
Intelligent Assessment of Structure Correctness
using Antipatterns

Wojciech Kacalak, Maciej Majewski, Andrzej Tucho�ka
Faculty of Mechanical Engineering
Koszalin University of Technology

Koszalin, Poland
{wojciech.kacalak, maciej.majewski, andrzej.tucholka}@tu.koszalin.pl

Abstract— Authors propose a method of normalizing and
analyzing structures, which enables automated cross-comparison
of features observed in tested structures with: predefined
structures and anti-patterns. Additionally, a language, enabling
symbolic representation of structural knowledge is presented,
and used in the demonstration of the proposed method applied to
mechanical shafts, and used for qualitative purposes with more
complex calculation models.

Keywords—artificial intelligence; machine design; automated
design systems; structural feature language; anti-patterns

I. INTRODUCTION
One of the key challenges in the design of mechanical

structures and structural analysis, is the ability of engineers to
meaningfully evaluate the structural properties and structures
[6, 9]. The quality and speed of this evaluation is a key element
of the design, construction, diagnostic, and maintenance
processes.

Existing methods require manual creation of models for
each of the tested structures, or executing simulations which
(due to their nature) either lack in speed or precision when
evaluating complex models. Both of these limitations make it
very difficult to apply genetic or unsupervised machine
learning algorithms, where potentially vast scope of solutions
has to be quickly evaluated.

An additional difficulty lies in automation of including a
knowledge based model in a rich and quantitative description
of the tested structure. Inclusion of such knowledge provides
an opportunity for a quick and cumulative increase in baseline
quality of designed structures, and also allows advanced
solution-finding algorithms to enhance the collaborative
intelligence of human operators and their tools. The particular
use of anti-patterns (anti-patterns are in this context considered
as known and incorrect examples of structures) [1, 3, 4, 7]
provides the future algorithms with the ability to explore an
open set of possible correct solutions, taking as the only
reference already identified, incorrect ones.

Proposed method enables cross-testing of structures
providing mechanical designers with an ability to check
different options against each other, but also easily including
known, predefined solutions in the analysis (be it correct ones
or anti-patterns).

II. INTERACTIVE SYSTEMS FOR DESIGNING MACHINE ELEMENTS
AND ASSEMBLIES

The presented research involves the development of
intelligent interactive automated systems for designing
machine elements and assemblies using descriptions of
structural elements’ features in a natural language. Realization
of the automated design processes is in conditions of
uncertainty and with non-repeatable processes. We propose a
new concept [2] which consists of a novel approach to these
systems, with particular emphasis on their ability to be truly
flexible, adaptive, human error-tolerant, and supportive both of
design engineers and data processing systems. The comparison
of the proposed new automated design system with the present
system of carrying out design tasks is shown in Fig. 1.

PR
O

JE
C

TS
 O

F
TE

C
H

N
O

LO
G

IC
AL

 P
R

O
C

E
SS

E
SIDEAS,

CONCEPTS
DESIGNER’S
KNOWLEDGE

REQUIREMENTS,
ASSUMPTIONS

...

GRAPHICAL
OPERATIONS

USING
TYPICAL

COMPUTER
INTERFACES

DRAWINGS OF
DESIGNED
ELEMENTS

LAYERED
STRUCTURES OF

PROJECTS
(DRAWINGS)

CONVERSION OF
PROJECTS
TO OBJECT
FORM FOR

TECHNOLOGICAL
PURPOSES

TECHNOLOGICAL
ASSUMPTIONS

ORGANIZATIONAL
AND LOGISTIC
ASSUMPTIONS

PRESENT SYSTEM OF CARRYING OUT DESIGN TASKS

OBJECT-
ORIENTED

DESCRIPTION
LANGUAGE
(..., VOICE

MESSAGES, ...) PROJECTS OF
TECHNOLOGICAL

PROCESSES

PROPOSED NEW AUTOMATED DESIGN SYSTEM

ARTIFICIAL
INTELLIGENCE

SYSTEMS
KNOWLEDGE

BASES

Stages of low efficiency,
increasing labor demand,
time and costs of realization of projects

