2015 International Conference on Computational Science and Computational Intelligence

Applied Machine Learning to Identify Alzheimer’s Disease

Through the Analysis of Magnetic Resonance Imaging

Elva Maria Novoa-del-Toro

Universidad Veracruzana
Xalapa, Veracruz, Mexico
elvamaria@gmail.com

Héctor Gabriel Acosta-Mesa

Universidad Veracruzana
Xalapa, Veracruz, Mexico

Abstract—Alzheimer’s disease is among the most common
neurodegenerative diseases [1], doubling the number of patients
every S-year interval beyond age 65 [2]. Different investigations
have proven that patients with Alzheimer’s disease, show
volume reduction at specific areas of the brain [1, 3-11]. Some
of these areas, like the precuneus, start showing atrophy since
early stages of the disease [1, 3, 6, 12-14], as measured through
the use of Magnetic Resonance Imaging [9]. Considering this,
we studied the possible use of the precuneus as a biomarker to
identify such disease. Our results suggest that the precuneus is
a potential biomarker to detect Alzheimer’s disease, since 7 out
of 10 patients (73.33% of accuracy) can be correctly classified.

Keywords- Alzheimer’s disease; precuneus; biomarker;
classification; Magnetic Resonance Imaging.

L INTRODUCTION

Alzheimer’s disease (AD) is among the most common
neurodegenerative illnesses [1], doubling the number of
patients every 5-year interval beyond age 65 [2]. AD causes
cognitive deterioration and behavioral disorders, while its
most characteristic symptom is memory loss. AD is also the
most common cause of dementia during old age [1-5, 15-17].
In general, AD develops in people older than 60 years old [2].

Different investigations have shown that patients with AD
have volume reduction in specific areas of the brain [1, 3-11],
although AD is not the only disease that causes loss of cerebral
volume.

It is possible to observe this atrophy directly and non-
invasively through Magnetic Resonance Imaging (MRI) [9].
This variable has been used as a biomarker to detect AD at
different stages of the disease, with accuracies between 74 and
94% [1, 3, 6, 12-16, 18-24]. Although many different
techniques have been investigated to try to predict the
presence of AD, they all focus on the study of the
hippocampus; notwithstanding other areas also show such
atrophy, including the precuneus [1, 3, 6, 12-14].

Considering that the reduction of the precuneus volume is
associated with early stages of AD, and the importance that
this region could have to improve the predictive index of such
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illness, in this work we studied the use of the precuneus as a
biomarker to identify AD, analyzing its features visualized
through MRI.

IL.

During the last decade many approaches that analyze
anatomical MRI have been developed to classify patients with
AD or Mild Cognitive Impairment (MCI) [1, 3, 6, 12-16, 18-
24]. In general, these methods analyze the whole brain, a
single section or a group of them. It is important to mention
that, until some years ago, the only way to confirm if a person
had AD was at autopsy [5, 17]. Fortunately, nowadays there
is a diversity of non-invasive techniques that can be used to
diagnose AD while the patient is still alive. The goal is to
detect this illness as soon as possible (during early stages), so
that the quality of life of the patient can be improved.

Hinrichs et al. [16] proposed to boost the MRI
classification by segmenting the brain in: white matter, gray
matter and cerebrospinal fluid. Their goal was to increase the
accuracy of weak classifiers (those with low classification
accuracy), using a group of them to discriminate between
healthy controls and AD patients. Their premise was that, if
the errors of those weak classifiers had no correlation between
them, the combination of many classifiers would increase the
general accuracy. Considering each MRI’s voxel as a weak
classifier, they tried to find a correlation between the voxels
intensity changes in the same position in the MRI of all the
subjects and the AD diagnosis. Then they assigned a weight
to each voxel according to the classification result and finally
they selected those voxels with the highest accuracy, using an
algorithm designed to prefer contiguous groups and to avoid
isolated voxels. Using a sample of 183 subjects from the
ADNI database, they got a maximum accuracy of 84%.

A different approach developed by Plant et al. [3] analyzed
MRIs images using a Support Vector Machine (SVM), a
Bayesian classifier and voting feature intervals. They obtained
the minimum set of voxels needed to predict the AD diagnosis
vs. MCI or healthy control participants. They analyzed the
whole brain of 32 patients with AD, 24 with MCI and 18
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controls. Their classification accuracy of AD vs healthy
controls was 92%.

