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Abstract—Fuzzy C-Means (FCM) algorithm has been widely 

used in cluster analysis of gene expression data. It can converge 
rapidly and provide more information regarding relationships 
within the data thanks to the usage of fuzzy sets to represent the 
degrees of cluster membership for every data point. However, 
FCM has a shortcoming in that it requires a priori specification 
of cluster number and cluster validation. Most cluster validity 
indices are based on the data themselves and may not be 
applicable for gene expression data. In this paper, we propose a 
Bayesian method using Gene Ontology (GO) annotations for gene 
expression cluster validation. We show that our method 
outperforms popular validity indices on gene expression datasets. 

Keywords—fuzzy c-means; Bayesian model; cluster validation; 
gene ontology; semantic similarity 

I. INTRODUCTION 
Cluster analysis groups data points based on their similar 

properties and can help to discover patterns and correlations in 
large datasets. Fuzzy C-Means (FCM, Bezdek 1981) is a 
popular clustering algorithm based on partitioning approach 
with fuzzy cluster boundaries and fuzzy sets that associate each 
data point with one or more clusters. A good FCM’s clustering 
solution maximizes both the compactness of data points within 
a cluster and the discrimination between clusters. An advantage 
of FCM is that it converges rapidly, however, like most 
partitioning clustering algorithms, it depends strongly on the 
initial parameters and requires estimation of the number of 
clusters. For some initial values, FCM may converge to a 
global optimum, but for others, it may get stuck in a local 
optimum. In addition, during the clustering process, the 
optimization of the compactness and separation of a fuzzy 
partition may be inconsistent with the optimal number of 
clusters in the dataset. For these reasons, final clustering results 
require validation to assess how good the fuzzy partition is, if 
better fuzzy partitions exist, and, when not known a priori, the 
optimal number of clusters in the dataset. 

Several cluster validity index functions have been 
proposed. Bezdek [1] measured performance using partition 
entropy and the overlap of adjacent clusters. Fukuyama and 
Sugeno [2] combined the FCM objective function with the 
separation factor, while Xie and Beni [3], integrated the 
Bezdek index [1] with the cluster separation factor. Rezaee et 
al. [4] combined the compactness and separation factors, and 
Pakhira et al. [5] combined the same two factors where the 
separation factor was normalized. Rezaee [6] proposed a new 
cluster index in which the two factors are normalized across 
the range of possible numbers of clusters. Recently, Le et al. 
[8] proposed a Bayesian method for fuzzy cluster validation 
where the possibility model of a fuzzy partition is 
approximated by a probability one which is used to compute 
the goodness-of-fit of the fuzzy partition against the data. 

Common drawback of these methods is that they are solely 
based on the internal properties of the data. When applied in 
gene expression data analysis, they do not allow incorporation 
of prior biological knowledge, such as Gene Ontology (GO), 
making their results less biology relevant. In this paper, we 
describe fzBGO, a Bayesian cluster validation method that 
applies GO annotations in validating fuzzy cluster partition. 
Instead of computing the compactness and separation factors, 
fzBGO utilizes GO based semantic similarity measure to 
generate a biological meaning fuzzy partition (BMFP) and 
construct the probabilistic model of BMFP. A log-likelihood 
estimator is then applied to measure the model goodness-of-fit. 
By using both the possibility and probability models to 
represent the data distributions, fzBGO is appropriate for not 
only artificial data where the data distributions usually follow a 
standard model, but also for real-world datasets, particularly 
gene expression data, that lack a standard distribution. The rest 
of the paper is organized as follows: in section II, we describe 
the principle methods and our model for the cluster validation 
problem. In section III, we demonstrate the performance of 
fzBGO on gene expression datasets. In the last section, we 
summarize our conclusions and potential improvements for 
future work. 