*

* * *

OBJECT-ORIENTED
DESCRIPTION OF

COMPONENTS

OBJECT-ORIENTED FORM OF
PROJECTS AND GRAPHICAL IMAGE

GENERATED AUTOMATICALLY
TECHNICAL

ASSUMPTIONS

ORGANIZATIONAL
ASSUMPTIONS

TECHNOLOGICAL
ASSUMPTIONS

M
A

N
U

FA
C

TU
R

IN
G

 P
R

O
C

ES
SE

S

IDEAS,
CONCEPTS

DESIGNER’S
KNOWLEDGE

REQUIREMENTS,
ASSUMPTIONS

...

M
A

N
U

FA
C

TU
R

IN
G

 P
R

O
C

ES
SE

S

Fig. 1. Comparison of the proposed new automated design system with the
present system of carrying out design tasks

The proposed interactive automated design system (Fig. 2)
contains many specialized modules and it is divided into the
following subsystems: subsystem for communication between
designers and the intelligent CAD system, subsystem for

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.131

560

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.131

559

design engineers’ voice messages content analysis,
construction analysis subsystem, construction notation
subsystem, construction rating subsystem, subsystem for
visualization and CAD system control, design process
optimization subsystem, construction decoding subsystem.

In this system, artificial intelligence methods allow
communication by speech and natural language, resulting in
analyses of design engineer’s messages, analyses of
constructions, encoding and assessments of constructions,
CAD system controlling and visualizations. The system is
equipped with several adaptive intelligent layers for human
biometric identification, recognition of speech and
handwriting, recognition of words, analyses and recognition of
messages, enabling interpretation of messages, and
assessments of human reactions.

DESIGNER

Concepts

General
description

DETAILED DESCRIPTION OF STRUCTURAL
FEATURES IN A FORMAL LANGUAGE

PROJECT of construction of
machine elements

and assemblies
(3D models and 2D drawings)

VO
IC

E
 C

O
M

M
U

N
IC

AT
IO

N

IN

 A
 N

AT
U

R
A

L
 L

A
N

G
U

A
G

E
 B

ET
W

EE
N

 T
H

E
 D

ES
IG

N
ER

 A
N

D
 T

H
E

 S
YS

TE
M

VI
SU

A
L

C
O

M
M

U
N

IC
AT

IO
N

 W
IT

H
 A

U
D

IO
 D

ES
C

R
IP

TI
O

N
 B

ET
W

EE
N

 T
H

E
SY

ST
EM

 A
N

D
 T

H
E

D
ES

IG
N

ER

ANALYSES
GENERATION

REPORTS
GENERATING

CLASSIFICATION OF
FORMS OF
MESSAGES

CREATING
MESSAGES

IN SYMBOLICAL,
VISUAL AND

VOCAL FORMS

GENERATION OF
MESSAGES

IN GRAPHICAL
AND TEXTUAL

FORMS

CONSOLIDATION
OF VISUAL
MESSAGES

WITH VOCAL
DESCRIPTIONS

ANALYSIS OF
CONTENTMESSAGE

SYNTHESIS OF
MULTIMEDIAL
MESSAGES

DESIGN ENGINEER
IDENTIFICATION

NATURAL SPEECH
RECOGNITION

WORD
ANALYSIS

WORD
RECOGNITION

MESSAGE SYNTAX
ANALYSIS

MESSAGE SEGMENTS
ANALYSIS

MESSAGE
RECOGNITION

Symbolic and visual messages with vocal description

Vo
ic

e
m

es
sa

ge
s

in
 a

 n
at

ur
al

la

ng
ua

ge

IMPLEMENTATION OF DRAWING
PROCEDURES OF
CONSTRUCTIONS

Preliminary calculations

Outline of construction

PROCEDURES OF DRAWING
ELEMENTARY CONSTRUCTION

OBJECTS

AutoCAD .NET API
ObjectARX API

Creating applications for
specialized design

and drafting operations
and project management

DRAWING OF
CONSTRUCTION OF

ELEMENTS
USING .NET

FRAMEWORK

FORMAL
VERIFICATION

EXPERIMENTAL
VERIFICATION

VERIFICATION OF
STRENGTH

RECOGNITION OF
MESSAGE CONTENT

DESCRIBING
STRUCTURAL
FEATURES OF

MACHINE ELEMENTS

HINTS
LIMITED
DICTIONARY
INTERACTIVE
CONFIRMATION
HANDWRITTEN
DATA

SYMBOLIC NOTATION OF ELEMENTS’ STRUCTURE

AUTOCAD
SYSTEM

The open architecture
with applications

developed as
AutoCAD extensions.

