
On Predicting the Optimal Number of Hidden Nodes

Alan J Thomas, Miltos Petridis, Simon D Walters, Saeed Malekshahi Gheytassi, Robert E Morgan
School of Computing, Engineering, and Mathematics

University of Brighton
United Kingdom

A.J.Thomas@brighton.ac.uk

Abstract— Determining the optimal number of hidden nodes is
the most challenging aspect of Artificial Neural Network
(ANN) design. To date, there are still no reliable methods of
determining this a priori, as it depends on so many domain-
specific factors. Current methods which take these into
account, such as exhaustive search, growing and pruning and
evolutionary algorithms are not only inexact, but also
extremely time consuming – in some cases prohibitively so. A
novel approach embodied in a system called Heurix is
introduced. This rapidly predicts the optimal number of
hidden nodes from a small number of sample topologies. It can
be configured to favour speed (low complexity), accuracy, or a
balance between the two. Single hidden layer feedforward
networks (SLFNs) can be built twenty times faster, and with a
generalisation error of as little as 0.4% greater than those
found by exhaustive search.

Keywords- Feedforward Artificial Neural Network;
architecture selection; number of hidden nodes; universal
function approximation; Heurix

I. INTRODUCTION
The most challenging aspect of any ANN design is

choosing (or fixing) the optimal number of hidden nodes.
Though the upper bounds for these have been
mathematically proved for function approximation [1], [2]; at
these bounds the training set will be exactly memorised
including any noise within it. This is detrimental to the
ability of the network to generalise the function for unseen
input data. Reducing the number of hidden nodes improves
generalisation, but going too far will result in a network
without the capacity to solve the problem. In practice
therefore, optimal means the ‘correct’ balance between
number of hidden nodes and generalisation error.

Figure 1. Fitted Error Curve

Regularisation schemes which limit the size of the
weights, such as early stopping or weight decay allow
oversized networks to be trained without compromising
generalisation [3]. If perfect regularisation is assumed, as the
number of hidden nodes ��is increased, the error ����will
eventually hit a floor level ���	
� This will be a function of
the training data, the amount of noise within it, the training
algorithm, initial random weights etc. Figure 1 shows this
effect for a SLFN trained with the Levenberg-Marquardt
training algorithm using early stopping. The error function ���� follows a classic power law curve ���� � �� � � ,
where � is the number of hidden nodes; �� � � ����and�� �����	 are constants.

This paper explores the theoretical bounds of function
approximators and current practical methods to build them in
sections II and III respectively. In section IV a novel system
called Heurix is introduced which predicts the optimal
number of hidden nodes from this error function ����. Its
accuracy and performance are compared to exhaustive search
in section V, and the paper closes with concluding remarks
in section VI.

II. THEORECTICAL BOUNDS OF FUNCTION
APPROXIMATION

In 1957, Kolmogorov proved a general representation of
Hilbert’s 13th problem [4]. Kolmogorov’s Superposition
Theorem, as it is now known, states that any real-valued,
continuous function ��defined on an �-dimensional unit cube
can be represented as the sum of continuous functions of a
single variable. Following refinements by Lorentz [5] and
Sprecher [6], the general form is:

����� ���	� � ���� � ������� � �!	
�"� #$	

%"& ��

where � ' (� � and � are functions of a single variable and � is a constant. Note that only � depends on the function, ����)�� depend only on the number of dimensions. Noticing
that this essentially describes a 3 layer neural network,
Hecht-Nielsen [7] rephrased it to state that any continuous
function ��defined on an � -dimensional unit cube can be
implemented exactly by a 3 layer network with (� � *
hidden nodes. This has been grossly misinterpreted and
misapplied by some authors – for example “you will never
require more than twice the number of hidden units as you
have inputs” [8, p. 53]. The fact is that the functions � and �

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.33

566

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.33

565

are highly non-smooth unlike the more commonly used
sigmoidal types. Thus although his theorem demonstrated
the theoretical power of neural networks, Hecht-Nielsen
summarised it as follows: “The proof of the theorem is not
constructive, so it does not tell us how to determine these
quantities. It is strictly an existence theorem. It tells us that
such a three-layer mapping network must exist, but it doesn’t
tell us how to find it. Unfortunately, there does not appear
too much hope that a method for finding the Kolmogorov
network will be developed soon.” [20, p. 123] .

