP-Frame as a development aid and to evaluate its

performance portability: a particle physics event data analysis

after a proton beam collision at CERN, the ttH_dilep
application [5]. Following the discovery of the Higgs boson

at CERN, one of the searches conducted at the LHC is the

study of the associated production of top quarks together with

Higgs bosons (tt̄H) [7]. This search has been carried on by

both ATLAS [8] and CMS [9] at the LHC and it is of crucial

importance to understand the couplings of the top quarks to the

Higgs boson. Figure 5 represents the final state topology of a

proton beam collision for the tt̄H production. The experiments

can record the characteristics of the bottom quarks (detected as

a jet of particles) and the two leptons (muon or electron), but
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not the neutrinos, since these do not interact with the detector.

However, the top quark reconstruction requires the neutrinos,

so their characteristics are analytically determined with the

known information of the system, through a kinematical

reconstruction.

Fig. 5. Schematic representation of the tt̄ system and Higgs boson decay.

The ttH_dilep was developed to perform this analysis

and has 18 stages to filter out the measured results that do

not comply with the expectations (here referred to as propo-
sitions), with the kinematical reconstruction being the most

computationally intensive. To further improve the accuracy

of this reconstruction, the detector experimental resolution

(±1%) was considered during the computation, through 1024

random variations of the measured data with its magnitude.

From all variations within an event, only the one that best fits

the theoretical model is chosen, improving the final analysis

quality.

IV. RESULTS AND DISCUSSION

The porting of a real case study (the ttH_dilep described

in section III) into the proof of concept framework did not

involve the computational scientist, but the prototype was

reviewed and assessed by the scientist as an end-user, who

ported his 4-year legacy code into the HEP-Frame in just

4 hours, after a 15 minute crash-course, without requiring

substantial changes to the original code. The full functional

framework will not require a learning curve longer than half an

hour and provides relevant development aids, namely creation

of data structures and their access, based on the input data file,

automatic generation of domain specify functions, including

file reading/writing and common statistical operations, and

a guarantee of functional (and efficiency) portability of the

supplied code across different computing platforms, in time

and space. The code of a pipelined application can easily be

modified at each computational task or at the filtering criteria

at each proposition.

An optimized parallel implementation of the pipelined ap-

plication used as case study, previously described in [5], com-

bines both HPC and HTC approaches. The former improves

the performance of a single event (in this context an event is

the processing of a single dataset element), by parallelizing

the execution of the heaviest propositions, while the latter

improves the event throughput with multiple simultaneous ex-

ecution of events. The results shown in figure 6 combine both

HTC and HPC approaches, and show that it is more efficient

to explore an HTC approach versus HPC, although the best

efficiency results will need both approaches. It is also shown

that hardware multithreading on CPU devices only improves

the performance if both approaches are used simultaneously.

Therefore, the initial HEP-Frame prototype mainly addresses

the HTC approach, with promising performance results, and

will soon be improved by implementing HPC features and

other tested optimizations described in [5].

Fig. 6. Speedup for an hybrid multiprocess/multithread custom parallelization
of ttH_dilep on a dual socket system with 10-core Intel Xeon E5-2670v2.

The performance portability of HEP-Frame was studied on

different dual-socket computing nodes. The execution times of

the original sequential ttH_dilep and the version ported to

HEP-Frame are presented in table I. The K-best measurement

scheme was adopted [10], with K set to 5 and a 5% tolerance,

to ensure that only the best, but consistent, time measurements

are considered. The number of threads is automatically set by

the framework to the number of physical cores in both CPU

devices, without any tuning by the user.

TABLE I
EXECUTION TIMES OF THE SEQUENTIAL AND PARALLEL TTH_DILEP

WITH HEP-FRAME.

Intel Xeon E5520 X5650 E5-2650v2 E5-2670v2 E5-2695v2
μArchitecture Nehalem Nehalem Ivy Bridge Ivy Bridge Ivy Bridge
#Cores 2 x 4 2 x 6 2 x 8 2 x 10 2 x 12
Clock Freq. 2.27 GHz 2.67 GHz 2.6 GHz 2.5 GHz 2.4 GHz

Sequential
Exec. Time (s) 215 196 175 180 183

Parallel
Exec. Time (s) 45 30 23 22 23

The HTC parallelization approach in HEP-Frame improves

the event throughput up to 8 times on a dual 10-core system

(20 events), when compared to the sequential version (figure

7). This improvement still lies considerable short when com-

pared with the version without HEP-Frame (figure 6, 50 times

faster with 10 events with 2 threads/event). This is due to

the sequential nature of the different implementations of the

I/O operations (these are still sequential operations in current
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TABLE II
CHARACTERIZATION OF THE 18 TTH_DILEP propositions.

Execution Time (ns) Dataset Elements that Pass
1 : ∼ 108 1 : ∼ 50%

1 : ∼ 106 1 : ∼ 63%

1 : ∼ 104 1 : ∼ 94%

2 : ∼ 5 ∗ 103 15 : >99%

13 : <103 -

HEP-Frame prototype) and the merge of results at the end

was not accounted in the version without HEP-Frame. The use

of simultaneous multithread at each core may also be worth

considering later. The use of hardware accelerators to improve

the performance of specific propositions is being studied, with

the adoption of specialized frameworks, such as Legion, to

manage irregular load balancing. The goal is to identify at

compile time propositions whose code is suitable to execute

on such devices, and at runtime offload only the ones that

require intensive computing.

Fig. 7. Event throughput and CPU efficiency with HEP-Frame.

The properties of the propositions in the actual code used

as case study does not show the potential of the propositions
reorder mechanism: the range of the propositions execution

time is too large (6 orders of magnitude) and they do not filter

a substantial amount of dataset elements, as shown in table II.

However, for datasets that require more than 100 reorders the

performance already improves by more than 70%.

V. CONCLUSIONS

This communication describes HEP-Frame, a user-centered

framework that aids scientists to improve coding productivity,

while ensuring efficient parallel execution of the application

on various computing platforms, in a way transparent to the

end-user. A particle physics event data analysis was used as an

actual case study, due to its suitable computational features.

HEP-Frame enables scientific code to be easier maintained

(write once, efficiently runs forever) while supporting the

development of more complex algorithms to improve the

analysis accuracy due with a better data processing throughput.

The coding productivity of HEP-Frame was assessed by

measuring the time of porting an event analysis application

to the framework by its physicist developer. The expected

learning curve of the final version of the framework will

take no longer than 30 minutes. The performance of the

case study was improved by up to 8x in a dual socket

system, without parallelization of heavy I/O functions. Results

also sowed that HEP-Frame ports the efficiency of pipelined

applications on different computing platforms. Parallelization

inefficiencies were already identified on the original code,

namely on the concurrent access to the data structure and

at the merge of the final results of each thread, and will be

addressed in future version of the framework. The feasibility of

automatic offloading of computationally intensive propositions

to hardware accelerators is currently being assessed.
The proposition reorder mechanism applied to an adverse

case study showed a performance improvement of 70% over

the original pipeline flow. The implemented mechanism con-

verges to a near optimum solution and can be further im-

proved.
The best performance of pipelined applications is achieved

through hybrid HPC/HTC approaches, as preliminary results

showed in [5]. Further research is required to evaluate how this

two types of parallelization techniques interact and to search

for an heuristic to be used in different pipelined applications.

A preliminary automatic hybrid parallelization mechanism is

expected in the next version of HEP-Frame, together with

the inclusion of heterogeneous computing capabilities (with

accelerators).
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