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Abstract— Authors propose a method of normalizing and 
analyzing structures, which enables automated cross-comparison 
of features observed in tested structures with: predefined 
structures and anti-patterns. Additionally, a language, enabling 
symbolic representation of structural knowledge is presented, 
and used in the demonstration of the proposed method applied to 
mechanical shafts, and used for qualitative purposes with more 
complex calculation models. 

Keywords—artificial intelligence; machine design; automated 
design systems; structural feature language; anti-patterns 

I. INTRODUCTION 
One of the key challenges in the design of mechanical 

structures and structural analysis, is the ability of engineers to 
meaningfully evaluate the structural properties and structures 
[6, 9]. The quality and speed of this evaluation is a key element 
of the design, construction, diagnostic, and maintenance 
processes. 

Existing methods require manual creation of models for 
each of the tested structures, or executing simulations which 
(due to their nature) either lack in speed or precision when 
evaluating complex models. Both of these limitations make it 
very difficult to apply genetic or unsupervised machine 
learning algorithms, where potentially vast scope of solutions 
has to be quickly evaluated.  

An additional difficulty lies in automation of including a 
knowledge based model in a rich and quantitative description 
of the tested structure. Inclusion of such knowledge provides 
an opportunity for a quick and cumulative increase in baseline 
quality of designed structures, and also allows advanced 
solution-finding algorithms to enhance the collaborative 
intelligence of human operators and their tools. The particular 
use of anti-patterns (anti-patterns are in this context considered 
as known and incorrect examples of structures) [1, 3, 4, 7] 
provides the future algorithms with the ability to explore an 
open set of possible correct solutions, taking as the only 
reference already identified, incorrect ones. 

Proposed method enables cross-testing of structures 
providing mechanical designers with an ability to check 
different options against each other, but also easily including 
known, predefined solutions in the analysis (be it correct ones 
or anti-patterns). 

II. INTERACTIVE SYSTEMS FOR DESIGNING MACHINE ELEMENTS 
AND ASSEMBLIES 

The presented research involves the development of 
intelligent interactive automated systems for designing 
machine elements and assemblies using descriptions of 
structural elements’ features in a natural language. Realization 
of the automated design processes is in conditions of 
uncertainty and with non-repeatable processes. We propose a 
new concept [2] which consists of a novel approach to these 
systems, with particular emphasis on their ability to be truly 
flexible, adaptive, human error-tolerant, and supportive both of 
design engineers and data processing systems. The comparison 
of the proposed new automated design system with the present 
system of carrying out design tasks is shown in Fig. 1. 
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Fig. 1. Comparison of the proposed new automated design system with the 
present system of carrying out design tasks 

The proposed interactive automated design system (Fig. 2) 
contains many specialized modules and it is divided into the 
following subsystems: subsystem for communication between 
designers and the intelligent CAD system, subsystem for 
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design engineers’ voice messages content analysis, 
construction analysis subsystem, construction notation 
subsystem, construction rating subsystem, subsystem for 
visualization and CAD system control, design process 
optimization subsystem, construction decoding subsystem. 

In this system, artificial intelligence methods allow 
communication by speech and natural language, resulting in 
analyses of design engineer’s messages, analyses of 
constructions, encoding and assessments of constructions, 
CAD system controlling and visualizations. The system is 
equipped with several adaptive intelligent layers for human 
biometric identification, recognition of speech and 
handwriting, recognition of words, analyses and recognition of 
messages, enabling interpretation of messages, and 
assessments of human reactions. 
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Fig. 2. Concept of design processes using interactive automated systems 

III. RELATIONS BETWEEN OBJECTS’ GEOMETRICAL PROPERTIES 
In automated systems for designing machine components 

and assemblies, relations between an object, of a given class, 
element’s geometrical properties as well as geometrical 
relations between those objects are key. A diagram of such 
relations, by the example of a single key-type sleeve coupling, 
is presented in the Fig. 3. The geometrical properties 
identification subsystem consists of the following types of 
geometrical relations: 

• 1 relation type - is present in a particular element of a 
given type class. In the presented example, it is a 
dimensional relation determining the position of the 
axis of the hole in the crankpin (element 1) in relation to 
its facing surface. And for the object of class sleeve it is 
a dimension marking the distance between the hole’s 
axis (element 1), and its facing surface. 

