
C-Theta*: Cluster based Path-Planning on Grids

Pramod Mendonca
School of Computer Science

University of Windsor
Windsor Ontario, Canada
mendoncp@uwindsor.ca

Scott Goodwin
School of Computer Science

University of Windsor
Windsor Ontario, Canada
sgoodwin@uwindsor.ca

Abstract— Path planning is used to solve the problem of
moving an agent towards a destination. Theta* is a well know
any angle path planning algorithm which works by utilizing
line of sight checks during the search. To find shorter paths
that are not constraint to grid edges, there is a compromise in
the time taken to reach the destination which makes Theta*
undesirable as the grid map size increases.
To solve this problem and enhance the search performance we
propose a method which divides a map into high and low
density regions using an unsupervised clustering algorithm
based on the number of blocked nodes on a grid map.
After comparing the proposed model with theta* the results
show the time taken to find the shortest path to be reduced
significantly in comparison with Theta* while the path length
will remain as short as Theta*.

Keywords—path finding; games; clustering; path planning;

I. INTRODUCTION
Path planning is one spoke in the wheel of artificial
intelligence with the aim of finding the shortest path
between two points on a given grid map. It is applied in a lot
of domains such as robotics, logistics and computer games.
Path planning introduces and tries to solve many challenges
faced while trying to plot the most optimal and desirable
path from a source to a destination, for example in a
computer game the path for an agent to traverse would need
to be generated in milliseconds if not nanoseconds.
Consider Age of Empires a strategy game for which paths
have to be plotted for all agents in the game, AOE (Age of
Empires) has a player limit of 8 and each player has an army
of 200 agents, paths have to be plotted and planned for each
of these agents which totals to 1600 (worst case) which is an
extremely intensive CPU task.
Dynamic changes to the terrain need to be compensated
while plotting an optimal path, for example if a wall is an
obstacle in the search space it is represented as a blocked
region, removing this wall leads to changing the label to
unblocked. Passing information among agents to avoid
collision among themselves while plotting the path from
source to destination is another problem. Another area is
path smoothing and elimination of heading changes in free

space to provide a realistic feel of an agent traversing from
source to destination.
To solve many of these problems the most robust and
commercially used path finding algorithm is A* and variant
of A* like D*Lite which is used to find paths dynamic
environment[4] or JPS(Jump Point Search) which is based
on pruning techniques to find the path[3].
To solve the path finding problems the real world
environment is usually represented as a grid. They are the
most popular data structures used to test path finding
algorithms because they are not complex and can be
generated quickly unlike nav- mesh and waypoint which are
complex and need hand tuning. Path finding algorithms
makes use of the information provided by the underlying
grid which is a special case of a graph to traverse through
the environment, Traditional path finding algorithms like
A* restricts the path movement of an agent along the grid
edges which translates the movement of an agent from one
tile to the next on a grid to 4-way or 8-way.Though these
paths are optimal they are not the true shortest paths as
shown in figure 1.1[1].
This restriction led to the introduction of any angle path
planning on grids.

Fig. 1: The red line represents the grid constrained path while the blue line

represents the true shortest path.

One of the earliest algorithms to address this issue was Field
D*[2] and then Theta*[1]. We focus our research on Theta*
which uses line of sight checks to improve path quality and
remove the restriction of traversal along grid edges it always
provides a path shorter than A* but takes more time than A*
and this increases as the grid size increases.
In this paper we introduce C-Theta*, this is a variant of
Theta* which tries to maintain the properties of its parent

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.92

606

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.92

605

and simultaneously improve the computational time, to
achieve this C-Theta* uses additional information provided
by clustering regions into high and low density areas based
of the number of blocked nodes on the given grid map while
performing the search from source to destination.
The rest of this paper is organized as follows. In the next
section related work in the field of any angle path finding is
briefly reviewed. In section 3 we introduce our proposed
algorithm in detail. In section 4 the proposed will be
compared with other algorithms, and our conclusions will
be discussed in last section.

II. RELATED WORK
Several variants of A* have been developed to address the
issue of any angle path finding using line of sight checks to
determine the path ahead and unlike A* which considers the
center of a respective tile of a grid, in any angle path finding
the grid corners are considered for node expansion from
source to destination.
A* evaluates a nodes desirability based on an evaluating
function which takes into account the actual cost and
estimated cost to determine the best step to take towards a
goal node. Fig: 2 displays the pseudo code for A*. [5][1]

Fig. 2: Pseudo - Code A*.

