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Abstract— Determining the optimal number of hidden nodes is 
the most challenging aspect of Artificial Neural Network 
(ANN) design. To date, there are still no reliable methods of 
determining this a priori, as it depends on so many domain-  
specific factors. Current methods which take these into 
account, such as exhaustive search, growing and pruning and 
evolutionary algorithms are not only inexact, but also 
extremely time consuming – in some cases prohibitively so. A 
novel approach embodied in a system called Heurix is 
introduced. This rapidly predicts the optimal number of 
hidden nodes from a small number of sample topologies. It can 
be configured to favour speed (low complexity), accuracy, or a 
balance between the two. Single hidden layer feedforward 
networks (SLFNs) can be built twenty times faster, and with a 
generalisation error of as little as 0.4% greater than those 
found by exhaustive search. 

Keywords- Feedforward Artificial Neural Network; 
architecture selection; number of hidden nodes; universal 
function approximation; Heurix 

I.  INTRODUCTION 
The most challenging aspect of any ANN design is 

choosing (or fixing) the optimal number of hidden nodes. 
Though the upper bounds for these have been 
mathematically proved for function approximation [1], [2]; at 
these bounds the training set will be exactly memorised 
including any noise within it. This is detrimental to the 
ability of the network to generalise the function for unseen 
input data. Reducing the number of hidden nodes improves 
generalisation, but going too  far will result in a network 
without the capacity to solve the problem. In practice 
therefore, optimal means the ‘correct’ balance between 
number of hidden nodes and generalisation error.  

Figure 1.  Fitted Error Curve 

Regularisation schemes which limit the size of the 
weights, such as early stopping or weight decay allow 
oversized networks to be trained without compromising  
generalisation [3]. If perfect regularisation is assumed, as the 
number of hidden nodes ��is increased, the error ����will 
eventually hit a floor level ���	
� This will be a function of 
the training data, the amount of noise within it, the training 
algorithm, initial random weights etc. Figure 1 shows this 
effect for a SLFN trained with the Levenberg-Marquardt 
training algorithm using early stopping. The error function ����  follows a classic power law curve ���� � ��
 � � , 
where � is the number of hidden nodes; �� � � ����and�� �����	 are constants. 

This paper explores the theoretical bounds of function 
approximators and current practical methods to build them in 
sections II and III respectively. In section IV a novel system 
called Heurix is introduced which predicts the optimal 
number of hidden nodes from this error function ����. Its 
accuracy and performance are compared to exhaustive search 
in section V, and the paper closes with concluding remarks 
in section VI. 

II. THEORECTICAL BOUNDS OF FUNCTION 
APPROXIMATION 

In 1957, Kolmogorov proved a general representation of 
Hilbert’s 13th problem [4]. Kolmogorov’s Superposition 
Theorem, as it is now known, states that any real-valued, 
continuous function ��defined on an �-dimensional unit cube 
can be represented as the sum of continuous functions of a 
single variable. Following refinements by Lorentz [5] and 
Sprecher [6], the general form is: 

 

����� ���	� � ���� � ������� �  �!	
�"� #$	

%"& �� 
 
where � ' (� � and � are functions of a single variable and � is a constant. Note that only � depends on the function, ����)�� depend only on the number of dimensions. Noticing 
that this essentially describes a 3 layer neural network, 
Hecht-Nielsen [7] rephrased it to state that any continuous 
function ��defined on an � -dimensional unit cube can be 
implemented exactly by a 3 layer network with (� � * 
hidden nodes. This has been grossly misinterpreted and 
misapplied by some authors – for example “you will never 
require more than twice the number of hidden units as you 
have inputs” [8, p. 53]. The fact is that the functions � and � 
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are highly non-smooth unlike the more commonly used 
sigmoidal types. Thus although his theorem demonstrated 
the theoretical power of neural networks, Hecht-Nielsen 
summarised it as follows: “The proof of the theorem is not 
constructive, so it does not tell us how to determine these 
quantities. It is strictly an existence theorem. It tells us that 
such a three-layer mapping network must exist, but it doesn’t 
tell us how to find it. Unfortunately, there does not appear 
too much hope that a method for finding the Kolmogorov 
network will be developed soon.” [20, p. 123] . 