• 2 relation type - determines the geometrical relation 
between geometrical properties of different elements of 
a given object (machine component). For a shaft and a 

sleeve of a sleeve coupling these are dimensions 
determining the distance between holes’ axes. The axis 
of the first hole is connected with the crankpin (element 
1), and the axis of the other hole belongs to the shaft’s 
step (element 2). The situation is analogous in the case 
of the sleeve object. 

• 3 relation type - geometrical relations between different 
objects in an assembly. In machine designs these are 
relations between geometrical properties of the 1st and 
2nd type, belonging the object of a given class having 
such relations with other classes of objects. Third-type 
relations usually specify mutual position of 
construction’s components. In a single key-type sleeve 
coupling it is crucial to ensure accuracy of mutual 
position of the shaft hole’s axis (Element 1) and the 
sleeve hole’s axis (Element 1). For this reason the third-
type relation, in the context of the provided example, 
means that the axes of the aligned holes must be 
coaxial. 
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Fig. 3. Relations between an object, of a given class, element’s geometrical 
properties and geometrical relations between those objects by the example of 
a single key-type sleeve coupling 

IV. KXML REPRESENTATION OF STRUCTURES 
Assuming a reference classification of structures (i.e. ISO) 

grants us with the ability to assign relevant features and 
calculation methods to the model. It is obvious that the features 
of pipes can be reused among them, while being different from 
ones found in electric wires or mechanical joints. Still, for most 
purposes, one can use any of commonly used classification to 
satisfy the need for a general abstraction of structures. 

The representation of the structure is built upon a set of 
models, defining a set of features used in it to describe its tree 
of nodes defining the structural dependencies. 
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To enable the possibility of using a library of predefined 
structures, this syntax can be used in two contexts: as a pre-
defined template of a structure, or its concrete description. The 
difference between these can be observed after verifying if all 
of the features required for a given class of a node in the 
particular model, have been provided with values. The 
additional flexibility built into this method is based on optional 
support of both: composition and inheritance between 
structural nodes via the class attribute. Both: the class based 
relations and the library mechanism, provide a common 
denominator that can be used for batch processing or flexibly 
structuring the analysis.  

TABLE I.  PRESENTATION OF THE BASE SYNTAX STRUCTURE 

struct model(s)

node(s)

feature(s)

node(s) . . .

<struct class="shaft" id="s001"> 
<model class="mechanical"> 
  <feature id="l" unit="mm" /> 
  <feature id="R" unit="mm" /> 
  <feature id="d" unit="mm" /> 
  <feature id="angle" unit="deg" 
vector="(0,1,0)" /> 
  <node class="spigot" id="p001"> 
    <feature id="l">48</feature> 
    <feature id="d">35</feature> 
    <node class="mill"> 
      <feature id="l">12</feature> 
      <feature id="angle">45     
      </feature> 
    </node> 
    <node class="thread"> 
      <feature id="l">24</feature> 
    </node> 
    <node class="undercut"> 
      <feature id="R">8</feature> 
      <feature id="d">8</feature> 
    </node> 
  </node> 
</model> 
</struct> 

 

 

Each of the keywords used in this notation provides both: a 
structural and a functional interpretation (dependent on the 
class and other attributes): 

• STRUCT - a root KXML element providing a top level, 
singular access to the contained structure; storing 
multiple struct nodes in one KXML file is allowed and 
supported for easy and flexible creation of collections 
of structures. Attributes: class, id. 

• MODEL - an element of the syntax used to define the 
model used for analysis while defining the trees of 
NODEs contained inside. Attributes: class, id. 

• FEATURE - an element on one side defining a reused 
(between KXML elements), measurable property of the 
structure, model or a node, and also providing concrete 
values describing the structure. Attributes: class, id, 
unit, vector, value. 

• NODE - the main structural element of KXML 
allowing the definition of the structure of the 
description through nesting of the elements, ability to 
differentiate between the types of the relations between 
nodes for each of the models, and to relate the nodes 
with each other to represent implicit relations between 
the nodes. Attributes: class, id. 

Normally the scope of features will directly depend on the 
chosen classification model, but it is important to note, that the 
feature scopes might overlap among the chosen models. This 
means that the final structure is a combination of all node trees 
in defined models and can form a directed graph to describe the 
complete structure. 

A. RELATIONS BETWEEN ELEMENTS OF THE 
SYMBOLIC LANGUAGE 
The structures in the proposed language, are defined using 

differently classified models. This classification is considered a 
reference definition of the names, and the approach to number 
formatting, or practices in scope of provided information. This 
approach also ensures, that the data that has been provided for 
processing purposes, has a concise and concrete meaning to 
avoid unnecessary noise in its numerical analysis. 