Support for applications of
 AutoCAD .NET Framework

HYPERTEXT LANGUAGE FOR
OBJECT-ORIENTED NOTATION

OF CONSTRUCTIONS

DESCRIPTION OF
STRUCTURAL

FEATURES AS OBJECTS

VERIFICATION WITH
OTHER ELEMENTS

Fig. 2. Concept of design processes using interactive automated systems

III. RELATIONS BETWEEN OBJECTS’ GEOMETRICAL PROPERTIES
In automated systems for designing machine components

and assemblies, relations between an object, of a given class,
element’s geometrical properties as well as geometrical
relations between those objects are key. A diagram of such
relations, by the example of a single key-type sleeve coupling,
is presented in the Fig. 3. The geometrical properties
identification subsystem consists of the following types of
geometrical relations:

• 1 relation type - is present in a particular element of a
given type class. In the presented example, it is a
dimensional relation determining the position of the
axis of the hole in the crankpin (element 1) in relation to
its facing surface. And for the object of class sleeve it is
a dimension marking the distance between the hole’s
axis (element 1), and its facing surface.

• 2 relation type - determines the geometrical relation
between geometrical properties of different elements of
a given object (machine component). For a shaft and a

sleeve of a sleeve coupling these are dimensions
determining the distance between holes’ axes. The axis
of the first hole is connected with the crankpin (element
1), and the axis of the other hole belongs to the shaft’s
step (element 2). The situation is analogous in the case
of the sleeve object.

• 3 relation type - geometrical relations between different
objects in an assembly. In machine designs these are
relations between geometrical properties of the 1st and
2nd type, belonging the object of a given class having
such relations with other classes of objects. Third-type
relations usually specify mutual position of
construction’s components. In a single key-type sleeve
coupling it is crucial to ensure accuracy of mutual
position of the shaft hole’s axis (Element 1) and the
sleeve hole’s axis (Element 1). For this reason the third-
type relation, in the context of the provided example,
means that the axes of the aligned holes must be
coaxial.

Feature 1,
feature 2,

...,
k-th feature

Element 1 i-th Element

Geometric
features (Class)

Relation
(1st type) Relation

(2nd type)

Relation
(3rd type)

Geometric
features (Class) Feature 1,

feature 2,
...,

m-th feature

Geometric
features (Class)

Geometric
features (Class)

j-th ElementElement 1

Relation
(1st type) Relation

(2nd type)

n-th Object (Class)1 Object (Class)st

Object assembly

Element (Class) i-th Element (Class) Element (Class) j-th Element (Class)

Fig. 3. Relations between an object, of a given class, element’s geometrical
properties and geometrical relations between those objects by the example of
a single key-type sleeve coupling

IV. KXML REPRESENTATION OF STRUCTURES
Assuming a reference classification of structures (i.e. ISO)

grants us with the ability to assign relevant features and
calculation methods to the model. It is obvious that the features
of pipes can be reused among them, while being different from
ones found in electric wires or mechanical joints. Still, for most
purposes, one can use any of commonly used classification to
satisfy the need for a general abstraction of structures.

The representation of the structure is built upon a set of
models, defining a set of features used in it to describe its tree
of nodes defining the structural dependencies.

561560

To enable the possibility of using a library of predefined
structures, this syntax can be used in two contexts: as a pre-
defined template of a structure, or its concrete description. The
difference between these can be observed after verifying if all
of the features required for a given class of a node in the
particular model, have been provided with values. The
additional flexibility built into this method is based on optional
support of both: composition and inheritance between
structural nodes via the class attribute. Both: the class based
relations and the library mechanism, provide a common
denominator that can be used for batch processing or flexibly
structuring the analysis.

