
A New Scheme for Implementing S-box Based on Neural Network

Xia Zhang,Fangyue Chen,Bo Chen,and Zhongwei Cao

School of Science
Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P. R. China

Email: heiyedejingling@163.com / fychen@hdu.edu.cn

Abstract—S-box (Substitution box) is one of the most im-
portant components in the block cipher. As the high non-
linearity of neural network (or artificial neural network,
ANN) is in high accordance with the properties of cipher,
the application of neural network in cryptography becomes
a significant orientation. In this paper, we present a new
scheme for implementing S-box used in ciphers basing on
neural network. Differing from the previous network models,
the proposed network, which can be used to implement any
Boolean function in S-box, consists of multiple neural network
perceptrons, and each perceptron only has a low number of
input variables (4-bits input). By DNA-like learning algorithm,
it is very convenient to train the weight and threshold values
of the network.

Keywords-Cellular Neural Network(CNN); S-box; SLP;
MLP; Boolean Function(BF)

I. INTRODUCTION

The S-box (substitution box), which is considered as the

core of the block ciphers, is the only nonlinear element

assuring the confusion property of the conventional block

ciphers such as Data Encryption Standard (DES) and the

Advanced Encryption Standard (AES). The strength of the

encryption depends on the ability of S-box in distorting the

data. Hence, the processes of discovering new and powerful

S-boxes are of great interest in the field of cryptography.

The study of the S-box design accelerates the development

of cryptography.

Recently, the application of neural network (or artificial

neural network, ANN) in cryptography and cryptographic

analysis has become increasingly interesting. Recent works

have examined the use of neural networks to different

components of cryptography systems [1-3].

In the field of cryptography, an S-box is a component

of symmetric key algorithm which performs substitution. In

block ciphers, it is typically used to obscure the relationship

between the key and the ciphertext. In many cases, the S-

boxes are carefully chosen to resist cryptanalysis. In general,

an S-box takes some number of input bits, denoted by

m, and transforms them into some number of output bits,

denoted by n, and has some cryptographic properties, such

as non-linearity, completeness, strict avalanche, output bits

independency criteria and so on[4-7].

In this paper, we present a new scheme for implementing

the S-box used in ciphers on neural network. The proposed

network consists of some multiple-layer neural network

perceptrons, and each only has an input of 4-bits. Therefore,

it is very convenient to train the weight and threshold values

of the network through DNA-like learning algorithm.

The rest of this paper is organized as follows. Section

II gives some preliminaries on neural networks and S-box

theory. In Section III, we describe the new S-box design

scheme based on neural networks. Section IV gives some

concluding remarks.

II. OVERVIEW OF NEURAL NETWORKS AND S-BOX

A. SLP and MLP of binary neural networks

Artificial neural networks have been motivated from their

inception by the recognition that the brain computes in an

entirely different way from the conventional digital com-

puter. The brain contains billions of neurons with massive

interconnections. Similarly, artificial neural networks are

massively parallel-distributed processors that are made up of

artificial neurons with interconnections. These are non-linear

dynamic machines which expand the expression of input

data as a linear combination of inputs and synapses and then

perform a non-linear transformation to compute the output.

There are some neural networks’ properties which make

them suitable to use in cryptology. These neural networks’

properties include one-way property, parallel implementa-

tion, non-linear computations, confusion property, diffusion

property, and so on[8].

An (m,n) S-box in the block cipher is a map S :
{0, 1}m → {0, 1}n, i.e., the input and output values of an

S-box which consist of n Boolean functions are all binary,

so the implementation of S-box only needs binary neural

networks (BNN) which is a branch of neural network.