Although they do not address the bounds on the number 
of hidden nodes required, a significant result was the proof 
by Hornik et al. [10] that standard multilayer feedforward 
networks are universal approximators. Given sufficient  
hidden nodes with arbitrary squashing functions, these are 
capable of representing any function to an arbitrary degree of 
accuracy. 

Addressing the issue of the non-smoothness of � and �, 
in Kolmogorov networks, K�rková [11] showed that it is 
possible to approximate these arbitrarily well using any 
sigmoidal type. In addition, by loosening the requirement 
from exact function representation to function approximation 
with error ��  by a two hidden layer feedforward network 
(TLFN) with �+�+ � *��neurons in the first hidden layer, 
and��+$�+ � *�	 neurons in the second hidden layer, where � is the number of inputs and + depends in a complicated 
fashion on the error �  and function � . This proves that 
TLFNs can be used to approximate Kolmogorov networks, 
although “upper estimates of number of hidden units needed 
for good approximations of general continuous functions are 
very large” [11, p. 503]. 

More recently, Huang and Babri lowered these bounds, 
proving that an SLFN with at most ,- hidden neurons can 
learn ,. distinct samples with zero error. This is true for any 
bounded, non-linear activation function which has a limit at 
one infinity [1]. Thus the upper bound for SLFNs is 

  ,- / ,..           (1) 
 
Huang later extended the work of Tamura and Tateshi [12] 
to rigorously prove that the upper bound on the number of 
hidden nodes ,-�for TLFNs with sigmoid activation function 
is given by equation (2), where ,0 is the number of outputs. 
These can learn at least ,. distinct samples with any degree 
of precision [2].  ,- / (1�,0 � (�,.                            (2) 

 
It is well known that functions which are linearly 

separable require no hidden nodes at all. For the rest, (1) and 
(2) prove that within the constraints of their respective 
theorems, a function of any complexity can be reproduced 
with any degree of precision within the specified bounds. 
However, if the training set contains noise, as is the case in 
most practical situations, exactly reproducing the training set 
will guarantee overfitting. This is extremely undesirable as it 
is detrimental to the network’s generalisation performance. 
In practice therefore, the number of hidden nodes must 
necessarily be lower than these bounds and will depend on a 

number of domain specific factors: including the function 
complexity, number of inputs and outputs and most 
crucially, the number of training samples and level of noise 
within them. The generalisation performance, the measure by 
which the network will ultimately be judged, is thus domain 
specific and can only be done in-situ, and (1) and (2) suggest 
that all candidates within these bounds should be considered. 
Since exhaustive searches can in some cases be extremely 
time consuming (if not infeasible), a number of alternative  
approaches, described in section III, have been taken.  

III. BUILDING PRACTICAL FUNCTION APPROXIMATORS 
Current methods for fixing the optimal number of nodes 

can be broadly classified in the following approaches: 

A. Rules of Thumb 
Over the years, many blind rules of thumb have emerged, 

such as “A rule of thumb is for the size of this hidden layer 
to be somewhere between the input layer size and the output 
layer size” [13] and “How large should the hidden layer be? 
One rule of thumb is that it should never be more than twice 
as large as the input layer” [14]. Rules such as these have 
little merit since they do not take into account the number of 
training samples. Others which have an empirical foundation 
should be treated with caution as they may only work in 
specific situations or domains, such as [15] and [16]. 

B. Trial and Error 
This is a very unsophisticated approach, unlikely to yield 

good results except by accident. Occasionally this term is 
used to mean a bounded exhaustive search, [17] for example, 
search the space of 9-25 hidden nodes. 