TABLE I. PRESENTATION OF THE BASE SYNTAX STRUCTURE

struct model(s)

node(s)

feature(s)

node(s) . . .

<struct class="shaft" id="s001">
<model class="mechanical">
 <feature id="l" unit="mm" />
 <feature id="R" unit="mm" />
 <feature id="d" unit="mm" />
 <feature id="angle" unit="deg"
vector="(0,1,0)" />
 <node class="spigot" id="p001">
 <feature id="l">48</feature>
 <feature id="d">35</feature>
 <node class="mill">
 <feature id="l">12</feature>
 <feature id="angle">45
 </feature>
 </node>
 <node class="thread">
 <feature id="l">24</feature>
 </node>
 <node class="undercut">
 <feature id="R">8</feature>
 <feature id="d">8</feature>
 </node>
 </node>
</model>
</struct>

Each of the keywords used in this notation provides both: a
structural and a functional interpretation (dependent on the
class and other attributes):

• STRUCT - a root KXML element providing a top level,
singular access to the contained structure; storing
multiple struct nodes in one KXML file is allowed and
supported for easy and flexible creation of collections
of structures. Attributes: class, id.

• MODEL - an element of the syntax used to define the
model used for analysis while defining the trees of
NODEs contained inside. Attributes: class, id.

• FEATURE - an element on one side defining a reused
(between KXML elements), measurable property of the
structure, model or a node, and also providing concrete
values describing the structure. Attributes: class, id,
unit, vector, value.

• NODE - the main structural element of KXML
allowing the definition of the structure of the
description through nesting of the elements, ability to
differentiate between the types of the relations between
nodes for each of the models, and to relate the nodes
with each other to represent implicit relations between
the nodes. Attributes: class, id.

Normally the scope of features will directly depend on the
chosen classification model, but it is important to note, that the
feature scopes might overlap among the chosen models. This
means that the final structure is a combination of all node trees
in defined models and can form a directed graph to describe the
complete structure.

A. RELATIONS BETWEEN ELEMENTS OF THE
SYMBOLIC LANGUAGE
The structures in the proposed language, are defined using

differently classified models. This classification is considered a
reference definition of the names, and the approach to number
formatting, or practices in scope of provided information. This
approach also ensures, that the data that has been provided for
processing purposes, has a concise and concrete meaning to
avoid unnecessary noise in its numerical analysis.

TABLE II. FOUR MODEL BASED RELATION CLASSES WITH EXAMPLES

Sharing the common definition of the feature by the structure of nodes in
the same model
<model class="mechanical">
 <feature id="l" unit="mm" />
 <feature id="R" unit="mm" />
 <feature id="d" unit="mm" />
 <node class="spigot" id="p001">
 <feature id="l">48</feature>
 <feature id="d">35</feature>
 <node class="mill">
 <feature id="l">12</feature>
 </node>
 <node class="thread">
 <feature id="l">24</feature>
 </node>
 <node class="undercut">
 <feature id="R">8</feature>
 <feature id="d">8</feature>
 </node>
 </node>
</model>

Each feature instance, regardless
of the level of nesting the node, is
using the same feature definition
provided in the model.

Example on the left includes the
feature “l” - the length measured
in millimeters, and being provided
a concrete value of the spigot,
mill and the thread nodes.

Sharing the information about node’s identity between different models
<model class="mechanical">
 <feature id="l" unit="mm" />
 <feature id="d" unit="mm" />
 <node class="spigot" id="p001">
 <feature id="l">48</feature>
 <feature id="d">35</feature>
 </node>
</model>
<model class="electrical">
<feature id="rho"
unit="Ohm*m"/>
 <node class="conductor"
id="p001">
 <feature id="rho">10E-8
 </feature>
 </node>
</model>

Each node definition, regardless
of the nesting structure in a
different model, can be defined
with the same id relating the node
with one from a different model.

Example on the left includes the
node “p001” - which is described
using separate features in two
different models.