It is well known that single-layer perceptron (SLP) of

binary neural networks can only be used to implement the

class of linearly separable Boolean functions (LSBF), but the

majority of Boolean functions are not linearly separable, so

multi-layer perceptron (MLP) must be used to implement

the class of non-linearly separable Boolean functions (non-

LSBF). Of course, MLP can contain one or more hidden

layers, but it was proved that MLP with one hidden layer

can be used to perform any non-LSBF by using suitable

learning algorithms [9, 10]. The expressions of SLP and

MLP with one hidden layer are respectively: (a) SLP with

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.9

572

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.9

571

u1

un

u3

u2

…

f
y

(A)

u1

un

u3

u2

…

f
y

(B)

…

Figure 1. (A) Single-layer perceptron (SLP), (B) Multi-layer perceptron
(MLP) with one hidden layer.

a hard-limitation activation function f :

y = f(
n∑

i=1

ωiui − θ), (1)

where f is the first-order jump function defined by

f(x) = sign(x) =

{
1 if x > 0
0 if x ≤ 0,

(2)

ωi (i = 1, 2, · · · , n) are weight values and θ is threshold

value, ui ∈ {0, 1} (i = 1, 2, · · · , n) are inputs, and y is the

output.

(b) MLP consists of m SLPs connecting the input layer

and the hidden layer as well as one SLP connecting the

hidden layer and the output layer, as follows:

{
yj = f(

∑n
i=1 ωijui − θj) (j = 1, 2, · · · ,m)

y = f(
∑m

j=1 ω̄iyj − θ̄),
(3)

where yj is the output from the j− th neuron in the hidden

layer, wij and θj are the connection weight-threshold values

between the i-th input and j-th neuron in the hidden layer,

and w̄j and θ̄ are the weight-threshold values of the neuron

of the output layer.

The topological structure of both SLP and MLP is shown

in Figure 1.

As mentioned above, the MLP with one hidden layer can

perform any Boolean function, but no matter which kind

of learning algorithm one use, training the weight-threshold

values of MLP is very difficult when the number of its inputs

is large. However, we will use a method of reducing the

dimension to tackle with this difficulty.

First, we give an important theorem as follows:

Theorem 1: Let y(1) = f (1)(x1, x2, · · · , xn−1) and

y(2) = f (2)(x1, x2, · · · , xn−1) are two (n− 1)-bit Boolean

functions, f (i) : {0, 1}n−1 → {0, 1} (i = 1, 2), then

(a) y = f(x) = [(1 ⊗ x0) · y(1)] ⊗ x0 · y(2) is an n-bit

Boolean function, where x = (x0, x1, x2, · · · , xn−1), “⊗ ”
and “ · ” are the “XOR” and “AND” logical operations

respectively.

(b) The expression of the MLP implementing the function

Table I
TRUTH TABLE OF THE BOOLEAN FUNCTION

y = f(x) = [(1⊗ x0) · y(1)]⊗ x0 · y(2)

x0 y(1) y(2) y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table II
WEIGHT w1, w2, w3 AND THRESHOLD VALUE θ OF THREE LSBFS IN

172P.

Output bits w1 w2 w3 θ
00000001 4 6 2 11
00000011 4 6 2 9
00110111 4 6 2 5

y = f(x) = [(1⊗ x0) · y(1)]⊗ x0 · y(2) is⎧⎪⎪⎨
⎪⎪⎩

u1 = sign(4x0 + 6y(1) + 2y(2) − 11)
u2 = sign(4x0 + 6y(1) + 2y(2) − 9)
u3 = sign(4x0 + 6y(1) + 2y(2) − 5)
y = sign(4u1 − 2u2 + 2u3 − 3),

(4)

and the truth table of the Boolean function is shown in Table

I. Since the decimal code of the output bits (00110101) of

the Boolean function in the Table is 172, so the MLP is

named as No.172 perceptron, and 172P in abbreviation .

(c) The networks implementing the Boolean function y =
f(x) = [(1⊗x0) · y(1)]⊗x0 · y(2) consist of two (n− 1)-bit

perceptrons and a 172P.