C. Exhaustive Search 
This involves searching through all the possible 

topologies within the theoretical bounds and choosing the 
one with the least generalisation error. The main problem 
with this approach is it can be very time consuming – 
especially for networks with two hidden layers where the 
search complexity is 2��$� . A further problem with this 
approach is what we call generalisation jitter - the 
generalisation error varies from run to run due to the initial 
random weight allocation even when all other factors are 
kept constant. In order to reduce this effect, a number of 
networks of each topology are trained, the best of which is 
elected as a candidate. Even then, there can be significant 
variation in the ‘optimum’ number of hidden nodes selected 
even when all else is constant from run to run. 

D. Growing Algorithms 
These are very similar to exhaustive searches, except that 

they stop when there is no significant improvement in the 
generalisation error. This method also suffers from 
generalisation jitter, which in this case could cause 
premature stopping due to a local rise in generalisation error. 
One way to improve on this would be to use a running 
average of the average generalisation error. However, even 
this would not help for two dimensional searches due to the 
sudden variation of the node ratio on a new row. A different 
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approach might stop when an acceptable level of error is 
found. However on the one hand, there is no guarantee that it 
will ever be found, on the other there might be a better 
solution just round the corner. Other types of growing 
algorithms combine growing and training simultaneously. 
These, which can be classified as evolutionary, and non-
evolutionary are beyond the scope of this paper. The former 
will be investigated in future work, and a survey of the latter 
for function approximation can be found in [18].  

E. Pruning Algorithms 
With the pruning approach, a deliberately oversized 

network is trained, and then the weights are analysed to 
determine their relative importance. The least important 
connection weights are removed, and then the network 
retrained and the whole process repeated. The problem here 
is in determining what constitutes an oversized network in 
the first instance. Determining which are the least important 
weights can also be a problem – and this process can be 
extremely time consuming. A brute force approach which 
sets each weight to zero and then removes it, if it has a 
negligible effect on accuracy has a computational complexity 
of 2�,.34���where ,.  is the number of samples and W is 
the number of weights [19]. One of the best known pruning 
algorithms, Optimal Brain Surgeon (OBS) which eliminates 
weights one by one, takes about 14 hours to prune a SLFN 
from 5-50-1 to 5-10-1. Fast Unit Pruning, based on OBS, is 
faster as it removes several weights at a time. However, even 
this takes 5.5 hours to prune the same network [20]. An 
excellent survey of pruning algorithms can be found in Reed 
[19]. 

IV. THE HEURIX SYSTEM 
Heurix consists of a set of MATLAB modules each with 

distinct responsibilities. The initialisation phase, shown on 
the left half of the flow chart in figure 2, prepares the domain 
data and is only invoked once. The build phase, which is 
controlled by the 4 parameters on the far right of figure 2, 
uses the domain data to build the actual neural network. The 
sampler tests a number of topologies, which the fitter uses to 
estimate the error curve. From this, the predictor decides on 
the optimal number of hidden nodes, and finally the scanner 
selects the champion from a number of candidates with the 
same topology. Sections A – E describe the modules in 
greater detail.  

Figure 2.  Heurix Flow Chart 

A. Splitter Module 
This splits the data into training, validation and test sets. 

Crucially, it ensures that all keypoint samples are allocated to 
the training set. These are the samples which contain the 
minimum and maximum values of each input and output. 
This step is important because ANNs are better at 
interpolating than extrapolating. The remaining samples are 
randomly split between training, validation and test sets 
according to the desired split ratio. The training set is used to 
train the network using the validation set for early stopping, 
and the test set is used as an estimate of the generalisation 
error for selecting the champion. The same domain data are 
used throughout to ensure that the networks are competing 
on an even playing field.  