562561

Referencing the feature values from different models
<struct class="shaft" id="s001">
<model class="geometrical">
 <feature id="S" unit="m^2" />
 <feature id="V" unit="m^3" />
 <node class="cylinder"
id="p001">
 <feature id="S">
 PI*(p001.d/2)^2</feature>
 <feature id="V">
 p001.S*p001.l</feature>
 </node>
</model>
<model class="mechanical">
 <feature id="l" unit="mm" />
 <feature id="d" unit="mm" />
 <node class="spigot" id="p001">
 <feature id="l">48</feature>
 <feature id="d">35</feature>
 </node>
</model>
<model class="electrical">
<feature id="rho"
unit="Ohm*m"/>
 <feature id="R" unit="Ohm" />
 <node class="conductor"
id="p001">
 <feature id="rho">
 10E-8</feature>
 <feature id="R">
 rho*p001.l/p001.S</feature>
 </node>
</model>
</struct>

Since the values of the features
can contain functions to be
evaluated, and by so are implicitly
linked to values of other features,
in possibly different units, and
classification models, this should
be done with high diligence.
The analysis performed on such
defined structures is strongly
suggested to be first pre-
calculated and verified before
applying further numerical or
lexical processing methods.

Example on the left presents a
more complicated, but allowed by
the language, structuring of the
model crossing dependencies.
Such description, after parsing
yields a structure with its basic
mechanical, electrical, and
geometrical features linked with
each other in one entity “p001”.

For the purposes of achieving a more complete description
of relations between the nodes, it is possible to reference nodes
not only within one model, but also between them. Notice, that
as much as the features of the nodes are comparable only
within the same model (or referencing the same feature
definition in the same model classification), while the
referencing relation between the nodes from separate models
should be only structural (this is node the same node as...) or
optionally value references (this value of the feature is
calculated based on the value of ...).

The structure of nodes created for each of the models,
allows for only unitary placement of each node in a tree
structure built per the model. The node ids have to be unique in
the model or be automatically assigned a unique id in case of
no provided identifier. As mentioned above, reusing of the
node id between models is interpreted as co-identity. While
nodes contained within the model form trees, the relations
possibly differing between models form a directed graph, with
models linked at least on the root level of nodes.

 Additionally, the concept of nodes, through their
CLASS attribute, allows forming abstract relations that the
designer wants include in the structure. The features defined
directly in such abstract class are considered available for it,
still the main data carrying concept is the overall structure of
nodes, even if further parametrized via the composition (or
other) node. This approach, in addition to the language defined,
adds further flexibility into the method enabling inclusion of
abstract know-how into the description.

Approach taken by this method, allows inclusion of further
enhancements to the structure with the ability to define own
classification models and classes of nodes providing a unique
set of functions enabling interpretation of the representation of
the structure. To illustrate this approach, let’s take the abstract
node representing the milling direction into consideration.
Such node, grouping several spigots of the shaft, provides
additional information to the description of the element being
not only the measurement of its features. This approach also
opens the possibility of defining compositions of elements or
their more complex collections in form of abstract classes of
nodes.

Usage of the value of the ID field in the CLASS of a
KXML element (interpreted as inheritance) provides the
language with a method of building a re-usable library of both
features and nodes. Additionally, usage of this type of a
relation for representation of the structures adds further depth
to the description of implicit relations in the design.

As much as nodes or features with different values of the
ID attribute represent different instances, no meta-data comes
along the usage of common but abstract CLASS names. As
mentioned earlier, reusing the same values of the CLASS
supports comparability of features and nodes, but by using a
defined ID as a CLASS name it is possible to form an
inheritance tree including features or structures of nodes and
features assigned to them.

B. FEATURE VALUES AS FUNCTIONS
Values of features can be either values or functions that

when evaluated provide a value. If the value of the function
cannot be evaluated (i.e. one of the references is incorrect) a
NULL value will be returned for the given feature (same as
when the value of the entity has not been provided). The
functions available for usage to calculate the value will depend
on their implementation in the parser, and as much as there are
many mathematical libraries, they have to be selected with
care, and considering that even different versions of the same
library can yield different results. These vary due to using
different calculation models, algorithms, assumptions,
constants, and errors. This further enforces the need for a
symbolic representation, with a requirement of adequate and
standardized approach to analysis of the mechanical structures.