Proof: (a) is obvious, and if the single input x0 and the

functions y(1) and y(2) are regarded as 3 input variables

of a Boolean function, and y is regarded as the output

of the function, so Table I in (b) was established. The

output sequence of the function is (00110101). It is easy

to test that the function is not linearly separable, but it

can be decomposed as the logical XOR operations of

three linearly separable Boolean functions (LSBFs), i.e.,

00110101 = 00000001 ⊗ 00000011 ⊗ 00110111. Further,

based on DNA-like learning algorithm [9, 10], the weight-

threshold values of the neurons implementing the three

LSBFs and the ones of the neuron from the hidden layer to

output layer are easy to be trained. The weights w1, w2, w3

and threshold value θ of the three LSBFs are shown in

Table II, and the weights values and the threshold value

of the neuron from the hidden layer to output layer are

respectively (w̄1, w̄2, w̄3) = (4,−2, 2) and θ̄ = 3. Thus,

the expression of 172P is (4). Further, from above (a) and

(b), the structure of the network implementing the function

y = f(x) = [(1 ⊗ x0) · y(1)] ⊗ x0 · y(2) is given, which

consists of perceptron P1 and P2 combining with a 172P. It

573572

(n-1)-bit

Perceptron

(n-1)-bit

Perceptron

x0

xn-1

x2

x1

172P

y1

y2

y

…

…

Figure 2. Networks implementing the Boolean function y = f(x).

is shown in Figure 2.

Example1: For a 5-bit Boolean function y = f(x),
x = (x1, x2, · · · , x5), its output-bits is Y = (010100010101
11111101001011010101). Let Y = (Y1, Y2), where Y1 =
(0101000101011111), Y2 = (1101001011010101). Y1 and

Y2 are respectively the outputs of two 4-bit Boolean func-

tions. Based on the above results, one only needs to realize

the two Boolean functions, i.e., one just looks for two

perceptrons, P1 and P2, which can perform the two functions

respectively. P1 and P2 combining with a 172P form a

network which can perform the 5-bit Boolean function. In

fact, P1 and P2 are two MLPs, and their weight-threshold

values can easily be given by DNA-like learning algorithm.

They are shown in Table III.

Remark1: A notable advantage of DNA-like leaning

algorithm is that all the weight values of the neurons

implementing all LSBFs, decomposed from an non-LSBF,

are the same except the threshold values.

B. S-Box

The security of data relies on the substitution process.

Substitution is an nonlinear transformation which perform-

s confusion of bits. In modern encryption algorithm, an

nonlinear transformation is essential and is proved to be a

strong cryptographic primitive against linear and differential

cryptanalysis. Especially important, the strength of product

ciphers mainly depends on the properly designed S-boxes

[6].

As mentioned above, an (m,n) S-box is a map

S : {0, 1}m → {0, 1}n. It comprises of n m-bit Boolean

functions: fi(x1, x2, · · · , xm) (i = 1, 2, · · · , n). There are

several criteria for designing S-box which are believed to

be essential in the design of cryptographic algorithms. If an

S-box does not satisfy one of the criteria, the cryptographic

design based on the S-box may be cryptographically weak

or easy to be attacked. The criteria which are considered

essential for designing an S-box include balance property,

completeness criterion, strict avalanche criterion (SAC),

non-linearity criterion, bit independence criterion and so on.

Of course, the strict avalanche criterion(SAC) is the most

important in all of the properties. A change in one bit of

input bits of an S-box should produce a change in half

of the output bits of the S-box, which makes it harder to

perform an analysis on the cipher text when trying to come

up with an attack. A cryptographic function which satisfies

the condition is said to be satisfied with strict avalanche

criteria [1, 6].

III. A NEW S-BOX DESIGN SCHEME BASED ON NEURAL

NETWORK

A. An existing S-box and its Boolean functions

In [1], an (8, 8) S-box was designed based on neural

network, and the output values of the S-box are shown in

Table IV. But, the S-box was performed by an MLP with

two hidden layers, and the number of the neurons in the

network is relatively large. Thus, it is difficult to train the

wight-threshold values of the networks. We present a new

scheme for implementing the S-box.

Let x = (x1, x2, · · · , x8) ∈ {0, 1}8, thus, the eight 8-bit

Boolean functions contained in the S-box are fi(x) (i =
1, 2, · · · , 8). Due to space limitation, we just take f1(x) as

an example to show the working pattern of our scheme.