Theta* is another path finding algorithm which is based on
A*. To eliminate the restriction of traversal along grid edges

it uses line of sight checks. It works by connecting nodes on
a grid until it reaches a convex corner. (A corner is turning
point along a blocked node.). The only difference in the
algorithm is in the NodeValue method of the A* algorithm
pseudo code defined above which considers two decisions
while making a move from one node to the next to reach the
goal node.
For the first decision, assume a node‘s’ under evaluation
during the search process. Theta* considers the path from the
start node to the parent of node s and from node s’ to the
parent of node s in a straight line i.e. c (parent(s), s’) = cost
of travel from parent(s) to s’. Where the actual cost travel is
g (parent(s) + c (parent(s), s’)). This decision makes it
possible for any angle traversal along a grid map. [1]

In the second Decision, the path is similar to the path
considered by A* algorithm i.e. from a node‘s’ to s’ in a
straight line. Resulting in the actual cost of traversal g(s) +
c(s, s’). [1]

This allows a node s’ whose parent is not anchored to its
predecessor. Figure 3 explains the pseudo-code of Theta*.

Fig. 3: Pseudo-code for Theta*

Theta* always finds paths that are marginally longer that the
actual shortest path and are shorter than A* but the time
taken is more than A*.

Lazy Theta* to reduce the number of line of sight checks a
lazy initialization technique is introduced which performs
one line of sight check per expanded node unlike Theta*
which performs line of sight checks for every unexpanded
visible node. [6]

Anya Any angle path finding algorithms are constrained to
traversal along grid edges but are not optimal, to introduce
an online optimal any angle path finding algorithm ANYA
was introduced. ANYA considers different states or intervals
to reach the goal where a point is considered to represent the

607606

f- value of a set of points. For each interval or state a
representative f- value is calculated until the goal is reached.
Which makes ANYA an optima any angle algorithm. [7]

To improve the performance of any angle algorithms a
variant sub goal graphs were introduced which considers
points on the corners of the grid and rather than the center
and a point is a sub goal if and only if it lies on the convex
corner a blocked node. [8] Also to improve the performance
pre computed paths are stored in a database thus improving
the computation time of the algorithm which was
successfully implemented in Block A*[9].

III. PROPOSED APPROACH

As discussed earlier, Theta* finds paths that are shorter that
A* but the time taken by Theta* to find the path from
source to destination is almost twice the time taken by
A*.This makes Theta* undesirable as the map size increases
especially in modern day computer game maps which are
growing in size as the years increase.
To address this problem we come up with a novel approach
described in Fig. 4 where we have abstracted the map into
regions and used the blocked areas in the map to help the
algorithm decide which regions are desirable for line of
sight checks and which are not. This is done by assigning a
label of high and low density to region based on number of
blocked tiles in them. If a region has a low density label the
algorithm use A* path finding and otherwise it uses theta*.
For making region, we divide the grid into fixed size
regions based on number of tiles. For example if a grid has
100 × 100 dimension and region size is 5 the algorithm will
create 20 regions of 5 × 5 throughout the grid.
To decide which region is high or low density, a clustering
algorithm must be integrated. Since prior data about the map
and its features are not provided the supervised learning
approach cannot be used. Thus an unsupervised learning
approach must be implemented to perform this task. After
comparing the various unsupervised clustering techniques,
K-Means is selected because it is efficient, fast and perfectly
suits the problem of labeling regions in the map.
We supply K-Means the regions of the map with the number
of obstacles in them and it provides us with the result of
labeling regions into high and low density. In fact, the input
for K-Mean will be an array of the number of obstacles in
each region. The output of this process will provide us two
clusters one representing high and the other representing
low density regions which are mapped to the regions
abstracted from the map.
This information is now given to the search which decides
when to perform a line of sight check thus creating an on
demand line of check criteria.
In the online stage we consider the following decisions
made by our algorithm

Decision 1: If the node belongs to a region which is
considered a high density region we forego the line of sight
check and expand the nodes just like A*.
Decision 2: If the node belongs to a region which is
considered a low density region we perform a line of sight
check and expand nodes just like Theta*.
For example in figure 5.a if an agent wants to find a path
between blue and red points. The algorithm first divides the
map into 9 regions, R1-9. Then based on the K-means, it
calculates the density of these regions. As an instance R1 is
high density denoted by R1-H. Since the source node lies in
the low density region (R4), as shown fig 5.b, theta* is used
as well as in R5 and R6 which are low density regions. As
the goal lies in R9 which is the high density region and the
path plotted will be A* path.