II. METHODS 

A. Fuzzy C-Means algorithm (FCM) 
Cluster analysis decomposes a set of objects into clusters 

based on dissimilarity. In analysis of gene expression 
microarray datasets, we require the clustering to allow a single 
gene to belong to more than one cluster, because one gene may 
participate in multiple biological processes. FCM was chosen 
for this work because it provides both an effective mechanism 
for cluster validation methods and allows genes to belong to 
multiple clusters. 

Given a dataset X = {xi � Rp, i=1…n}, where n, n>0, is the 
number of data points, and p, p>0, is the dimension of the data 
space of X. Let c, c�N and 2�c� n, be the number of clusters 
in X. Denote V = {vk�Rp, k=1…c} as the set of center points 
of c clusters in the fuzzy partition; U = {uki�[0,1], i = 1…n, k 
= 1…c} as the partition matrix, where uki is the membership 
degree of the data point xi to the kth cluster, and 
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FCM divides X into c clusters by minimizing the objective 
function [1, 8], 
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where d(.) is a distance function, defined using Euclidean 
norm, 
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and m, 1�m<, the fuzzifier factor that defines the degree of 
fuzziness in membership functions. 

Minimizing Jm in (2) with respect to (1), we obtain an 
estimated model of U and V as: 

� ��
��

�
n

1i

m
ki

n

1i
i

m
kik uxuv �� (4)�

� �
�

��

��
�

�

�

��
�

�

�

��
�

�

�

�
�

�

�

�
�

c

1j

m1
1

2

ji

m1
1

2
ki

ki
vx

1
vx

1u �� (5)�

FCM uses an iteration process to estimate the solution of 
(4) and (5). This process is iterated until convergent where, 
given T,  T > 0; �t > T, 

� � � ukikiik,t1tu (t)u1)(tumaxUU:0 ��������� �
�� (6)�

or, 
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�� (7) 

FCM can converge rapidly, and provides soft partitions 
applicable to many real-world applications. However, it is 
unable to determine the optimal number of clusters as well as 
to validate the clustering solution against the data. 

B. Cluster validity indices 
To validate a fuzzy partition, traditional cluster validity 

indices use two criteria, (i) compactness, which measures the 
closeness of cluster elements typically using the variance. 
Because variance indicates how different the members are, a 
low value of variance is an indicator of closeness, and (ii) 
separation, which computes the “distance” between two 
different clusters, e.g., the distance between representative 
objects of two clusters. This measure has been widely used due 
to its computational efficiency and its effectiveness for hyper 
sphere-shaped clusters. 

1) PC index 
Partition coefficient (PC) index was proposed by Bezdek 

[1] as in (8). It indicates the average relative amount of shared 
membership between pairs of fuzzy subsets in U, by combining 
into a single number, the average content of pairs of fuzzy 
algebraic products. The index values range from [1/c, 1].  
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An optimal cluster number c can be found by�solving,  

)}c(V{max)c(V PCnc2optPC ��
� ��

2) FS index 
Fukuyama-Sugeno (FS) validity index was proposed by 

Fukuyama and Sugeno [2] as  
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where, cvv c

1k k� �
� . An optimal number of clusters can be 

found by solving VFS
min. 

3) XB index 
XB validity index was proposed by Xie and Beni as in (10). 

The numerator indicates the compactness of the fuzzy partition, 
while the denominator indicates the strength of the separation 
between clusters. A good partition produces a small value for 
the compactness, and well-separated {vi} will produce a high 
value for the separation. An optimal c therefore is found by 
solving VXB
min. 
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4) CWB index 
Compose Within and Between scattering (CWB) validity 

index was proposed by Rezaee et al. [4]. 
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where � is a weighting factor equal to Dis(cmax). 

The average scatter function, Scat(.), is defined as 
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The cluster distance function, Dis(.), is defined as 
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where Dmin = mink,l||vk-vl|| and Dmax = maxk,l||vk-vl||. The Scat 
function indicates the average of the scattering variation within 
the clusters. A small value for this term indicates a compact 
partition. The Dis function indicates the total scattering 
separation between the clusters, it is influenced by the 
geometry of the cluster centroids and increases with the 
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number of clusters. An optimal number of clusters c is found 
by solving VCWB
min. 