The number of the output bits of each Boolean function

is 256. For example, f1(x) is

f1(x) = 0000100100001110111010011111110111100011011101

00010101010011101001000001001101010101011001100001111

10001010000110101110111100111100101001100000001010011

01101001100000001110111011001101001100101000011111000

111001000100001110111100111101110011110110001001010.

Indeed, it is very difficult to realize these functions via

neural network using existing learning algorithm. However,

we will perform them by the decomposition method in

Theorem 1 in Section 2 and DNA-like learning algorithm.

B. A new framework implementing Boolean function

The 256 output bits of any 8-bit Boolean functions fi(x)
(i = 1, 2, · · · , 8) in an (8, 8) S-box can be decomposed

into 2 parts, each of which contains 128 bits and can be

considered as the output bits of a 7-bit Boolean function.

Then, each 7-bit Boolean function can be decomposed into

two 6-bit Boolean functions. In this way, until the function

is decomposed into 16 4-bit Boolean functions.

Based on the results obtained in Theorem 1, an 8-bit

Boolean function can be implemented using a network

consisted of two perceptrons which perform respectively two

7-bit Boolean functions combining with a special perceptron

172P that can perform a 3-bit Boolean function. Similarly,

a 7-bit Boolean function can be implemented by a network

consisted of two perceptrons performing two 6-bit Boolean

functions respectively in combination with 172P. In this

574573

Table III
WEIGHT-THRESHOLD VALUES OF P1 AND P2 .

Perceptron
m (number of hidden

layer neurons)

Weight-threshold values

of hidden layer neurons

ω1, ω2, ω3, ω4, θ1, θ2, · · · , θm

Weight-threshold values of

output layer neuron

ω̄1, ω̄2, · · · , ω̄m, θ̄

P1 3
ω1 = 10, ω2 = 8, ω3 = 2, ω4 = 4

θ1 = 13, θ2 = 7, θ3 = 3

ω̄1 = 2, ω̄2 = −2, ω̄3 = 2,

θ̄ = 1

P2 4
ω1 = −10, ω2 = 8, ω3 = −2, ω4 = 4

θ1 = 7, θ2 = −1, θ3 = −5, θ4 = −11
ω̄1 = 2, ω̄2 = −2, ω̄3 = 2,

ω̄4 = −2, θ̄ = 1

Table IV
OUTPUT VALUES OF THE S-BOX PROPOSED IN [1].

99 124 184 18 216 77 243 196 164 31 16 216 254 215 251 175
11 195 121 131 230 103 194 117 199 214 228 69 80 196 34 224
232 189 125 74 11 2 245 116 195 17 158 225 178 114 207 159
226 185 33 209 23 102 153 213 99 18 213 36 30 41 14 187
135 38 169 85 153 55 84 246 0 26 205 220 85 164 125 194
157 12 243 127 54 82 18 8 209 131 101 166 150 195 91 92
144 234 127 67 143 38 142 209 94 5 216 191 252 196 195 184
178 22 248 70 111 144 26 27 252 158 242 65 172 99 249 51
186 89 223 223 134 238 150 12 67 196 207 151 206 197 101 169
208 220 179 224 247 64 80 244 168 124 92 134 10 161 36 91
174 242 99 74 110 242 187 101 139 220 67 225 29 230 34 19
100 150 99 118 125 168 132 162 81 251 146 117 113 74 99 37
110 226 37 62 16 53 210 220 23 182 213 199 207 176 20 143
220 135 143 232 118 151 5 23 93 215 246 179 60 173 44 99
225 135 99 250 244 183 8 126 93 11 95 159 206 85 141 196
77 99 90 33 3 67 47 212 186 66 252 195 193 146 109 3

way, until a 5-bit Boolean function can be implemented by

a network of two 4-bit perceptrons combining with 172P.

Finally we take 4-bit Boolean function as the target to be

implemented on a 4-bit perceptron, for a 4-bit Boolean

function is very easy to be realized via SLP or MLP of

the neural networks.