B. Sampler Module 
The Sampler tests a number of representative topologies 

and passes their errors to the fitter module. Since the error 
curve is exponential, the most efficient way to do this is to 
use an exponential scale. The topologies selected are thus the 
set ,� 5 �6 5 ,0 , where ,� and ,0 are the number of inputs 
and outputs respectively, 7  is an integer, and �6  is the 
number of hidden neurons �6 � (6���for�� / �7 / �789�:   The 
ceiling, 789�:  is calculated theoretically from equation (1) as 
the ceiling of ;<=$�,.� Where ,.�is the number of training 
samples. A number�of separate networks are trained for each 7 , recording the average training error �6 using the 
normalised root mean square error (NRMSE). The sampler 
stops early when the error gradient drops below a threshold 
value >? such that �6�@��6A� �� ��>?�per binade (defined as 
the interval between (6 and (6B�� AND 7 ' C. The quantity 7�DE represents the actual value of 7 at this point. Thus the 
output from the sampler module is �&� ��6FGH and �&� � �6FGH . 

C. Fitter Module 
The fitter module uses the sampler output to fit an error 

curve � � ���� of the form: 
 � � ��
 � ��                     (3) 

 
where  �� ���and � are constants,�� / � � ���	  , and ���	  is 
the minimum value of �& 5 �6FGH . This is done iteratively 
using linear regression of the natural logarithms of � and � 
for different values of � . The values of �� ��and ��  which 
yield the best correlation coefficient  I�> 0.99 are chosen. 

D. Predictor Module 
This module predicts the optimal number of hidden 

nodes based on user preference. It does so by calculating the 
derivative of the error function �J and solving it to calculate 
the total number of hidden nodes ,-�required for a given rate 
of change of error per node. These steps are shown in (4) and 
(5). �K � LML	 � ���
A��         (4) 

,- � NMK
8O PQRP   (5) 
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The value ,-  is passed to the scanner to search for the 
champion network using a deep scan. The choice of �J 
detemines the balance between network complexity and 
network accuracy. Three default values of �J determine 
whether the network will be optimised for speed (low 
complexity), accuracy or balanced between the two. 

E. Scanner 
The scanner has two basic modes of operation, wide and 

deep. In wide mode it performs an exhaustive search of 
topologies between two limits through one dimensional 
space. In deep mode it focuses on a single topology with ,- 
hidden nodes. A number of networks, ).8D	��are created for 
each topology. It returns the overall champion, which is the 
network with the lowest error on the unseen test data set – 
i.e. the best generaliser. 

V. EXPERIMENTS AND RESULTS 
All experiments were carried out using the MATLAB 

R2014b neural network toolbox on an Acer Aspire V 17 
Nitro (Black Edition) laptop. This is fitted with a core i7 
4710HQ processor running at 2.5GHz. 

The MATLAB Engine Data Set was used to develop the 
algorithm and run all the experiments. This contains 1199 
samples organised as two inputs (fuel and speed) and two 
outputs (torque and NOx). Prior to being fed to the splitter, 
these were reorganised into 3 inputs (torque, fuel and speed) 
and a single NOx output. These were then apportioned by the 
splitter module into 80% training and 10% each for 
validation and test (959, 120, and 120 respectively). The 
same data was used for all of the experiments. In all cases, 
the training algorithm was ‘trainlm’ with default parameters - 
notably 1000 epochs, 0 performance goal, and 6 validation 
failures. Network Configuration: processFcn = 
‘mapminmax’, divideFcn = ‘divideind’, performFcn = ‘mse’, 
transferFcn = ‘tansig’. In all cases, the normalised root mean 
square (NRMSE) is used as a measure of the error:  

 

,STUVW � �WXFGHA�WXFYZ� [\ �WY�A��WXY�]ZY^P _`  ,            (6) 
 
Where ,L  represents the number of data points in the data 
set, aX� is the expected value, and a�  is the actual value. 

Following an investigative phase which assessed the 
accuracy and repeatability of results as well as general 
sensitivity to the settings, the defaults shown in table 1 were 
selected. 

The heart of the Heurix system is the curve fitter module, 
from which the optimum number of nodes is predicted. Its 
accuracy and repeatability are tested by comparing its output 
over 10 runs to the actual data from a full scan. Figure 3 
shows the average training error over 30 networks for each 
topology between 1 and 256 hidden nodes, overlaid on one 
such fitter output. The root mean square error (rmse) 
between the fitter output and the actual data as well as the 
correlation coefficient I�between the two is shown in table II. 
There is a remarkably good correlation between the fitter and 
actual data. 

