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Abstract—Today, parallel selection algorithms that run
on Graphical Processing Units (GPUs) hold great promise
in providing even more computational power than that of
conventional CPUs. To quantify these gains, we examined a
new parallel selection algorithm to see exactly what its vast
number of simple, data parallel, multithreaded cores meant for
performance times, using the current generation of NVIDIA
GPUs. Specifically, our team tested how we could utilize a
GPU to select elements from a massive array that met specific
criteria and store their indices in a target array for additional
processing. In this paper, we report optimization techniques
and road blocks encountered. Overall, the experimental results
demonstrate that our implementation performs an average
of 3.67 times faster than Thrust, an open-source parallel
algorithms library.
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I. INTRODUCTION

Selection, also known as stream compaction or filtering,
is a common programming concept that has a wide range
of applications in the area of statistics, database software,
artificial intelligence, image processing, and simulations
[11[2][3]. It produces a smaller output array, containing only
wanted elements from the input array made up of the mixed
elements. With the tremendous amount of data elements
to be processed, better performance becomes a key factor
in implementing these algorithms. Therefore, exploiting the
availability and the power of multiprocessors to speed up
the execution is of considerable interest.

In the past few years, modern Graphics Processing Units
(GPUs) have been increasingly used together with CPUs to
accelerate a broad array of scientific computations in so-
called heterogeneous computing[4]. It is now much more
convenient to create application software that will run on
current GPUs for processing massively large amounts of
data, without the need to write low-level assembly lan-
guage code. Furthermore, a selection of accelerated, high
performance libraries allows an easy way of adding GPU-
acceleration to the wide array of scientific applications. One
can get even more flexibility and speed by writing his or
her own GPU-accelerated programs using the CUDA Thrust
Library[5], which provides a comprehensive development
environment for C and C++ developers.
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As shown in Figure 1, NVIDIA Kepler GPUs consist
of a scalable number of streaming multiprocessors (SMXs),
each containing a group of streaming processors (SPs) or
cores to execute the light-weighted threads, warp by warp,
using the Single Instruction, Multiple Threads (SIMT) style
(term coined by NVIDIA manufacturer).

In addition to the main memory on the CPU mother-
board, the GPU device has its own off-chip device memory
(i.e. global memory). The kernel function, which is executed
on the device, is composed of a grid of threads. Note that a
grid is divided into a set of blocks and each block contains
multiple warps of threads. Blocks are distributed evenly
to the different SMXs to run. Furthermore, registers and
shared memory in a SMX are on-chip memory and can be
accessed very fast. They are per-block resources and are not
released until all the threads in the block finish execution.
Each SMX also has 32 special function units (SFUs) for
fast approximate transcendental operations, like __cosf(),
__expf(), etc. and 32 load/store (LD/ST) units for memory
read/write operations.
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Figure 1: Kepler GPU block diagram

In this paper, we focused on the design and imple-
mentation of a new parallel selection algorithm by using
Kepler’s shuffle instructions which allow threads within a
warp to exchange data. We also compared its performance
with other parallel selection methods on CUDA-enabled
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GPUs. All tests were performed using CUDA Toolkit on
a PC with a consumer grade NVIDIA GeForce GTX 770
GPU and also on the Ohio Supercomputer Center’s newest
cluster Ruby, outfitted with professional NVIDIA Tesla K40
GPUs. Both of these cards belong to the NVIDIA Kepler[6],
a cutting-edge high performance computing architecture.
The empirical results show that our algorithm, which also
preserve the relative order of the input elements, performs
much faster than the Thrust library.

The organization of this paper is as follows. Section 2
describes related work. Section 3 goes in to details of our
implementation and finally, in Section 4, the experiments
and the results for performance evaluation are presented.
We give a short conclusion in Section 5.

II. RELATED WORK

Sequential selection is a common function and it is
available in many programming languages and/or libraries.
However, to implement the parallel selection, the challenging
is how to determine the indices of the selected elements
in the destination array. In general, the approaches to per-
forming the stream compaction on multiprocessors can be
classified into two categories: one is based on the atomic
operation, while the other is based on the list ranking using
the prefix-sum algorithm [7], as described below in detail.

A. Atomic operation based approaches

In the former approach, we can use an index counter,
which will be incremented by one for each newly selected
element. Since many threads share the counter, the addition
has to be an atomic operation. This can be done by using
CUDA atomiclnc() function. Note that a CUDA atomic
function performs a read-modify- write atomic operation
on one 32-bit or 64-bit word residing in global or shared
memory.