Although they do not address the bounds on the number
of hidden nodes required, a significant result was the proof
by Hornik et al. [10] that standard multilayer feedforward
networks are universal approximators. Given sufficient
hidden nodes with arbitrary squashing functions, these are
capable of representing any function to an arbitrary degree of
accuracy.

Addressing the issue of the non-smoothness of � and �,
in Kolmogorov networks, K�rková [11] showed that it is
possible to approximate these arbitrarily well using any
sigmoidal type. In addition, by loosening the requirement
from exact function representation to function approximation
with error �� by a two hidden layer feedforward network
(TLFN) with �+�+ � *��neurons in the first hidden layer,
and��+$�+ � *�	 neurons in the second hidden layer, where � is the number of inputs and + depends in a complicated
fashion on the error � and function � . This proves that
TLFNs can be used to approximate Kolmogorov networks,
although “upper estimates of number of hidden units needed
for good approximations of general continuous functions are
very large” [11, p. 503].

More recently, Huang and Babri lowered these bounds,
proving that an SLFN with at most ,- hidden neurons can
learn ,. distinct samples with zero error. This is true for any
bounded, non-linear activation function which has a limit at
one infinity [1]. Thus the upper bound for SLFNs is

 ,- / ,.. (1)

Huang later extended the work of Tamura and Tateshi [12]
to rigorously prove that the upper bound on the number of
hidden nodes ,-�for TLFNs with sigmoid activation function
is given by equation (2), where ,0 is the number of outputs.
These can learn at least ,. distinct samples with any degree
of precision [2]. ,- / (1�,0 � (�,. (2)

It is well known that functions which are linearly

separable require no hidden nodes at all. For the rest, (1) and
(2) prove that within the constraints of their respective
theorems, a function of any complexity can be reproduced
with any degree of precision within the specified bounds.
However, if the training set contains noise, as is the case in
most practical situations, exactly reproducing the training set
will guarantee overfitting. This is extremely undesirable as it
is detrimental to the network’s generalisation performance.
In practice therefore, the number of hidden nodes must
necessarily be lower than these bounds and will depend on a

number of domain specific factors: including the function
complexity, number of inputs and outputs and most
crucially, the number of training samples and level of noise
within them. The generalisation performance, the measure by
which the network will ultimately be judged, is thus domain
specific and can only be done in-situ, and (1) and (2) suggest
that all candidates within these bounds should be considered.
Since exhaustive searches can in some cases be extremely
time consuming (if not infeasible), a number of alternative
approaches, described in section III, have been taken.

III. BUILDING PRACTICAL FUNCTION APPROXIMATORS
Current methods for fixing the optimal number of nodes

can be broadly classified in the following approaches:

A. Rules of Thumb
Over the years, many blind rules of thumb have emerged,

such as “A rule of thumb is for the size of this hidden layer
to be somewhere between the input layer size and the output
layer size” [13] and “How large should the hidden layer be?
One rule of thumb is that it should never be more than twice
as large as the input layer” [14]. Rules such as these have
little merit since they do not take into account the number of
training samples. Others which have an empirical foundation
should be treated with caution as they may only work in
specific situations or domains, such as [15] and [16].

B. Trial and Error
This is a very unsophisticated approach, unlikely to yield

good results except by accident. Occasionally this term is
used to mean a bounded exhaustive search, [17] for example,
search the space of 9-25 hidden nodes.