A number of studies have used shapes to classify AD
patients. Costafreda et al. [18] analyzed the shape of the
hippocampus to predict the conversion from MCI to AD,
using 103 subjects with MCI. They automatically segmented
a Region of Interest (ROI), i.e. the hippocampus, through an
auto context model, which is a pattern recognition algorithm,
developed by Morra, et al. [25], specifically to make an
automatic segmentation of the hippocampus. Then, they built
a net shaped 3-D representation of the segmented ROI and
mapped it into a common triangulation net, finding the
correspondence of every vertex between subjects and thus,
making a local statistical analysis among subjects. They used
SVM to classify and obtained 80% of accuracy.

Similarly, Gutman et al. [20] also analyzed the shape of
the hippocampus to detect AD. They built triangular net
models of the global hippocampus shape of 49 AD patients
and 63 healthy controls and created an invariant description of
each shape. Then they used a SVM to classify and achieved
82.1% of accuracy.

Gerardin et al. [6] grouped 23 MCI and 23 AD patients
and distinguished them from 25 healthy controls, using
features of the shape of the hippocampus, obtained through
spherical harmonics coefficients. They used SVM to do the
classification with 94% of accuracy.

On the other hand, Ferrarini et al. [9] used independently
the shape and volume of the hippocampus to diagnose AD.
They modeled the hippocampus of 50 AD patients, 30 MCI
subjects and 50 healthy controls, using a software they
developed, which represents the volume of interest as a net,
where each node is associated with a specific node of the rest
of the hippocampus models. They obtained 74% of accuracy,
using the volume and the precuneus and 90% with the shape
of the ROL

The pattern approach that Fan et al. [5] proposed was high
dimensional. They considered all brain regions to identify
those whose joint volumes maximized the difference between
patients with MCI or AD and healthy controls. They selected
two regions: the hippocampus and the entorrinal cortex and
used a sample of 66 controls, 88 MCI and 56 AD, from the
ADNI database. They did tests with the three groups, as
follows: AD vs controls (82%), MCI vs controls (76%) and
AD vs MCI (58.3%). They concluded that their accuracies
(listed between brackets in every case), were not good enough
to make a clinical diagnostic.

Vemuri et al. [19] used a SVM and the whole brain volume
of 140 AD patients and 140 healthy controls, to calculate a
structural abnormality index. They distinguished between
controls and AD patients with an accuracy of 89.3%.

Since the precuneus is a brain region that has not been yet
explored to diagnose AD, even though its atrophy is
associated even with early stages of AD, in this work, we used
the precuneus to determine if its features help to differentiate
between healthy controls and AD patients.

[II. MATERIALS AND METHODS

We analyzed 30 high resolution MRI’s: 15 of healthy
controls and 15 of AD patients.
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Our methodology consisted of five main steps:

A. MRI acquisition

All the subjects were between 40 and 90 years old. All the
participants complied with MRI safety standards. For the AD
participants only mild AD patients were included (Montreal
Cognitive Assessment —MoCA-, score greater or equal to
18/30).

B. Manual segmentation of the precuneus in the MRI’s
native space

We used ITK-SNAP, an open source tool [26] to do a
manual segmentation of the precuneus. The segmentation
followed the anatomical guidelines described in [2] and were
marked in the sagittal plane first and then segmented in the
coronal plane of the native space MRI’s. Figures 1 and 2 show
the manually segmented volumes of a healthy control and an
AD patient, respectively.

Fig. 1. 3D reconstruction of a manual segmentation of the precuneus of a
healthy participant using ITK SNAP.
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Fig. 2. 3D reconstruction of a manual segmentation of the precuneus of an
AD patient using ITK SNAP.

C. Standardization of the MRI volumes to Talairach
coordinates

We used BrainVoyager, a neurology specialized software
[27], to standardize all images to Talairach coordinates. This
stage had two steps: first, we localized the coordinates of the
Anterior (AC) and Posterior Commissures (PC), to position
the brain into the AC-PC plane. This locates the brain into a
common origin and eliminates the implicit rotation, acquired
during the MRI scan, where the heads of the participants can
vary between scans.

After that, we localized the coordinates of the six points
that delimitate the brain: AP (most anterior point), PP (most
posterior point), SP (superior point), IP (inferior point), RP
(most right point) and LP (most left point).