The main problem with this approach is that these
atomic operations become a major bottleneck when the input
contains a large amount of elements that pass our selection
criteria. This is due to the very large number of threads
competing to increment the single counter inside the global
memory.

One possible improvement is to use shared memory
atomics. This will essentially decrease the number of atomic
collisions to a block size. Unfortunately, its performance still
suffers from the thread synchronization. As demonstrated in
the Experimental Results Section, execution time for both
algorithms is directly proportional to the number of passing
items.

A modified approach is discussed in the article
”CUDA Pro Tip: Optimized Filtering with Warp-Aggregated

610

Atomics”[8], written by researcher A. Adinetz. In addition
to using the aggregated atomicAdd(), it uses the primitives
__ballot(), __ffs() and __popc() (Compute Capability 2.0
and above) to perform intra-warp scan[9] and also uses the
warp shuffle intrinsic[10] which is available on the Kepler
and later GPUs (Compute Capability 3.0 and above) to
broadcast the group index value to all of the threads within
a warp. His implementation of atomic function with warp
aggregation is isolated from the rest of the application, and
can be used as a drop-in replacement for existing code that
use CUDA atomics. Furthermore, since each warp will issue
at most one atomicAdd() request, its execution time will not
be proportional to the number of passing elements and hence
can be reduced greatly. Note that these three algorithms
based on atomic operation do not preserve the relative order
of the input elements, thus might not be suitable for certain
applications.

B. List ranking based approaches

For the latter approach, one such implementation is
provided by the Thrust library, specifically a method called
copy_if()[11], which is a fairly good implementation, simple
to use and may prove to be the best choice for most users
needing this operation. By digging into its implementation
details, we found that it uses 2-level sums. First, it calculates
the number of selected elements within the block (using
index counter inside the shared memory) and stores the
result in an intermediate array of size N / block_size (N is
the total number of input elements) in the global memory.
Then it performs a parallel prefix sum on this array and
uses the outcome in the final phase to determine the indices
of output elements. As a result, the relative order of the
input elements is also preserved. Furthermore, as shown in
the later section, Thrust algorithm execution time does not
depend on the number of passing elements. Our previous
work in [12] is also based on the list-ranking approach.
It used the __ballot() and __popc() to find the offset of a
selected element in a warp quickly. We also optimized the
code to let each thread handle many elements to increase
the ratio of computation/communication. It performs much
faster than the Thrust library, but slower than the Adinetz
algorithm.

III. ANEW ALGORITHM

The following algorithm implementation consists of
three major phases. The phase 1 kernel starts by evaluating
a predicate for each subgroup of 32 elements and saving the
result into a predicate array (see Figure 2). The number of
passing elements in the subgroup is also determined (using
__popc() instruction) and saved inside the register variable
cnt for each thread in the warp. This operation is performed
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Figure 2: Phase la: fill predicate and counter arrays
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cnt + __shil_down(ent, 2)

cnt + __shil_down(cnt, 1)

By the end of this iteration ent of lane 0 will contain the number of
selecied elements for the whole warp (1024 element group).
It is saved inta the global counter array:

counterfwarp_id] = cnt

Figure 3: Phase 1b: perform reduction on cnt values

__device_ inline int lane id{void) { return threadIdx.x % WARP_S2; )}

_global  void alg?_kernel phasel(float *input,

od i *counter,
ed int *pred,
percent, const
unsigned int num_items)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= (num_items >> 5) )} // divide by 32
return;

int lnid = lane id{);
int warp id = tid >> 5; // global warp number

igned int mask;

int ent;

for(int i = 0; 4 < 32 ; i44) {
mask = _ ballot(input[(warp id<<l10)+4(i<<5)+lnid] <= percent);

if (lnid == 0)
pred( (warp_id<<5)+Li] = mask;

if (lnid == i)

ent =

pope (mask) ;

/ para reduction to a sum of 1024 elements

#pragma unrol
for (int offset = 16 ; offset > 0; offset >>= 1)
cnt += _ shfl down(cnt, offset);
if (lnid == 0)
counter[warp id] = ent; // store the sum of the group

Figure 4: Phase 1 kernel
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for 32 iterations. As a result, each warp processes the total
number of 1024 elements.