C. Exhaustive Search
This involves searching through all the possible

topologies within the theoretical bounds and choosing the
one with the least generalisation error. The main problem
with this approach is it can be very time consuming –
especially for networks with two hidden layers where the
search complexity is 2��$� . A further problem with this
approach is what we call generalisation jitter - the
generalisation error varies from run to run due to the initial
random weight allocation even when all other factors are
kept constant. In order to reduce this effect, a number of
networks of each topology are trained, the best of which is
elected as a candidate. Even then, there can be significant
variation in the ‘optimum’ number of hidden nodes selected
even when all else is constant from run to run.

D. Growing Algorithms
These are very similar to exhaustive searches, except that

they stop when there is no significant improvement in the
generalisation error. This method also suffers from
generalisation jitter, which in this case could cause
premature stopping due to a local rise in generalisation error.
One way to improve on this would be to use a running
average of the average generalisation error. However, even
this would not help for two dimensional searches due to the
sudden variation of the node ratio on a new row. A different

567566

approach might stop when an acceptable level of error is
found. However on the one hand, there is no guarantee that it
will ever be found, on the other there might be a better
solution just round the corner. Other types of growing
algorithms combine growing and training simultaneously.
These, which can be classified as evolutionary, and non-
evolutionary are beyond the scope of this paper. The former
will be investigated in future work, and a survey of the latter
for function approximation can be found in [18].

E. Pruning Algorithms
With the pruning approach, a deliberately oversized

network is trained, and then the weights are analysed to
determine their relative importance. The least important
connection weights are removed, and then the network
retrained and the whole process repeated. The problem here
is in determining what constitutes an oversized network in
the first instance. Determining which are the least important
weights can also be a problem – and this process can be
extremely time consuming. A brute force approach which
sets each weight to zero and then removes it, if it has a
negligible effect on accuracy has a computational complexity
of 2�,.34���where ,. is the number of samples and W is
the number of weights [19]. One of the best known pruning
algorithms, Optimal Brain Surgeon (OBS) which eliminates
weights one by one, takes about 14 hours to prune a SLFN
from 5-50-1 to 5-10-1. Fast Unit Pruning, based on OBS, is
faster as it removes several weights at a time. However, even
this takes 5.5 hours to prune the same network [20]. An
excellent survey of pruning algorithms can be found in Reed
[19].

IV. THE HEURIX SYSTEM
Heurix consists of a set of MATLAB modules each with

distinct responsibilities. The initialisation phase, shown on
the left half of the flow chart in figure 2, prepares the domain
data and is only invoked once. The build phase, which is
controlled by the 4 parameters on the far right of figure 2,
uses the domain data to build the actual neural network. The
sampler tests a number of topologies, which the fitter uses to
estimate the error curve. From this, the predictor decides on
the optimal number of hidden nodes, and finally the scanner
selects the champion from a number of candidates with the
same topology. Sections A – E describe the modules in
greater detail.

Figure 2. Heurix Flow Chart

A. Splitter Module
This splits the data into training, validation and test sets.

Crucially, it ensures that all keypoint samples are allocated to
the training set. These are the samples which contain the
minimum and maximum values of each input and output.
This step is important because ANNs are better at
interpolating than extrapolating. The remaining samples are
randomly split between training, validation and test sets
according to the desired split ratio. The training set is used to
train the network using the validation set for early stopping,
and the test set is used as an estimate of the generalisation
error for selecting the champion. The same domain data are
used throughout to ensure that the networks are competing
on an even playing field.