The ability to calculate the functions referencing values of
other features, requires the parser to wait until the whole
structure has been loaded. This approach makes it easier to
write the symbolic representation, not having to take into
consideration the ordering of the nodes and features.

C. PARSING AND VALIDATION
The main requirements for the implementation of parsing

mechanisms for this symbolic structure is maintaining the
structure of nodes and leaving the calculation of feature values
as a last and optional step. Feature values, when represented as
functions, allow analysis of the implicit relations between the
nodes, while the concrete value lacks that information.
Depending on the type of the analysis, either or both of the
states of the value can be useful and if possible, both should be
maintained.

563562

To adequately address the requirements of the proposed
symbolical description, the parsing process should be executed
as follows:

• Locating and loading the file with either an XML or
JSON parser. During this step it is assumed that a
notation based validation will be performed by the
library in use.

• Traversing loaded data (structure containing multiple
models defining features and a structure of nodes with
concrete feature values) to build an adequate (for the
analysis) in-memory representation of the description,
independent of the notation used to store it.

• Integrity of the loaded structure should be validated
against the rules for relations defined earlier. This phase
should be further adjusted to the input requirements of
the analysis, but the integrity of the structure can be
tested with:

a) verifying that the minimum data is provided for
processing;

b) checking if used feature ids are defined in all cases;
c) detection of non-unique (in model) IDs in the node

structure, not-looped node’s class trees;
d) successful parsing and loading into memory each of

the functions along with the detection of stack loops;
e) verification of references to other feature values, the

existence of data that is referenced, and
verification/normalization of units.

• As the last step of the process, all of the defined models
for the structure should be integrated into one, in-
memory, directed, graph, data structure. The integration
of the models, consists of merging them taking node
IDs as the reference identity points. For the merging to
be successful, there cannot be any nodes disconnected
from the structure (i.e. when there is no node IDs
overlap between the models).

V. CALCULATION MODELS
Having defined a concrete description of tested elements

we can serialize the data contained in it to a form adequate for
the qualitative algorithm we want to apply. Authors have not
yet fully explored the capabilities of inclusion of the node
graph in the representation, but even simple models (1) provide
quick and relatively detailed representation of the structure’s
quality.

(1)

for k compared features, where: w-weight, �d-distance from
reference feature.

The normalization of feature values in this case, due to the
nature of the summation function used, is two-fold: abstract for
the differences in scale between same features in different
elements, and for differences in magnitude between different
features of one element. We suggest to use bounded non-linear

functions for fine-tuned normalization. Regardless of the
approach, the normalization requirements have to be correlated
with the method applied by chosen algorithm.

For the purposes of a specific analysis, the values of a
normalized, symbolic description have to also be serialized in a
consistent manner, so that the algorithms using it can make
assumptions about the data’s structure. In addition to the
simple arrays and binary forms, we can present input data as a
binary image (Fig. 4.) where rows list all processed features
and the assignment of the active bit to one of the columns
represent its value. Activated bit will depend on the magnitude
of the normalized feature value. This approach can lead to
precision loss that is dependent on the number of columns
allowing differentiation between feature values, however a
gradable level of precision provides potential advantages in
speed of calculation without significant quality loss.

Having in mind the significance of the calculation models
enabled by neural networks and machine learning algorithms,
we propose usage of such normalized, symbolic representation
of structural features (among other neural computing models)
with a Hamming net [5] (Fig. 4) and a probabilistic network [8]
(Fig. 5).