5) PBMF index 
PBMF validity index is a fuzzy version of the PBM validity 

index proposed by Pakhira, Bandyopadhyay and Maulik [5] as 
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where Dc = maxk,l||vk – vl||. The value of VPBMF decreases as the 
number of clusters c increases. An optimal number of clusters 
can be found by solving VPBMF
max. 

6) BR index 
The validity index of Rezaee B. (BR) [6] uses both the 

compactness and separation criteria normalized across 
clustering partitions using possible numbers of clusters in a 
given range. The index is defined as 
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The similarity of two fuzzy sets is defined as 
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Because VBR is a sum of compactness and separation 
factors, the smaller it is, the better the fuzzy partition is. An 
optimal number of clusters c therefore can be found by solving 
VBR
 min. 

C. GO-based semantic similarity measures 
1) Gene Ontology (GO) 

The Gene Ontology (GO) [16] is a hierarchy of biological 
terms using a controlled vocabulary that includes three 
independent ontologies for biological process (BP), molecular 
function (MF) and cellular component (CC). Standardized 
terms known as GO terms describe roles of genes and gene 
products in any organism. GO terms are related to each other in 
the form of parent-child relationships. A gene product can have 
one or more molecular functions, participating in one or more 
biological processes, and can be associated with one or more 
cellular components [17]. As a way to share knowledge about 
functionalities of genes, GO itself does not contain gene 
products of any organism. Rather, expert curators specialized 
in different organisms annotate biological roles of gene 
products using GO annotations. Each GO annotation is 

assigned with an evidence code that indicates the type of 
evidences supporting the annotation (TABLE I. ). 

2) Semantic similarity 
GO is structured as directed acyclic graphs (DAGs) in 

which the terms form nodes, and the two kinds of semantic 
relationships, “is-a” and “part-of”, form edges [19]. “is-a” is a 
simple class-subclass relation, where A is-a B means that A is 
a subclass of B. ‘part-of ’ is a partial ownership relation; C 
part-of D means that whenever C is present, it is always a part 
of D, but C need not always be present. The structure of DAG 
allows assigning a metric to a set of terms based on the 
likeliness of their meaning content which is used to measure 
semantic similarity between terms. Multiple GO based 
semantic similarity measures have been recently developed 
[18, 19], and are increasingly used to evaluate the relationships 
between proteins in protein-protein interactions, or co-
regulated genes in gene expression data analysis. Among of the 
existing semantic similarity measurement methods, that of 
Resnik is most appropriate for gene expression data analysis 
because it is strong correlated with gene sequence similarities 
and gene expression profiles [18]. However, Wang et al. [19] 
had shown that the Resnik’s method has a drawback in that it 
uses only the information content derived from annotation 
statistics which is not suitable for measuring semantic 
similarity of GO terms. We therefore propose to use Wang’s 
method for GO semantic similarity measurement in this work. 

3) GO term semantic similarity [19] 
 

For each term A, a semantic value, S(A), is computed as in 
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where TA is a set of terms including the term A and its 
ancestors, and SA(.) is the sematic value regarding the term A, 
defined as: 
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where u
tw  is the semantic contribution factor for edge 

connecting term t with its child, term u. The semantic 
similarity between two terms, A and B, is defined as 
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4) GO term set semantic similarity 
Given the two sets of GO terms, G1 and G2, the semantic 

similarity between G1 and G2 is defined as 
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where Sim(t,T) is the similarity between the term t and the 
term set T, defined as 

� )}u,t(S{max)T,t(Sim GOTu�
� �� (22)�

D. Bayesian cluster validation method using GO (fzBGO) 
fzBGO validates a clustering solution by generating a 

biological meaning fuzzy partition (BMFP) model using a GO 
based semantic similarity measure. The model is approximated 
by a probabilistic one which is then used with a log likelihood 
estimator to measure the goodness-of-fit of the clustering 
solution against the data. 