TABLE II.  FOUR MODEL BASED RELATION CLASSES WITH EXAMPLES 

Sharing the common definition of the feature by the structure of nodes in 
the same model 
<model class="mechanical"> 
  <feature id="l" unit="mm" /> 
  <feature id="R" unit="mm" /> 
  <feature id="d" unit="mm" /> 
  <node class="spigot" id="p001"> 
    <feature id="l">48</feature> 
    <feature id="d">35</feature> 
    <node class="mill"> 
      <feature id="l">12</feature> 
    </node> 
    <node class="thread"> 
      <feature id="l">24</feature> 
    </node> 
    <node class="undercut"> 
      <feature id="R">8</feature> 
      <feature id="d">8</feature> 
    </node> 
  </node> 
</model> 

Each feature instance, regardless 
of the level of nesting the node, is 
using the same feature definition 
provided in the model. 
 
Example on the left includes the 
feature “l” - the length measured 
in millimeters, and being provided 
a concrete value of the spigot, 
mill and the thread nodes. 

Sharing the information about node’s identity between different models 
<model class="mechanical"> 
  <feature id="l" unit="mm" /> 
  <feature id="d" unit="mm" /> 
  <node class="spigot" id="p001"> 
    <feature id="l">48</feature> 
    <feature id="d">35</feature> 
  </node> 
</model> 
<model class="electrical"> 
<feature id="rho" 
unit="Ohm*m"/> 
 <node class="conductor" 
id="p001"> 
 <feature id="rho">10E-8    
 </feature> 
  </node> 
</model> 

Each node definition, regardless 
of the nesting structure in a 
different model, can be defined 
with the same id relating the node 
with one from a different model. 
 
Example on the left includes the 
node “p001” - which is described 
using separate features in two 
different models. 
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Referencing the feature values from different models 
<struct class="shaft" id="s001"> 
<model class="geometrical"> 
  <feature id="S" unit="m^2" /> 
  <feature id="V" unit="m^3" /> 
  <node class="cylinder" 
id="p001"> 
    <feature id="S"> 
       PI*(p001.d/2)^2</feature> 
    <feature id="V"> 
      p001.S*p001.l</feature> 
  </node> 
</model> 
<model class="mechanical"> 
  <feature id="l" unit="mm" /> 
  <feature id="d" unit="mm" /> 
  <node class="spigot" id="p001"> 
    <feature id="l">48</feature> 
    <feature id="d">35</feature> 
  </node> 
</model> 
<model class="electrical"> 
<feature id="rho" 
unit="Ohm*m"/> 
  <feature id="R" unit="Ohm" /> 
  <node class="conductor" 
id="p001"> 
    <feature id="rho"> 
      10E-8</feature> 
    <feature id="R"> 
      rho*p001.l/p001.S</feature> 
  </node> 
</model> 
</struct> 

Since the values of the features 
can contain functions to be 
evaluated, and by so are implicitly 
linked to values of other features, 
in possibly different units, and 
classification models, this should 
be done with high diligence.  
The analysis performed on such 
defined structures is strongly 
suggested to be first pre-
calculated and verified before 
applying further numerical or 
lexical processing methods. 
 
Example on the left presents a 
more complicated, but allowed by 
the language, structuring of the 
model crossing dependencies. 
Such description, after parsing 
yields a structure with its basic 
mechanical, electrical, and 
geometrical features linked with 
each other in one entity “p001”. 

 

For the purposes of achieving a more complete description 
of relations between the nodes, it is possible to reference nodes 
not only within one model, but also between them. Notice, that 
as much as the features of the nodes are comparable only 
within the same model (or referencing the same feature 
definition in the same model classification), while the 
referencing relation between the nodes from separate models 
should be only structural (this is node the same node as...) or 
optionally value references (this value of the feature is 
calculated based on the value of ...). 

The structure of nodes created for each of the models, 
allows for only unitary placement of each node in a tree 
structure built per the model. The node ids have to be unique in 
the model or be automatically assigned a unique id in case of 
no provided identifier. As mentioned above, reusing of the 
node id between models is interpreted as co-identity. While 
nodes contained within the model form trees, the relations 
possibly differing between models form a directed graph, with 
models linked at least on the root level of nodes. 