Fig. 4: Pseudo-code C-Theta*

608607

Fig. 5a: Regions created on a grid map. 5(b) represents the labelled

regions after clustering and the dotted line represents the path from source to
destination based on C-Theta*

 IV. RESULTS
The experiments are conducted using 100 × 100 and 50 × 50
grids with random obstacles. The obstacle density of the
grids maps is 20% and 50 % respectively. The maps are
generated using a JAVA path finding framework which has
been extended to support any angle path finding algorithms.
The experiments are conducted on a Lenovo ThinkPad
X201 tablet with windows 7 64- bit system with 8 GB RAM
and an Intel i7 processor. The heuristic used in all the
algorithms is Euclidean distance. In this experiment the
region size was fixed to 10
Table 1 compares the results of C-Theta* with A* and
Theta*.

TABLE 1: ALGORITHM RESULTS AND PERFORMANCE
Grid Map
Data

Algorithms Path Length Time(s) ms

Obstacle
Density 20%

A*
Theta*
C-Theta*

67
60.8
61.7

5.04
10.99
7.78

Obstacle
Density 50%

A*
Theta*
C-Theta*

56.8
54.2
55.3

7.16
15.08
10.09

100 × 100
Obstacle
Density 20%

A*
Theta*
C-Theta*

117.5
110.8
111.5

12.12
19.02
16.13

Obstacle
Density 50%

A*
Theta*
C-Theta*

107.5
106.1
106.1

7.57
11.6
10.6

100 × 100
Maze A*

Theta*
C-Theta*

172.8
158
163.5

22.79
53.37
31.95

C-Theta* reports shorter paths A* and marginally longer
paths than theta*.In some cases it also reported path length
similar to Theta* in the result for grid size 100 × 100 of
obstacle density 20% C-Theta* reported a path length equal
to Theta*.
The path length of C-Theta* when compared with Theta*
reports marginal degradation. Also there is an average 20
percent improvement in the time taken to find the path from

the source to destination. Also there is only on average 1%
path length degradation. In mazes the time taken by theta*
when compared with A* is more than double, when
Comparing theta* with C-theta* we see an almost 40%
improvement in the time taken and also a shorter path than
A*.

V. CONCLUSION
As game maps become more complex, detailed and the
increase in game map size brings with it new challenges to
optimize path planning algorithm. We have successfully
shown that clustering can be used improve the information
gain of a map and this can be used while performing the
search in the case of C-Theta*. C-Theta* also exhibits its on
demand line of sight checks can be successfully
implemented to optimize theta*.

VI. FUTURE WORK
C-theta* has been applied to a static environment we would
like to see if the same solutions can be applied to a dynamic
environment and observe the results. Introduce a new
technique of preforming LOS in time intervals to improve
the performance theta*.

REFERENCES
[1] A. Nash, “Theta*: Any-Angle Path Planning for Smoother Trajectories
in Continuous Environments,” AI Game Dev, 08-Sep-2010. [Online].
Available: http://aigamedev.com/open/tutorials/theta-star-any-angle-paths.
[2] Ferguson, D., and Stentz, A. 2006. Using interpolation to improve path
planning:The field D* algorithm. Journal of Field Robotics 23(2):79–101.
[3] S. Koenig and M. Likhachev, “D*lite,” in Eighteenth national
conference on Artificial intelligence, Menlo Park, CA, USA, 2002, pp.
476–483.
[4] “Jump Point Search,” Shortest Path. [Online]. Available:
http://harablog.wordpress.com/2011/09/07/jump-point-search/. [Accessed:
10-Apr-2013].
[5] Hart, P. E., N. J. Nilsson, and B. Raphael, "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths in Graphs," IEEE Trans.
on Systems Science and Cybernetics, Vol. SSC-4, No. 2, pp 100-107, (July
1968); also in Context-Directed Pattern Recognition and Machine
Intelligence Techniques for Information Processing, Y-H Pao and G. W.
Ernst (eds.) IEEE Computer Society Press (Silver Spring, MD., 1982).
[6] A. Nash, S. Koenig and C. Tovey, “Lazy Theta*: Any-Angle Path
Planning and Path Length Analysis in 3D,” In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2010
 [7] Daniel Harabor and Alban Grastien “An Optimal Any-Angle
Pathfinding Algorithm” In Proceedings of the Twenty-Third International
Conference on Automated Planning and Scheduling, 2013.
[8] T. Uras and S. Koenig, “ Speeding-up Any-Angle Path-Planning on
Grids” , In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 234-238, 2015
[9] Peter Yap and Neil Burch and Rob Holte and Jonathan Schaeffer,
“Block A*: Database-Driven Search with Applications in Any-Angle Path-
Planning” Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence (2011).

609608