Thus, the steps of implementing a given 8-bit Boolean

function y = f(x) via neural network are as follows:

step 1: Let Y = (v1, v2, · · · , v256) be the output bits of

Boolean function y = f(x), and divide it into 16 parts:

Y = (Y (1), Y (2), Y (3), Y (4), Y (5), Y (6), Y (7), Y (8), Y (9),
Y (10), Y (11), Y (12), Y (13), Y (14), Y (15), Y (16)) = (Y1111,
Y1112, Y1121, Y1122, Y1211, Y1212, Y1221, Y1222, Y2111, Y2112,
Y2121, Y2122, Y2211, Y2212, Y2221, Y2222), where

Y (i) = (v24·(i−1)+1, v24·(i−1)+2, · · · , v24·i),
(i = 1, 2, · · · , 16). (5)

For example, Y (1) = Y1111 = (v1, v2, · · · , v16), Y (2) =
Y1112 = (v17, v18, · · · , v32) et.al.

step 2: Let

Y111 = (Y1111, Y1112), Y112 = (Y1121, Y1122),
Y121 = (Y1211, Y1212), Y122 = (Y1221, Y1222),
Y211 = (Y2111, Y2112), Y212 = (Y2121, Y2122),
Y221 = (Y2211, Y2212), Y222 = (Y2221, Y2222).

(6)

Moreover

Y11 = (Y111, Y112), Y12 = (Y121, Y122),
Y21 = (Y211, Y212), Y22 = (Y221, Y222).

(7)

Also

Y1 = (Y11, Y12), Y2 = (Y21, Y22). (8)

Finally Y = (Y1, Y2).
step 3: Each Y (i), i = (1, 2, · · · , 16) is considered as the

output bits of a 4-bit Boolean function, and they would

be implemented via 16 4-bit perceptrons (SLPs or MLPs)

using DNA-like learning algorithm as the implementing

method in example 1 above. These perceptrons are named

as P1, P2, · · · , P16 respectively.

step 4: Construct 8 networks using the following method:

the output Y (1) of P1, the output Y (2) of P2, and the

comment x4 of input variables x = (x1, x2, · · · , x8)
are considered as the inputs of 172P , thus getting a

network which can perform the 5-bit Boolean function

Y111 = (v1, v2, · · · , v32). Similarly, P3 and P4 combin-

ing with 172P can perform Y112 = (v33, v34, · · · , v64),
P5 and P6 combining with 172P can perform Y121 =
(v65, v66, · · · , v96), P7 and P8 combining with 172P can

perform Y122 = (v97, v98, · · · , v128), P9 and P10 combining

with 172P can perform Y211 = (v129, v130, · · · , v160),
P11 and P12 combining with 172P can perform Y212 =
(v161, v162, · · · , v192), P13 and P14 combining with

575574

Table V
WEIGHT-THRESHOLD VALUES OF A PART OF PERCEPTRONS IN THE NETWORK IMPLEMENTING BOOLEAN FUNCTION f1(x) IN THE (8, 8) S-BOX IN [1]

Perceptron
m (number of hidden

layer neurons)

Weight-threshold values

of hidden layer neurons

ω1, ω2, ω3, ω4, θi (i = 1, 2, · · · ,m)