When this loop completes, a parallel reduction operation
is performed on the cnt register values, resulting in the
number of selected elements for each 1024-element group
(see Figure 3). Note that __shfl_down() instruction was used,
that essentially allows passing down register values from the
lane with higher ID relative to the caller lane. The result is
saved in the counter array. The detail of the code for the
Phase 1 Kernel can be found in Figure 4.

In phase 2, a prefix sum operation is applied to
the counter array (Figure 5 ). As a result, there are
counter[k-1] valid elements before the group k. Note that
for this operation we simply used Thrust implementation
thrust::inclusive_scan(x), which was fast enough and suffi-
cient for our purposes.

counter[] 1 0 j3. 4244 1 Q !

thrust: iinclusive_scan()

JL

counter[] .4 | 1 ] 4

5110111'1!‘12
Figure 5: Phase 2: perform inclusive scan operation on the
counter array

Phase 3 produces the final result. The process begins by
reading the predicate array that was produced in the phase
1. The number of set bits is determined (using __popc()
instruction) for each predicate value and saved into the cnt
register for each lane inside the warp (Figure 6).

Warp 0
.
r 1
pred(l: [0 [1]2]a] [a1]
iteration0: |0 |1 |2 |3 | |31
if lane_id == 0:
predicate) . = prediwarp_id << 5 + iteration]
CMManeg = __popeo(predicate)
teration1: |0 |1 |2 |3 | |31
if lane_id == 1:
predicate ;o = pred[warp_id << 5 + iteration]
CNljgney = _popci{predicate)
iteration 31: |0 |1 |2 |3 | |31
if lane_id == 31:
predicate|anes; = pred[warp_id << 5 + iteration]
CMliangs1 = . popc(predicate)

Figure 6: Phase 3a: get bit counts for the predicate values

To calculate the subgroup index, the prefix sum operation
is performed on these cnt values (Figure 7). After this



operation, each cnt i (for thread i) holds the number of valid
elements before the ith subgroup. Note, for this operation we
used __shfl_up() instruction, which allows passing register
values form the lane with lower ID relative to the caller lane.

NNNNINUNININY
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cont + __shfl_up(ent, 1)

cnt+ __shfl_upfent, 2)

ent+ __ shil_up(ent, 4)

ent+ __ shil_uplent, 32)

Figure 7: Phase 3b: perform prefix sum on cnt values

As a result, three indexes were produced — one for the
1024-element group (i.e. global_index), an index for each
32-element subgroup and since we have saved all predicate
values — individual index within this 32- element subgroup
can be calculated. This information essentially allows us to
determine the indices of the valid elements in the destination
array (Figure 8). Note, both kernels use grid configuration
as follows: ”dim3 grid((N / 32 + block.x - 1) / block.”. The
detail of the code for the Phase 3 Kernel can be found in
Figure 9.

warp_id =1

cowunter |: ambaahadod bod

global_index = counterfwarp_id - 1]
{counterfk] holds number of selected elemenis
before the group k + 1)

(32iterations): [0 4142 |3 | 31
ont: |0y 12 |3 | |31
predmask: 1041423 131
mask = predmasksgeaion
subgroup_index = ety aion.q
current_selected_element_index = __popc{mask & ({1 << Inid) - 1))
for each selected element:

output_index: global_index + subgroup_index + current_selected_element_index
outputjoutput_index] = warp_id << 10 + iteration << 5 + lane_id;

Figure 8: Phase 3c: calculate the final indexes in the output
array

IV. EXPERIMENTAL RESULTS

We compared our implementation with the Thrust
copy_if() method and also the Adinetz version. The follow-
ing experiments were conducted on one of the nodes in the
Ruby cluster provided by the Ohio Supercomputer Center.
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44 /* PHASE}: final res
45 _ global__ wvoid alg7 kernel p
46

int Toutput,

50 int tid = blockIdx.x * blockDiam.x + threadIdx.x;
51 if (tid >= (num items >> 5) ) // divide by 32
31 return;

Lk ]

54 int lnid = lane_id();

55 int warp id = tid »>> 5; // global warp nusher
56

57 unsigned int predmask;

58 int ent;

LL]

B0 for(int L =0; 1 < 32 ; it {

61 if (lnid
/ each
predaask = pred[(warp L
ent = _ pope(predmask);

thread take turns

1] 1

B6 }

87 // parallal prefix sum
B8

B3 #

t offset=1; offset<il; offget<<=l) {
T int n = _ shfl up(cnt, offset) ;
if (lnid >= offget) cnt 4= n;