 Additionally, the concept of nodes, through their 
CLASS attribute, allows forming abstract relations that the 
designer wants include in the structure. The features defined 
directly in such abstract class are considered available for it, 
still the main data carrying concept is the overall structure of 
nodes, even if further parametrized via the composition (or 
other) node. This approach, in addition to the language defined, 
adds further flexibility into the method enabling inclusion of 
abstract know-how into the description. 

Approach taken by this method, allows inclusion of further 
enhancements to the structure with the ability to define own 
classification models and classes of nodes providing a unique 
set of functions enabling interpretation of the representation of 
the structure. To illustrate this approach, let’s take the abstract 
node representing the milling direction into consideration. 
Such node, grouping several spigots of the shaft, provides 
additional information to the description of the element being 
not only the measurement of its features. This approach also 
opens the possibility of defining compositions of elements or 
their more complex collections in form of abstract classes of 
nodes. 

Usage of the value of the ID field in the CLASS of a 
KXML element (interpreted as inheritance) provides the 
language with a method of building a re-usable library of both 
features and nodes. Additionally, usage of this type of a 
relation for representation of the structures adds further depth 
to the description of implicit relations in the design.  

As much as nodes or features with different values of the 
ID attribute represent different instances, no meta-data comes 
along the usage of common but abstract CLASS names. As 
mentioned earlier, reusing the same values of the CLASS 
supports comparability of features and nodes, but by using a 
defined ID as a CLASS name it is possible to form an 
inheritance tree including features or structures of nodes and 
features assigned to them. 

B. FEATURE VALUES AS FUNCTIONS 
Values of features can be either values or functions that 

when evaluated provide a value. If the value of the function 
cannot be evaluated (i.e. one of the references is incorrect) a 
NULL value will be returned for the given feature (same as 
when the value of the entity has not been provided). The 
functions available for usage to calculate the value will depend 
on their implementation in the parser, and as much as there are 
many mathematical libraries, they have to be selected with 
care, and considering that even different versions of the same 
library can yield different results. These vary due to using 
different calculation models, algorithms, assumptions, 
constants, and errors. This further enforces the need for a 
symbolic representation, with a requirement of adequate and 
standardized approach to analysis of the mechanical structures. 

The ability to calculate the functions referencing values of 
other features, requires the parser to wait until the whole 
structure has been loaded. This approach makes it easier to 
write the symbolic representation, not having to take into 
consideration the ordering of the nodes and features. 

C. PARSING AND VALIDATION 
The main requirements for the implementation of parsing 

mechanisms for this symbolic structure is maintaining the 
structure of nodes and leaving the calculation of feature values 
as a last and optional step. Feature values, when represented as 
functions, allow analysis of the implicit relations between the 
nodes, while the concrete value lacks that information. 
Depending on the type of the analysis, either or both  of the 
states of the value can be useful and if possible, both should be 
maintained. 
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To adequately address the requirements of the proposed 
symbolical description, the parsing process should be executed 
as follows: 

• Locating and loading the file with either an XML or 
JSON parser. During this step it is assumed that a 
notation based validation will be performed by the 
library in use.  

• Traversing loaded data (structure containing multiple 
models defining features and a structure of nodes with 
concrete feature values) to build an adequate (for the 
analysis) in-memory representation of the description, 
independent of the notation used to store it.  

• Integrity of the loaded structure should be validated 
against the rules for relations defined earlier. This phase 
should be further adjusted to the input requirements of 
the analysis, but the integrity of the structure can be 
tested with: 

a) verifying that the minimum data is provided for 
processing; 

b) checking if used feature ids are defined in all cases; 
c) detection of non-unique (in model) IDs in the node 

structure, not-looped node’s class trees; 
d) successful parsing and loading into memory each of 

the functions along with the detection of stack loops; 
e) verification of references to other feature values, the 

existence of data that is referenced, and 
verification/normalization of units. 

• As the last step of the process, all of the defined models 
for the structure should be integrated into one, in-
memory, directed, graph, data structure. The integration 
of the models, consists of merging them taking node 
IDs as the reference identity points. For the merging to 
be successful, there cannot be any nodes disconnected 
from the structure (i.e. when there is no node IDs 
overlap between the models). 

V. CALCULATION MODELS 
Having defined a concrete description of tested elements 

we can serialize the data contained in it to a form adequate for 
the qualitative algorithm we want to apply. Authors have not 
yet fully explored the capabilities of inclusion of the node 
graph in the representation, but even simple models (1) provide 
quick and relatively detailed representation of the structure’s 
quality. 