After the standardization, the brains had similar rotations,
translations and dimensions (length, width and height), as
shown in Figure 3, where a segmented volume of the
precuneus is presented, before and after the standardization.



a) Before standardization. b) After standardization.

Fig 3. 3D reconstruction of the precuneus (showed in blue) of an AD patient,
in its real location inside the brain (showed as a transparent net).

D. Feature selection

We represented the segmented volumes with a vector of
44 features (Table I), which describe the shape of the
precuneus at different level of detail.

TABLE 1. DESCRIPTION OF THE VECTOR OF FEATURES
Type Description Size
Define the shape of the precuneus in a basic
Basic measures level. This group is conformed by: volume 2
and perimeter.
Centralt fth Allow to make a position independent
moments ot the description of the precuneus. This group is
sagittal, axial f d b 21
and coronal coniormel y 7]2,0.7]1.,1.710,2:711,2,772,1.713,0
planes and 7,3 (refer to equation 4).
Invariant Allow to make a size and angle independent
moments of the . . .
. . description of the precuneus. This group is
sagittal, axial 21
conformed by hy,h,, hs, hy, hs, heg and h,
and coronal .
(refer to equations 5-11).
planes

In this case, the volume is the total percentage of the brain
that the precuneus represents. To calculate the volume, we
counted the number of voxels that belong to the brain and
precuneus, independently and obtained the proportion
between them. On the other hand, to calculate the perimeter,
we counted the voxels that are part of the precuneus and that
at least one of its 26 neighbors [28], belongs to the
background, i.e. it is not part of the precuneus.

The central and invariant moments [29, 30], are used in
the field of computer vision, to describe objects. Moments are
measures related to the size, orientation and shape of an
object.

The moment of p + g order of an image I(x, y) is [29]:

Mpq = X321 232 xPy1(x, y) (1)
where,
Col and Row are the image dimensions: columns and
rows, respectively,
p and q are positive integers or equal to cero, which
determine the order of the moment, and
x and y are the coordinates of the image I.

The center of gravity (X,y) of an image I, is calculated
using the moments of order zero and one [29], as follows:

Mi,0
Mo,0

Mo,1
Mo,0

x = y= 2)
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The u central moments, of p + q order, allow describing
an object, independently of its position and are calculated
with respect to the center of gravity [29]:

Hpq = L L2 (=P = PU(xy)  (3)
In order to get a description independent of the size of the

object, we normalized the central moments, with respect to
the zero moment, which is the area of the object [29]:

_ Hpa

- — pta
Mg,

2

a +1

“)

Mp.q

Finally, with the normalized central moments, of orders
two and three, we -calculated the invariant moments
hy, hy, ..., h;, which are independent of the position, size and
rotation of the object [29]:

hy =n30+ 702 Q)
hy = (20 — Mo2)? + 47111 (6)
hs = (N30 — 3112)%* + (B1z1 — N 3)? 7
hy = (N30 + 11,2)° + (o3 + 121)° (8
hs = (713,0 - 3771,2)(773,0 + 771,2)[(773,0 +11,2)?

_3(770,3 + 7)2,1)2] + (3772,1_710,3)(770,3 + 772,1)

330 +M1,2)° — (770,3 + 772,1)2] ©
he = (M20 = M02)[(M30 + M1,2)* — (o3 + 772,1)2]

+41n11(M30 + NM1,2) (710,3 + 772,1) (10)
h; = (3772,1_770,3)(773,0 + 7)1,2)[(’73,0 + 771,2)2

3103 + 772,1)2] — (30 = 3112) (M3 + M21)

[3(773,0 + 771,2)2 - (770,3 + 772,1)2] (11)

Given these definitions, we obtained the binary images of
the sagittal, axial and coronal cuts (from now on: lateral,
superior and frontal views, respectively), of every segmented
volume, so that we could see the precuneus from three
different angles. Refer to figures 4 to 6 for a 3D
representation of these views, where the brain is represented
as a transparent net and the precuneus is showed in blue color.

It is worth mentioning that, after the standardization to
Talairach coordinates, there is no rotation left. Therefore,
these binary views provide a more detailed description of the
shape of the precuneus, compared with the one obtained with
the basic metrics.

a) Lateral view of a healthy control. ~ b) Lateral view of an AD patient.