1) BMFP model of clustering solution 
Given a crisp clustering solution %c

, %c = {M, V} where V 
represents the cluster centers and M, M={mki}; mki �{0,1}; 
k=1…c; i=1…n, is the crisp c-partition matrix representing the 
membership of the data points to c clusters. If the given 
clustering solution is a fuzzy one, say %f, then we can apply the 
defuzzification method [9] to generate %c from %f. 

To generate BMFP model of %c, %c is first mapped onto GO 
terms space. Each data object xi, i=1…n, is corresponding with 
a vector of GO annotations GO

ix , and a vector of degree of 
belief (DOB), CF

ix , defined as in TABLE I. , where CF
ijx  is the 

DOB of the term GO
ijx annotated to xi. GO annotations for each 

cluster vk, GO
kv , k=1…c, is determined using GO annotations of 

its members: 
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ktv , of an annotation GO
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We now can apply (21) and (24) in lieu of (20) to compute 
the semantic similarity between cluster vk and data point xi, 

)x,v(mSi ik& , using their GO annotation sets. The GO based 
distance between vk and xi is defined as: 

� � 	)x,v(mSi,1d)x,v(d ik
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The BMFP model, %b, of %c is then generated by using GO 
based distance, dGO, in the model of (4) and (5) with %c. 

TABLE I.  DEGREES OF BELIEF OF GO ANNOTATION EVIDENCE 

Evidence code Degree of belief 
EXP 1.0 
IDA, IPI, TAS 0.9 
IMP, IGI, IEP 0.7 
ISS, ISO, ISA, ISM 0.4 
IGC 0.2 
IBA, IBD, IKR, IRD, RCA 0.3 
NAS, IC, ND, NR 0.0 
IEA 0.1 

2) BMFP model validation 
We use the method of Le et al. [8] for BMFP validation. 

Let %, % = {U,V} be the BMFP model. The likelihood of the 
model against the data is measured as 
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The log likelihood estimator is then computed as 
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Equation (27) is used as a validation measure of BMFP 
model. Because % is a possibility based model, a possibility to 
probability transformation method [7] is used to generate the 
probabilistic model of %. For each cluster vk, k=1…c, a 
probability distribution {pki}i=1…n is derived from the 
possibility distribution {uki}i=1…n [8]. Then, the following 
statistics at vk are computed: 
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where P(xi|vk) indicates the conditional probability of xi given 
vk, i=1…n, k=1…c; �k and Ps(vk) are the variance and posterior 
probability of vk respectively. Computation of Ps(vk), as in 
(30), is similar to that of [21] where P(vk) is approximated by 
1/c. The prior probability of vk, Pp(vk), k=1…c, can be 
estimated using prior probabilities of the GO terms, T, used in 
the dataset. For a given term t, t�T, 
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where Pp(t) is the prior probability of the term t, P(t|vk) is the 
conditional probability of term t given vk. The prior probability 
of vk, k=1…c, is computed as: 
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3) fzBGO algorithm 

) Input 
X = {xi}i=1…n : Gene expression dataset 
[cmin, cmax] : Range of cluster numbers to validate 

) Output 
Copt : Optimal number of clusters 
Gopt : GO annotations on clustering solution 

Steps 

1) Set Copt = cmin 

2) For each value of c in [cmin, cmax] 

3) Generate a crisp cluster solution %c of c clusters 

4) Generate BMFP model % of %c using Section II.D.1  

5) Evaluate % using Section II.D.2 

6) If the current clustering solution is better than the 
current optimal one: set Copt = c, Gopt=VGO 

7) Return {Copt, Gopt} 

III. EXPERIMENTAL RESULTS 
To evaluate the performance of fzBGO, we used three gene 

expression datasets: Yeast [12], Yeast-MIPS [13, 14] and 
RCNS [10]. These datasets contain classification information, 
useful for comparing cluster validation methods. We compared 
performance of fzBGO with fzBLE [8] and six cluster validity 
indices: PC, FS, XB, CWR, PBMF and BR [1-6]. We used 
GOSemSim [20], an R package, to compute semantic 
similarity between GO terms, and applied in fzBGO for term 
set distance measure. The GO annotation knowledge bases for 
Yeast [22] and RAT [23] were applied on the Yeast, Yeast-
MIPS and RCNS datasets respectively. While only GO-BP 
ontology was used for Yeast and Yeast-MIPS datasets, both the 
CC and BP ontologies were applied for RCNS dataset. 