= counter|warp id -1];

i<32;

for(int 1 = 0; i) {

int mask = _ shfl{predmask, i); //
int sub_group index = 0;

o)

broadcast from thr i

if (1>

if (mask & (1 << lnid ) ) // each thread extrac
output[global irdex + sub_grou;
_popc(mask & ([1 << lnid) = 1))] = (warp_id<<

Figure 9: Phase 3 Kernel

The GPU used in this particular computing platform was the
NVIDIA Tesla K40m, which contains 15 multiprocessors
(2880 CUDA cores in total) and 12GB GDDRS5 memory.
A warp, the scheduling unit in CUDA, has 32 threads that
perform SIMT computation on a multiprocessor. The device
programs use a CUDA compiler driver 7.0.

In the first experiment, we measured the execution times
for all of the algorithms by varying the number of threads
per block. This allowed us to select the optimal kernel
configuration for our future experiments (see Figure 10).
An interesting point is that performance for the global
counter version does not depend on the kernel configuration,
while the algorithm using shared memory could be further
optimized by choosing appropriate block size — we found
that 128 threads per block work best for Tesla K40m device.
This also proved to be the case for the advanced algorithm.

Note that shared memory implementation requires mul-
tiple block level synchronization barriers (__syncthreads()
function) in order to avoid race conditions. This essentially
makes all of the threads in the block wait for the section
(before the barrier) to be completed before any threads
are allowed to proceed. Thus by doubling the block size,
we dramatically increase the number of threads that would
potentially compete in this scenario. On the other hand, a
slight decrease in performance when dipping below 128
threads per block could be explained by the fact that our



a0

BO

70

60

Time, ms

512 1024

[}

‘|I lll |I| “I
3z 64 128 256

Block dimensions, x

W Selection with single global counter B Selection with counter in shared memory

® adinetz's version Advanced paralld sedection algorithm

Figure 10: Performance metrics for various kernel block
dimensions tested (N = 67,108,864)

arget architecture has 4 warp schedulers, which means that
there are at most 4 active warps per SMX at any given time.
In other words, a block size of 128 threads will make all 4
warps schedulers busy when the block gets assigned to the
processor and a block size of 32 threads would leave 2 warp
schedulers out of work.

We measured the execution performance of these al-
gorithms by varying the number of items being selected
(Figure 11). We chose the block size of 128 threads. Note,
for this experiment we used uniform random distribution
for our data source. It can be seen that the atomic operation
based approaches using single global counter and counter
in the shared memory can perform better than the Thrust
library only when the percentage p is very small because
their execution times are proportional to the number of the
selected elements. The running times of the Thrust copy_if(),
Adinetz’ and our both methods remain almost unchanged
because they are independent of the percentage p (i.e. the
number of valid elements). Furthermore, our new algorithm
outperforms the Thrust copy_if(), our previous implemen-
tation in [12], and Adinetz’ version. More importantly, the
new algorithm can be 3.67 times faster than Thrust. Because
both are list-ranking based algorithms, our method suggests
a feasible improved implementation for the future version
of the Thrust copy_if().

We also measured algorithm performance based on the
input size. As shown in Figure 12, the performance of all
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Figure 13: Execution time breakdown for the new algorithm

tested algorithms was directly proportional to the number of
elements while the Thrust implementation was affected to
a higher degree. As mentioned before, the Adinetz’ method
will issue at most one atomicAdd() for each warp and hence
its execution time depends only on the number of warps
(i.e. the input size / warp size), not the number of selected
elements.

For our final experiment, we measured the execution
breakdown times for each three phases of our improved al-
gorithm, as illustrated in Figure 13. Phases 1 and 3 were the
biggest contributors to overall performance of the algorithm,
which is also why we chose not to implement the inclusive
scan operation for phase 2 ourselves. As compared with the
experimental result of the previous implementation reported
in [12], the execution times of phase 1 and phase 3 were
greatly reduced. This is because the new algorithm exploits
the shuffle operations to calculate the reduction and prefix
sum which result in reduced size of the intermediate counter
array and fewer number of reads/writes of the intermediate
array elements.

V. CONCLUSION

Our work represents an advanced implementation of
a parallel selection algorithm. The experiment results are
encouraging, as we were able to achieve 3.67 times better
performance than what is possible using Thrust implementa-
tion. Furthermore, our new algorithm not only outperforms
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the Adinetz’ version, but also preserves the order of the
selected elements and this feature, we believe, is more
important for most current applications.
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