B. Sampler Module
The Sampler tests a number of representative topologies

and passes their errors to the fitter module. Since the error
curve is exponential, the most efficient way to do this is to
use an exponential scale. The topologies selected are thus the
set ,� 5 �6 5 ,0 , where ,� and ,0 are the number of inputs
and outputs respectively, 7 is an integer, and �6 is the
number of hidden neurons �6 � (6���for�� / �7 / �789�: The
ceiling, 789�: is calculated theoretically from equation (1) as
the ceiling of ;<=$�,.� Where ,.�is the number of training
samples. A number�of separate networks are trained for each 7 , recording the average training error �6 using the
normalised root mean square error (NRMSE). The sampler
stops early when the error gradient drops below a threshold
value >? such that �6�@��6A� �� ��>?�per binade (defined as
the interval between (6 and (6B�� AND 7 ' C. The quantity 7�DE represents the actual value of 7 at this point. Thus the
output from the sampler module is �&� ��6FGH and �&� � �6FGH .

C. Fitter Module
The fitter module uses the sampler output to fit an error

curve � � ���� of the form:
 � � �� � �� (3)

where �� ���and � are constants,�� / � � ���	 , and ���	 is
the minimum value of �& 5 �6FGH . This is done iteratively
using linear regression of the natural logarithms of � and �
for different values of � . The values of �� ��and �� which
yield the best correlation coefficient I�> 0.99 are chosen.

D. Predictor Module
This module predicts the optimal number of hidden

nodes based on user preference. It does so by calculating the
derivative of the error function �J and solving it to calculate
the total number of hidden nodes ,-�required for a given rate
of change of error per node. These steps are shown in (4) and
(5). �K � LML	 � ���A�� (4)

,- � NMK8O PQRP (5)

568567

The value ,- is passed to the scanner to search for the
champion network using a deep scan. The choice of �J
detemines the balance between network complexity and
network accuracy. Three default values of �J determine
whether the network will be optimised for speed (low
complexity), accuracy or balanced between the two.

E. Scanner
The scanner has two basic modes of operation, wide and

deep. In wide mode it performs an exhaustive search of
topologies between two limits through one dimensional
space. In deep mode it focuses on a single topology with ,-
hidden nodes. A number of networks,).8D	��are created for
each topology. It returns the overall champion, which is the
network with the lowest error on the unseen test data set –
i.e. the best generaliser.

V. EXPERIMENTS AND RESULTS
All experiments were carried out using the MATLAB

R2014b neural network toolbox on an Acer Aspire V 17
Nitro (Black Edition) laptop. This is fitted with a core i7
4710HQ processor running at 2.5GHz.

The MATLAB Engine Data Set was used to develop the
algorithm and run all the experiments. This contains 1199
samples organised as two inputs (fuel and speed) and two
outputs (torque and NOx). Prior to being fed to the splitter,
these were reorganised into 3 inputs (torque, fuel and speed)
and a single NOx output. These were then apportioned by the
splitter module into 80% training and 10% each for
validation and test (959, 120, and 120 respectively). The
same data was used for all of the experiments. In all cases,
the training algorithm was ‘trainlm’ with default parameters -
notably 1000 epochs, 0 performance goal, and 6 validation
failures. Network Configuration: processFcn =
‘mapminmax’, divideFcn = ‘divideind’, performFcn = ‘mse’,
transferFcn = ‘tansig’. In all cases, the normalised root mean
square (NRMSE) is used as a measure of the error:

,STUVW � �WXFGHA�WXFYZ� [\ �WY�A��WXY�]ZY^P _` , (6)

Where ,L represents the number of data points in the data
set, aX� is the expected value, and a� is the actual value.

Following an investigative phase which assessed the
accuracy and repeatability of results as well as general
sensitivity to the settings, the defaults shown in table 1 were
selected.

The heart of the Heurix system is the curve fitter module,
from which the optimum number of nodes is predicted. Its
accuracy and repeatability are tested by comparing its output
over 10 runs to the actual data from a full scan. Figure 3
shows the average training error over 30 networks for each
topology between 1 and 256 hidden nodes, overlaid on one
such fitter output. The root mean square error (rmse)
between the fitter output and the actual data as well as the
correlation coefficient I�between the two is shown in table II.
There is a remarkably good correlation between the fitter and
actual data.