Applying a Hamming net to the feature data of the tested
mechanical elements, the normalized input values (in range:
0..1) provide difference in signal only for a different states in
each of b different features. The net is built upon the Hamming
distance using the difference in the number of bits. Using this
algorithm, the comparison of the feature values against each
other doesn’t make much sense, as the result will always be the
same (one bit lit, just in different locations will always yield 0
or 2 as the Hamming distance). Instead, each of the feature
values is considered a bit, providing a value directly related to
the differences in between the structures. This means that as
much as there is no direct valuation or grading between tested
elements, the method provides a quick way of locating the
most similar anti-patterns and making a quality decision based
on the similarity to one of the anti-patterns (possibly also
weighed using Hamming's weight function).

p=number of antipatterns

Output:
binary image of
the recognized

antipattern
C

la
ss

ifi
ca

tio
n

to
 a

nt
ip

at
te

rn
 c

la
ss

es
 (S

et
 o

f p
os

si
bl

e
pa

tte
rn

s)
x1

b1

x={-1,+1}i

x2

x3

x4

x5

x6

xn

b2

b3

bp

a1

a2

a3

ap

N31

N32

N33

N3p

C1

C2

C3

Cp

Learning patterns:
Binary images of

antipatterns

N23

N22

N21N11

N12

N13

N1p

N01

N02

N03

N04

N05

N06

N0n

Input:
Binary image of
parameters of

structure features

In
pu

t o
f t

he
 n

et
:

n=
a*

b

Wpn Mpp

Binary
distance

layer
Recursive layer MAXNET Output

layer

N2p

a

b

angle
length
radius

VALUE
NORMALIZATION

0 1

a

b

angle
length
radius

VALUE
NORMALIZATION

0 1

Fig. 4. A schema of applying a Hamming net to normalized feature values

Both approaches (Fig. 4., Fig. 5) enable classification of
structures basing on their features. In the Hamming net, the
distance between two compared structures (being the bias of
the neuron function) is calculated as a Hamming distance

564563

(number of differing bits, in our case rows) between two
serialized values. The precision of this approach can also be
further enhanced by taking into consideration the positive and
negative interpretation of the distance, as the reference
structure can be compared against an anti-pattern or a correct
structure.

In case of a probabilistic neural network (Fig. 5.), the
model is calculating the probability to achieve the same goal of
general classification of structures. The benefits of applying
this class of neural networks arise largely from being able to
handle much larger variations in input data, resulting in a more
flexible but possibly less precise qualitative calculation model.

Input layer
State

pattern
layer

Summation
layer

1

Pi

P1

P2

PK

(Cluster
decision,

competitive)
output
layer

Class
1

Class
2

Class
i

Class
K

1
1

1
2

1
N

2

2
2

2
N

i

i
m

i
N

φ

φ

φ

φ

φ

φ

class ki

i=1, ..., K

φ

X x x xi 1 2 p=[, , ...,]Ti i i

1
1
(x)

1
2
(x)

1
N (x)1

2
1
(x)

2
2
(x)

2
N (x)2

i
1
(x)

i
m(x)

i
N (x)i

K
1
(x)

K
2
(x)

K
N (x)K

P
i (x)x1

2
1φ

x2

i
1φ

xj

K
1φ

K
2φ

K

K
Nφ

xp

{ 1 2 K X , X , ..., X }

wj j = xi i

Parameter input:

Weights:

x1
0

1

x2
0

1

xj
0

1

xp
0

1

Normalization function
for each parameter value

The values of the
input signals consisting of

selected parameters
of structural features

Neural network inputs:
number vectors with

encoded
structural features

parameter values
of

Example:
Value

normalization of
length

()�
=

−=

=−=
=

n

1j

2
ijj

i

i

wx

wx

w,xd

�
=

=
n

1i
ijij xwy

�
=

=
n

1i
ii22 xwy

�
=

=
n

1i
ii11 xwyK,,2,1i �∈

wp3

wpn

wp1

�
=

=
n

1i
ipip xwy

y1

yj

yp

y2

y3

P i(x
)

Pi(x)

P
i (x)

P
K (x)

P
i (x)