Weight-threshold values of

output layer neuron

ω̄1, ω̄2, · · · , ω̄m, θ̄

P1 3
ω1 = −2, ω2 = 8, ω3 = 2, ω4 = 2

θ1 = 11, θ2 = 9, θ3 = 5

ω̄1 = 2, ω̄2 = −2, ω̄3 = 2

θ̄ = 1

P2 2
ω1 = −2, ω2 = 6, ω3 = 6, ω4 = 4

θ1 = 13, θ2 = −9
ω̄1 = 2, ω̄2 = −2

θ̄ = 1

P3 4
ω1 = 2, ω2 = 6, ω3 = −2, ω4 = −4
θ1 = 5, θ2 = 3, θ3 = 1, θ4 = −5

ω̄1 = 2, ω̄2 = −2, ω̄3 = 2, ω̄4 = −2
θ̄ = 1

P4 4
ω1 = −4, ω2 = −2, ω3 = −10, ω4 = −6
θ1 = −5, θ2 = −9, θ3 = −13, θ4 = −21

ω̄1 = 2, ω̄2 = −2, ω̄3 = 2, ω̄4 = −2
θ̄ = 1

P5 3
ω1 = 2, ω2 = −4, ω3 = 2, ω4 = 6

θ1 = 9, θ2 = 7, θ3 = 3,

ω̄1 = 2, ω̄2 = −2, ω̄3 = 2

θ̄ = 1

P6 3
ω1 = −4, ω2 = −4, ω3 = 8, ω4 = 6

θ1 = 13, θ2 = 7, θ3 = 1

ω̄1 = 2, ω̄2 = −2, ω̄3 = 2

θ̄ = 1

P7 4
ω1 = 4, ω2 = 10, ω3 = 6, ω4 = 2

θ1 = 17, θ2 = 9, θ3 = 5, θ4 = 3

ω̄1 = 2, ω̄2 = −2, ω̄3 = 2, ω̄4 = −2
θ̄ = 1

P8 2
ω1 = 4, ω2 = −2, ω3 = 2, ω4 = −6

θ1 = 3, θ2 = −1
ω̄1 = 2, ω̄2 = −2

θ̄ = 1

P9 2
ω1 = 2, ω2 = 4, ω3 = 4, ω4 = −2

θ1 = 3, θ2 = −1
ω̄1 = 2, ω̄2 = −2

θ̄ = 1

P10 3
ω1 = 4, ω2 = 8, ω3 = 6, ω4 = 10

θ1 = 23, θ2 = 17, θ3 = 9

ω̄1 = 2, ω̄2 = −2, ω̄3 = 2

θ̄ = 1

P11 1
ω1 = 6, ω2 = −2, ω3 = −4, ω4 = −4

θ1 = −1

P12 2
ω1 = 6, ω2 = 2, ω3 = −4, ω4 = 2

θ1 = 5, θ2 = −1
ω̄1 = 2, ω̄2 = −2

θ̄ = 1

P13 2
ω1 = −2, ω2 = −8, ω3 = 6, ω4 = 4

θ1 = 3, θ2 = −7
ω̄1 = 2, ω̄2 = −2

θ̄ = 1

P14 4
ω1 = −8, ω2 = −2, ω3 = 4, ω4 = −6
θ1 = 1, θ2 = −9, θ1 = −13, θ1 = −15

ω̄1 = 2, ω̄2 = −2, ω̄3 = 2, ω̄4 = −2
θ̄ = 1

P15 3
ω1 = −4, ω2 = −2, ω3 = 4, ω4 = −6

θ1 = −1, θ2 = −3, θ3 = −9
ω̄1 = 2, ω̄2 = −2, ω̄3 = 2

θ̄ = 1

P16 3
ω1 = −8, ω2 = 6, ω3 = −12, ω4 = −4

θ1 = −5, θ2 = −11, θ3 = −15
ω̄1 = 2, ω̄2 = −2, ω̄3 = 2

θ̄ = 1

172P can perform Y221 = (v193, v194, · · · , v224), P15

and P16 combining with 172P can perform Y222 =
(v225, v226, · · · , v256). Then, in a similar way, we can con-

struct 4 networks which can deal with 4 6-bit Boolean

functions from the 8 networks obtained above and 172P
combining with the comment x5 of input variable x:

Y11 = (v1, v2, · · · , v64), Y12 = (v65, v66, · · · , v128), Y21 =
(v129, v130, · · · , v192), Y22 = (v193, v194, · · · , v256). Fur-

ther, we can construct 2 networks which can deal with

2 7-bit Boolean functions Y1 = (v1, v2, · · · , v128) and

Y2 = (v129, v130, · · · , v256). Finally, a network that can

perform Y is got.

The framework of the network is shown in Figure 3.

Obviously, the key is realizing a 4-bit Boolean function to

implementing an 8-bit Boolean function in an (8, 8) S-box.