Fig. 4. Lateral view in 3D (sagittal plane).



a) Superior view of a healthy control. ~ b) Superior view of an AD patient.

Fig. 5. Superior view in 3D (axial plane).

a) Frontal view of a healthy control. b) Frontal view of an AD patient.

Fig. 6. Frontal view in 3D (coronal plane).

Considering that the classification accuracy can decrease due
to the different range of values of the features and their
standard deviation, we normalized the feature vector, with the
following equation [31]:

v;—min(vy...v,)

n =

V.

(12)

max (”1 ...vn)—min(vl V)

where,
vy is the normalized value, within the range [0, 1],
vy is the i-th value of the feature,

min(vy ...v,)
max(vy ... v,)

is the minimum value of the feature, and
is the maximum value of the feature.

E. Classification

For the classification phase, we used four methods:
Support Vector Machines (SVM) [46], Naive Bayes (NB),
Decision Trees (DT) [47-49] and k-Nearest Neighbors (k-
NN) -with k=1, 3 and 5-. All of which are available in WEKA
(Waikato Environment for Knowledge Analysis), an open
source software [32].

In general, SVM allows creating a model able to separate
linear and non-linear data. NB uses probability to determine
the class of a given instance, while DT builds a tree, which,
depending on its complexity (depth and width) allows
separating non-linear data. Finally, k-NN uses the similarity
(short distance) of a new unclassified instance, with the
classes of its neighbors, to determine which class the new
instance is more likely to belong.

We chose those four classifiers because, according to the
computer science literature, they have been used to solve
different types of issues, with a good performance (high level
of accuracy), depending on the problem.

Considering that each of the four classifiers uses different
techniques and assumptions to obtain a result, it is interesting
to compare their performance for a particular case, since there
is not a universal machine-learning scheme that can be
appropriate for all data mining problems [33].

On the other hand, to test the efficacy of each of the
classifiers, we used cross-validation and we compared their
results using two statistical tests: Kruskal Wallis and
Wilcoxon.
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IV. RESULTS

We started our experiments with the extraction and
normalization (to oscillate within the range [0, 1]) of the 44
features of every participant. Then, we generated the scatter
plots of both, the original and the normalized values. We show
some examples of the scatter plots in figures 7 to 11, where
AD cases are marked with red colored “+” and the healthy
controls are represented in blue colored “o™.

a) Original values. b) Normalized values.

Fig. 7. Scatter plots of the volume feature.
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a) Original values.

Fig. 8. Scatter plots of the invariant moment h2, of the frontal view.
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a) Original values. b) Normalized values.

Fig. 9. Scatter plots of the invariant moment h3, of the superior view.
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a) Original values. b) Normalized values.

Fig. 10. Scatter plots of the invariant moment h4, of the lateral view.
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a) Original values. b) Normalized values.

Fig. 11. Scatter plots of the central moment 73 o, of the superior view.

For the classification experiments, we used the normalized
values of the 44 dimensional vectors of the 30 segmented
volumes of the precuneus. To validate the results, we used



cross validations, with 5 stratified folds and 30 folds (leave-
one-out).

We did 30 repetitions of the experiment and we obtained
the best results using 5 folds, where the accuracy range
oscillated between 46.67% (NB) and 86.67% (DT), in the
worst and best cases, respectively. A statistic summary of the
results for DT (best accuracy), is presented in Table II.

TABLE II. STATISTIC SUMMARY OF THE RESULTS OBTAINED WITH
DECISION TREES
L Decision Trees (5 folds)
Statistic summary — —
Sensibility Specificity Accuracy
Best 86.67% 86.67% 86.67%
Worst 40.00% 66.67% 60.00%
Mean 63.78% 82.89% 73.33%
Median 66.67% 86.67% 73.33%
Standard Deviation 10.4582 5.9842 5.8722

In order to verify if there were significant differences
between the results obtained with each classifier, we
performed the statistical tests Wilcoxon and Kruskal Wallis,
with the accuracies of the 30 executions, obtained by the four
classifiers. We chose to use the accuracy because it represents
a compromise between sensibility and specificity, in a way
that the accuracy can only be high, if the other two metrics are
also high.