TABLE I. HEURIX DEFAULT SETTINGS

Parameter Description Value / Meaning
dsample Sampler Depth 30 networks bc Sampler Stop Gradient -1.00% per binade
dscan Scanner Depth 30 networks
speed Optimisation setting �J= -0.10% per node
balanced Optimisation setting �J= -0.05% per node
accuracy Optimisation setting �J= -0.02% per node

TABLE II. AVERAGE FITTER CORRELATION

 rmse r d 0.0012 0.9953 e 0.00023 0.00041

TABLE III. AVERAGE PERFORMANCE SUMMARY

Optimisation
Mode Nh w

Overall
Error

%

Generalisation
Error

%

Run
Time
(min)

exhaustive 55.5 278.5 0.85 0.87 112.1
accuracy 35.8 180.0 1.04 1.27 7.9
balanced 20.6 104.0 1.44 1.74 7.4

speed 13.3 67.5 1.95 2.28 5.5

The performance of Heurix is compared with exhaustive

search by selecting the champion generaliser from 10 runs of
each optimisation setting. The average number of hidden
nodes ,-, weights f, overall error, generalisation error and
run time are shown in table III. The weights (including
biases) are calculated as: f � \ ���A� � *�:�"� g ��, where ;
is the number of layers (including input and output layers); ��& is the number of inputs, ���is the number of nodes in
layer h� and��: is the number of outputs. These are used to
estimate relative network response times. Figure 4 shows the
overall and generalisation errors. The latter are just +0.4%,
+0.9% and +1.4% relative to exhaustive search. In figure 5,
the build time and network response time are shown as a
percentage of the time for an exhaustive search. There is an
insignificant difference in build time between the modes -
they all build networks in between 5%-7% of the time of an
exhaustive search. In terms of the response time, estimated
from the weights, networks respond on average in 64.6%,
37.3% and 24.2% of the time of those found by exhaustive
search. The network build and response of a balanced
network is shown in figures 6 and 7. It has a generalisation
error of just 1.5% and correlation I i �
jjk for all data sets.
It took just 6.6 minutes to build.

Figure 3. Fitted Curve Overlaid on Actual Training Error

569568

Figure 4. Relative Errors

Figure 5. Relative Performance

Figure 6. Network Build

Figure 7. Network Response

VI. CONCLUSIONS
In summary, there are still no mathematically founded

theoretical methods of predicting the number of hidden
nodes. It is argued that practical methods of fixing these
must necessarily be done in-situ using the actual domain
data, and training algorithm to be deployed. Current methods
which do so, such as exhaustive search, growing, pruning
and evolutionary algorithms are extremely time consuming.
In order to offer a faster alternative, a novel system called
Heurix was developed and its performance compared to
exhaustive search (ES). On average Heurix can build
networks in 5-7% of the time of ES (<8mins). These have
generalisation errors between 0.4-1.4% greater than ES, and
response time 24-65% of ES, depending on which
optimisation setting is used. Heurix is showing great promise
but needs testing with other datasets.

GLOSSARY OF TERMS
ANN – Artificial Neural Network
LM – Levenberg Marquardt training Algorithm
NRMSE – Normalised Root Mean Square Error
OBS – Optimal Brain Surgeon.
SLFN – Single hidden Layer Feed-forward Network
TLFN – Two hidden Layer Feed-forward Network ,- - Total number of hidden nodes or neurons ,. – Number of training samples ,0 – Number of outputs ,� – Number of inputs >? – Sampler stop gradient �K – Fixer gradient rate of change of error per node.

ACKNOWLEDGMENTS
We thank Prof. Martin T. Hagan of Oklahoma State

University for kindly donating the Engine Data Set used in
this paper to Matlab. We also extend our gratitude to the
anonymous reviewers for their much valued positive
feedback and suggestions. Last but not least, A.J.T. thanks
Mavis for her infinite tolerance.