C. The weight-threshold values of networks

Based on the network framework of implementing

Boolean functions, the training of 16 perceptrons in the

network performing the Boolean function in the S-box is

576575

x
5

x
4

x
3

x
2

x
1

x
6

x
7

x
8

P
1

P
3

P
2

P
4

P
5

P
10

P
9

P
8

P
7

P
6

P
16

P
15

P
14

P
13

P
12

P
11

x
4

x
4

x
4

x
4

x
4

x
4

x
4

x
4

x
3

x
3

x
3

x
3

x
2

x
2

x
1

172P

172P

172P

172P

172P

172P

172P

172P

172P

172P

172P

172P

172P

172P

172P

Y111

Y121

Y112

Y211

Y122

Y221

Y212

Y222

Y11

Y12

Y21

Y22

Y1

Y2

Y

Figure 3. Networks implementing the Boolean function y = f(x).

easily done using DNA-like learning algorithm.

For example, the weight-threshold values of 16 percep-

trons in the network performing Boolean function y = f1(x)
can be calculated, and they are shown in Table V.

IV. CONCLUSION

A new scheme for implementing S-box used in ciphers

based on neural network is presented. Differing from the

previous network models, the structure of the proposed

network consists of multiple perceptrons (SLPs or MLPs)

combining with a specific MLP (172P), and each perceptron

only has a low number of input variables. More importantly,

the network has the characteristics of massively parallel

processing, and can be used to perform any S-box. In ad-

dition, it is convenient to train quickly the weight-threshold

values of the Boolean function in the network through DNA-

like learning algorithm. Further work will include testing

some cryptographic properties of the S-box such as balance

property, completeness criterion, strict avalanche criterion,

non-linearity criterion and bit independence criterion etc..

ACKNOWLEDGMENT

This research was supported by the NSFC (Grants No.

11171084 and No. 60872093).

REFERENCES

[1] M. N. A. Noughabi, and B. Sadeghiyan, Design of S-box Based
on Neural Network, International Conference on Electronics
and Information Engineering (ICEIE), Vol. 2, pp. 172-178,
2010.

[2] D. Pointcheval, Neural Networks and Their Cryptographic
Applications, in Proc. of Eurocode, pp. 183-193, 1994.

[3] A. G. Bafghi, R. Safabakhsh, and B. Sadeghiyan, Finding
the differential characteristics of block ciphers with neural
networks, international journal of Information Sciences, pp.
3118-3132, 2008.

[4] A. Webster, and S. Tavares, On the design of S-boxes, Ad-
vances in cryptology-CRYPT0’85, LNCS 218, pp. 523-534,
Springer, 1986.

[5] R. Forre, The strict avalanche criterion: spectral properties
of Boolean functions and an extended definition, Advances
in cryptology: Proc of CRYPTOA’88, Berlin: Springer-Verlag,
1989.

[6] C. Adams, S. Tavares, The structured design of cryptographi-
cally good S-boxes, JCryptol, 3(1), pp. 27-41. 1990.

[7] X. Yi, S. Cheng, X. You, A method for obtaining crypto-
graphically strong 8 × 8 S-boxes, Global telecommunications
conference, GLOBECOMA’97, pp. 3-8, 1997.

[8] J. A. Anderson, An Introduction to Neural Networks. London,
U.K.: MIT Press, 1995.

[9] F. Y. Chen, G. R. Chen, Q. He, G. He, and X. Xu, Universal
perceptron and DNA-like learning algorithm for binary neural
networks: Non-LSBF implementations, IEEE Trans. Neural
Netw., Vol. 20, pp. 1293-1301, 2009.

[10] F. Y. Chen, G. R. Chen, G. He, X. Xu and Q. He, Universal
perceptron and DNA-like learning algorithm for binary neu-
ral networks: LSBF and PBF Implementations, IEEE Trans.
Neural Netw., Vol. 20, pp. 1645-1658, 2009.

[11] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow,
England: Addison-Wesley, 1999.

577576