We found that in almost all the cases, there is a statistical
significant difference between the results of every pair wise of
classifiers, with 95% of confidence. In the case of five folds,
the only exceptions are the comparatives between the
following pairs: NB/k-NN, with k=1; k-NN, with k=3/k-NN,
with k=5. On the other hand, with thirty folds, the only non-
significant difference is between DT/k-NN, with k=3.

V. DISCUSSION

Here we explored the use of a potential biomarker to detect
AD. We used a 44-dimensional vector representation of the
precuneus’ shape and size to try to distinguish between AD
and Normal (healthy controls) classes.

We found five particularities in the scatter plots:

1) Features showing a certain degree of separability for the
Normal class.

2) Features where the majority of the instances of both
classes shared the same range.

3) Cases where one or more instances of any of the classes
were notably separated from the rest.

4) Features where the instances were located in only three
or four different areas.

5) Cases where the instances of the same class were
scattered in a way that, they form groups, with an almost
uniform intragroup distance and a notable intergroup distance.

Figure 7 shows an example of the first case in the volume
attribute, where a group of instances of the Normal (healthy
controls) class, were out of the range of the AD class. This
suggests some degree of separability, although the majority of
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the instances of the AD class were within the same range as
the Normal class.

In contrast, Figure 8 illustrates the second case, where
most of the instances of both classes shared the same range.

The third case is exemplified in Figure 9, where one of the
instances of the Normal class is isolated from the rest. This
somehow suggests the presence of outliers, which could imply
noise in the data.

The fourth case can be seen in Figure 10, where all the
instances are located in three areas, two of which seem to be
outliers. The fact that most of the instances of both classes are
almost in the same spot, suggest that, at least for these
particular features, the AD patients and the healthy controls
share the same properties, and therefore they will not help to
distinguish between the two classes. If these possible outliers
that have this particularity came from the same MRI’s, it could
imply that these particular manual segmentations of the
precuneus were inaccurate.

Finally, the fifth case group formation, shown in Figure
11, could suggest that we used a small sample. It could be
possible that a sample increase would lead to find instances
corresponding with the values that now separate the groups;
considering the course of dimensionality, due to the size of the
sample is small, compared with the number of features.

The fact that there is a statistically significant difference
between the results of almost every pair of classifiers, implies
that, with a 95% level of confidence, we can sustain that for
our data sample and the classification experiments performed
with the normalized values of the 44 features, the DT classifier
is the best option, due to its maximum accuracy of 86.67%.
This performance is comparable with the results of some of
the other studies previously mentioned, e.g. the 84% accuracy
reported by Hinrichs et al. [16], the 82.1% by Gutman et al.
[20] and the 82% by Fan et al. [5]. However, the mean
accuracy obtained with DT is 73.33%, which is below the one
reported by these authors.

The highest mean accuracy (73.33%) and the maximum
accuracy (86.67%) were obtained with DT. Therefore,
between seven and eight out of every ten MRI volumes, are
correctly classified. Nonetheless, there are other techniques
which results are more competitive that our mean accuracy,
like those reported by: Fan et al. [5] (82%), Gutman, et al. [20]
(82.1%), Hinrichs et al. [16] (84%), Vemuri et al. [19]
(89.3%), Ferrarini et al. [9] (90%), Plant et al. [3] (92%),
Gerardin et al. [6] (94%).

On the other hand, none of those works reported the AD
stage of their participants, while we only considered patients
in an early AD stage. This suggests that it could be possible
that the precuneus allows identifying this illness even before
the hippocampus shows anatomical changes. That is, when
AD is still incipient.
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Our results suggest that the 44 characteristics of the
precuneus, visualized through MRI allow differentiating
between healthy controls and AD patients, with a mean
sensibility of 63.78% and a specificity of 82.89%, which gives
73.33% of accuracy. This implies that around seven out of ten
patients are correctly classified.

CONCLUSIONS AND FUTURE WORK



However, as mentioned in the previous section, other
techniques give better classification results. Nonetheless, the
proposed method combined with other methods, could help as
adjuvant in the detection of AD, improving the general
accuracy.

As future work, in an attempt to improve the sensibility,
we plan to describe the precuneus using tridimensional
features. Additionally, we plan to reduce the dimensionality
with methods like Naive Bayes, to obtain the conditional
probability of correctly calculate the class, given a certain
feature, in a way that we can omit approaching probability
Zero.
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