 
(1) 

for k compared features, where: w-weight, �d-distance from 
reference feature. 

The normalization of feature values in this case, due to the 
nature of the summation function used, is two-fold: abstract for 
the differences in scale between same features in different 
elements, and for differences in magnitude between different 
features of one element. We suggest to use bounded non-linear 

functions for fine-tuned normalization. Regardless of the 
approach, the normalization requirements have to be correlated 
with the method applied by chosen algorithm. 

For the purposes of a specific analysis, the values of a 
normalized, symbolic description have to also be serialized in a 
consistent manner, so that the algorithms using it can make 
assumptions about the data’s structure. In addition to the 
simple arrays and binary forms, we can present input data as a 
binary image (Fig. 4.) where rows list all processed features 
and the assignment of the active bit to one of the columns 
represent its value. Activated bit will depend on the magnitude 
of the normalized feature value. This approach can lead to 
precision loss that is dependent on the number of columns 
allowing differentiation between feature values, however a 
gradable level of precision provides potential advantages in 
speed of calculation without significant quality loss.  

Having in mind the significance of the calculation models 
enabled by neural networks and machine learning algorithms, 
we propose usage of such normalized, symbolic representation 
of structural features (among other neural computing models) 
with a Hamming net [5] (Fig. 4) and a probabilistic network [8] 
(Fig. 5).  

Applying a Hamming net to the feature data of the tested 
mechanical elements, the normalized input values (in range: 
0..1) provide difference in signal only for a different states in 
each of b different features. The net is built upon the Hamming 
distance using the difference in the number of bits. Using this 
algorithm, the comparison of the feature values against each 
other doesn’t make much sense, as the result will always be the 
same (one bit lit, just in different locations will always yield 0 
or 2 as the Hamming distance). Instead, each of the feature 
values is considered a bit, providing a value directly related to 
the differences in between the structures. This means that as 
much as there is no direct valuation or grading between tested 
elements, the method provides a quick way of locating the 
most similar anti-patterns and making a quality decision based 
on the similarity to one of the anti-patterns (possibly also 
weighed using Hamming's weight function). 
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Fig. 4. A schema of applying a Hamming net to normalized feature values 

Both approaches (Fig. 4., Fig. 5) enable classification of 
structures basing on their features. In the Hamming net, the 
distance between two compared structures (being the bias of 
the neuron function) is calculated as a Hamming distance 
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(number of differing bits, in our case rows) between two 
serialized values. The precision of this approach can also be 
further enhanced by taking into consideration the positive and 
negative interpretation of the distance, as the reference 
structure can be compared against an anti-pattern or a correct 
structure.  

In case of a probabilistic neural network (Fig. 5.), the 
model is calculating the probability to achieve the same goal of 
general classification of structures. The benefits of applying 
this class of neural networks arise largely from being able to 
handle much larger variations in input data, resulting in a more 
flexible but possibly less precise qualitative calculation model. 
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Fig. 5. Probabilistic neural networks for normalization of structures 
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Fig. 6. A machine shaft with errors: a) an antipattern, b) correct design 

The benefits of using anti-patterns are lack of constraints 
when designing new solutions and lesser likelihood of making 
errors typical of anti-patterns. An example of applied 
methodology for design solution and anti-pattern 
correspondence evaluation are presented in Fig. 6. 

VI. CONCLUSION AND SUMMARY 
Proposed symbolic notation and its processing methods, 

provide a low cost, flexible, and universal way of 
benchmarking the structural quality of mechanical elements. 
This approach enables mechanical structure designers to easily 
incorporate common design knowledge mixed with additional 
design quality requirements into their tool-set. Flexibility and 
low cost of calculations, enable usage of this method for 
verifications of automatically produced designs by genetic and 
machine learning algorithms. Furthermore, the symbolic object 
notation allows quick verification of completeness of the input 
data, as it can be quickly compared in an automated manner 
with the required scope of input data for each class of used 
elements. Another side effect of replacing the graphical 
representation with a symbolic one, is the avoidance of errors 
induced by overlapping or unreadable elements on the graphic. 
Additionally, the universal character of the symbolic 
representation of structures and their and anti-patterns, hints 
that a similar approach can be applied in other disciplines of 
science. Other potential uses of this method include the ability 
to easily translate structural descriptions between different 
metric systems, visual representation models and techniques. 
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