REFERENCES
[1] G.-B. Huang and H. A. Babri, “Upper bounds on the number of

hidden neurons in feedforward networks with arbitrary bounded
nonlinear activation functions,” IEEE Trans. Neural Netw., vol. 9, no.
1, pp. 224–229, Jan. 1998.

[2] G.-B. Huang, “Learning capability and storage capacity of two-
hidden-layer feedforward networks,” IEEE Trans. Neural Netw., vol.
14, no. 2, pp. 274–281, Mar. 2003.

[3] P. L. Bartlett, “For valid generalization, the size of the weights is
more important than the size,” Adv. Neural Inf. Process. Syst., vol. 9,
p. 134, 1997.

[4] A. N. Kolmogorov, “On the representation of continuous functions of
many variables by superposition of continuous functions of one
variable and addition,” Dokl. Akad. Nauk USSR, vol. 114, pp. 953–
956, 1957.

[5] G. G. Lorentz, “Approximation of functions. 1966,” Rinehart Winst.
N. Y.

[6] D. A. Sprecher, “On the structure of continuous functions of several
variables,” Trans. Am. Math. Soc., vol. 115, pp. 340–355, 1965.

570569

[7] R. Hecht-Nielsen, “Kolmogorov’s mapping neural network existence
theorem,” in Proceedings of the international conference on Neural
Networks, 1987, vol. 3, pp. 11–14.

[8] K. Swingler, Applying Neural Networks: A Practical Guide. Morgan
Kaufmann, 1996.

[9] R. Hecht-Nielsen, Neurocomputing, Reprint. Boston, Ma.: Addison-
Wesley, 1991.

[10] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989.

[11] V. K�rková, “Kolmogorov’s theorem and multilayer neural
networks,” Neural Netw., vol. 5, no. 3, pp. 501–506, 1992.

[12] S. Tamura and M. Tateishi, “Capabilities of a four-layered
feedforward neural network: four layers versus three,” IEEE Trans.
Neural Netw., vol. 8, no. 2, pp. 251–255, Mar. 1997.

[13] A. Blum, Neural Networks in C++: An Object-oriented Framework
for Building Connectionist Systems. New York, NY, USA: John
Wiley & Sons, Inc., 1992.

[14] M. J. Berry and G. Linoff, Data Mining Techniques: For Marketing,
Sales, and Customer Support. New York, NY, USA: John Wiley &
Sons, Inc., 1997.

[15] J. Ke and X. Liu, “Empirical Analysis of Optimal Hidden Neurons in
Neural Network Modeling for Stock Prediction,” in Pacific-Asia
Workshop on Computational Intelligence and Industrial Application,
2008. PACIIA ’08, 2008, vol. 2, pp. 828–832.

[16] K. Shibata and Y. Ikeda, “Effect of number of hidden neurons on
learning in large-scale layered neural networks,” in ICCAS-SICE,
2009, 2009, pp. 5008–5013.

[17] J. Li, C. He, and D. Jia, “Emission Modeling of Diesel Engine Fueled
with Biodiesel Based on Back Propagation Neural Network,” in 2010
3rd IEEE International Conference on Computer Science and
Information Technology (ICCSIT), 2010, vol. 4, pp. 379 –381.

[18] T.-Y. Kwok and D.-Y. Yeung, “Constructive algorithms for structure
learning in feedforward neural networks for regression problems,”
Neural Netw. IEEE Trans. On, vol. 8, no. 3, pp. 630–645, 1997.

[19] R. Reed, “Pruning algorithms-a survey,” IEEE Trans. Neural Netw.,
vol. 4, no. 5, pp. 740–747, 1993.

[20] J. Qiao, Y. Zhang, and H. Han, “Fast unit pruning algorithm for
feedforward neural network design,” Appl. Math. Comput., vol. 205,
no. 2, pp. 622–627, Nov. 2008.

571570