() ()
() ()[]twtx

t�tw

1tw

j

j

j

−×
×+=

=+

�
=

=
n

1i
i3i3 xwy

�
=

=
K

1i
iNN

Fig. 5. Probabilistic neural networks for normalization of structures

Ra 1,25

Ra 5
Ra 1,25 Ra 5

Ra 1,25
Ra 1,25

M
48

x2

Φ
50

k6

Φ
10

0

Φ
75

Φ
85

p6

Φ
82

Φ
70

k6

M
64

x2

Φ
55

p6

2x45° 24

48 12

215
10

100
980

400

35 68

1052

570

A

A

A - A

9

22
N

9

Ra 2,5

B

B

B - B

6

16
N

9

Ra 2,5

8

R8

C
2:1

R6

15° 4

C

E
E
4:1

R2

Φ
60

F
2:1

3 3

Ra 5

Ra 0,63
Ra 1,25

Ra 1,25
Ra 1,25

M
48

x2

Φ
50

k6

Φ
10

0

Φ
75

Φ
85

p8

Φ
70

k6

M
64

x2

Φ
55

p6

2x45° 24

48 12

215
10

400

35 68

1052

570

A

A

A - A

9

22
N

6

Ra 5

B

B

B - B

6

16
N

9

Ra 2,5

8

C
2:1

R6

R6

C

Φ
60

F
2:1

2

85
203

F

F

b)

5

45
°

R1

R0,6

D
4:1

D

R6

D
2:1

D

flawed shaft

correctly designed shaft

Wrong

Wrong
Wrong Wrong

Wrong

Wrong Wrong

Wrong

Wrong

Fig. 6. A machine shaft with errors: a) an antipattern, b) correct design

The benefits of using anti-patterns are lack of constraints
when designing new solutions and lesser likelihood of making
errors typical of anti-patterns. An example of applied
methodology for design solution and anti-pattern
correspondence evaluation are presented in Fig. 6.

VI. CONCLUSION AND SUMMARY
Proposed symbolic notation and its processing methods,

provide a low cost, flexible, and universal way of
benchmarking the structural quality of mechanical elements.
This approach enables mechanical structure designers to easily
incorporate common design knowledge mixed with additional
design quality requirements into their tool-set. Flexibility and
low cost of calculations, enable usage of this method for
verifications of automatically produced designs by genetic and
machine learning algorithms. Furthermore, the symbolic object
notation allows quick verification of completeness of the input
data, as it can be quickly compared in an automated manner
with the required scope of input data for each class of used
elements. Another side effect of replacing the graphical
representation with a symbolic one, is the avoidance of errors
induced by overlapping or unreadable elements on the graphic.
Additionally, the universal character of the symbolic
representation of structures and their and anti-patterns, hints
that a similar approach can be applied in other disciplines of
science. Other potential uses of this method include the ability
to easily translate structural descriptions between different
metric systems, visual representation models and techniques.

ACKNOWLEDGMENT
This project was financed from the funds of the National

Science Centre (Poland) allocated on the basis of the decision
number DEC-2012/05/B/ST8/02802.

REFERENCES
[1] W.J. Brown, R.C. Malveau, H.W. McCormick, T.J. Mowbray,

AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis, Wiley 1998.

[2] W. Kacalak, M. Majewski, “New Intelligent Interactive Automated
Systems for Design of Machine Elements and Assemblies,” Lecture
Notes in Computer Science, vol. 7666, Part IV, Springer, pp. 115-122.

[3] A. Koenig, “Patterns and Antipatterns,” Journal of Object-Oriented
Programming, vol. 8/1, pp. 46-48. 1995.

[4] J. Long, “Software reuse antipatterns,” ACM SIGSOFT Software
Engineering Notes, vol. 26/4, pp. 68-76. 2001.

[5] M. Majewski, J.M. Zurada, “Sentence Recognition Using Artificial
Neural Networks,” Elsevier Knowledge-Based Systems, vol. 21/7, pp.
629-635. 2008.

[6] L.A. Piegl, “Ten challenges in computer-aided design,” Computer-
Aided Design, vol. 37/4, pp. 461-470. 2005.

[7] A.J. Riel, Object-Oriented Design Heuristics. Addison-Wesley,
Reading, MA 1996.

[8] D.F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3/1,
pp. 109-118. 1990.

[9] Y. Zeng, I. Horvath, “Fundamentals of next generation CAD/E
systems,” Computer-Aided Design, vol. 44/10, pp. 875-878. 2012.

565564