TABLE I.  HEURIX DEFAULT SETTINGS 

Parameter Description Value / Meaning 
dsample Sampler Depth 30 networks bc Sampler Stop Gradient -1.00% per binade 
dscan Scanner Depth 30 networks 
speed Optimisation setting �J= -0.10% per node 
balanced Optimisation setting �J= -0.05% per node 
accuracy Optimisation setting �J= -0.02% per node 

TABLE II.  AVERAGE FITTER CORRELATION 

 rmse r d 0.0012 0.9953 e 0.00023 0.00041 

TABLE III.  AVERAGE PERFORMANCE SUMMARY 

Optimisation 
Mode Nh w 

Overall 
Error 

% 

Generalisation 
Error  

% 

Run 
Time 
(min) 

exhaustive 55.5 278.5 0.85 0.87 112.1 
accuracy 35.8 180.0 1.04 1.27 7.9 
balanced 20.6 104.0 1.44 1.74 7.4 

speed 13.3 67.5 1.95 2.28 5.5 
 
The performance of Heurix is compared with exhaustive 

search by selecting the champion generaliser from 10 runs of 
each optimisation setting. The average number of hidden 
nodes  ,-, weights f, overall error, generalisation error and 
run time are shown in table III. The weights (including 
biases) are calculated as:  f � \ ���A� � *�:�"� g ��, where ; 
is the number of layers (including input and output layers); ��&  is the number of inputs, ���is the number of nodes in 
layer h� and��:  is the number of outputs. These are used to 
estimate relative network response times. Figure 4 shows the 
overall and generalisation errors. The latter are just +0.4%, 
+0.9% and +1.4% relative to exhaustive search. In figure 5, 
the build time and network response time are shown as a 
percentage of the time for an exhaustive search. There is an 
insignificant difference in build time between the modes - 
they all build networks in between 5%-7% of the time of an 
exhaustive search. In terms of the response time, estimated 
from the weights, networks respond on average in 64.6%, 
37.3% and 24.2% of the time of those found by exhaustive 
search. The network build and response of a balanced 
network is shown in figures 6 and 7. It has a generalisation 
error of just 1.5% and correlation I i �
jjk for all data sets. 
It took just 6.6 minutes to build. 

Figure 3.  Fitted Curve Overlaid on Actual Training Error 
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Figure 4.  Relative Errors 

Figure 5.  Relative Performance 

Figure 6.  Network Build 

Figure 7.  Network Response 

VI. CONCLUSIONS 
In summary, there are still no mathematically founded 

theoretical methods of predicting the number of hidden 
nodes. It is argued that practical methods of fixing these 
must necessarily be done in-situ using the actual domain 
data, and training algorithm to be deployed. Current methods 
which do so, such as exhaustive search, growing, pruning 
and evolutionary algorithms are extremely time consuming. 
In order to offer a faster alternative, a novel system called 
Heurix was developed and its performance compared to 
exhaustive search (ES). On average Heurix can build 
networks in 5-7% of the time of ES (<8mins). These have 
generalisation errors between 0.4-1.4% greater than ES, and 
response time 24-65% of ES, depending on which 
optimisation setting is used. Heurix is showing great promise 
but needs testing with other datasets. 

GLOSSARY OF TERMS 
ANN – Artificial Neural Network 
LM – Levenberg Marquardt training Algorithm 
NRMSE – Normalised Root Mean Square Error 
OBS – Optimal Brain Surgeon. 
SLFN – Single hidden Layer Feed-forward Network 
TLFN – Two hidden Layer Feed-forward Network ,- - Total number of hidden nodes or neurons ,. – Number of training samples ,0 – Number of outputs ,� – Number of inputs >? – Sampler stop gradient �K  – Fixer gradient rate of change of error per node. 
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