For each dataset, we ran the standard FCM algorithm five 
times with the fuzzifier factor, m, set to 1.17 [11] and the 
partition matrix initialized randomly. In each case, the best 
fuzzy partition was then selected to run fzBGO and other 
cluster validation methods to search for the optimal number of 
clusters between 2-13 for Yeast dataset, or 2-10 for the other 
datasets, and to compare this with the known number of 
clusters. We repeated the experiment 20 times and averaged 
the performance of each method. 

A. Yeast and Yeast-MIPS datasets 
The yeast cell cycle data showed expression levels of 

approximately 6000 genes across two cell cycles comprising 
17 time points [12]. By visual inspection of the raw data, Cho 
et al. [12] identified 420 genes that show significant variation. 
From the subset of 420 genes, Yeung et al. [13] selected 384 
genes that achieved peak values in only one phase, and 
obtained five standard categories by grouping into one 
category genes that peaked during the same phase. Among the 
384 selected genes, Tavazoie et al. [14], through a search of the 
protein sequence database, MIPS [15], found 237 genes that 
can be grouped into 4 functional categories: DNA synthesis 
and replication, organization of centrosome, nitrogen and 

sulphur metabolism, and ribosomal proteins. The functional 
annotations show the cluster structure in the dataset. 

TABLE II. shows the algorithm performance on the Yeast 
dataset which consists five groups of genes that peaked in the 
same phase. Only fzBGO and fzBLE correctly identified the 
number of clusters. Among the other methods, PC and CWB 
were the two methods having better results. 

For the Yeast-MIPS dataset (TABLE III. ), fzBGO and 
fzBLE again were the only two methods that successfully 
detected the number of clusters. While fzBLE works based on 
gene expression levels, fzBGO works based on GO biological 
process (BP) annotations. This result also shows that, under the 
biological functionality context, GO-BP annotations are strong 
correlated with gene-gene differential co-expression patterns. 
In other words, we may utilize either gene-gene co-expression 
patterns in gene expression data or GO-BP annotations to 
search for genes of similar function. 

B. RCNS (Rat Central Nervous System) dataset 
The RCNS dataset was obtained by reverse transcription-

coupled PCR designed to study the expression levels of 112 
genes over nine time points during rat central nervous system 
development [10]. Wen et al. [10] classified these genes into 
six groups based on expression patterns. Four of which are 
composed of biologically functionally related genes. These 
four classes are external criterion in this dataset. 

TABLE II.  ALGORITHM PERFORMANCE ON THE YEAST DATASET 

#c fzBGO PC FS XB CWB PBMF BR fzBLE 
2 -4832.7 0.93 -85.1 0.21 8.37 1.21 2.00 -2289.8 
3 -4832.5 0.94 -157.3 0.22 4.76 0.69 1.05 -2296.5 
4 -4832.8 0.95 -191.8 0.22 4.06 0.56 0.72 -2305.3 
5 -4831.5 0.91 -187.1 1.05 13.68 0.41 0.67 -2289.3 
6 -4831.9 0.90 -196.7 0.99 13.86 0.31 0.62 -2296.3 
7 -4833.2 0.88 -198.3 1.06 15.49 0.24 0.57 -2296.6 
8 -4833.6 0.86 -201.8 1.10 16.96 0.21 0.51 -2299.4 
9 -4832.4 0.85 -205.1 1.23 20.25 0.17 0.48 -2299.4 

10 -4832.2 0.84 -208.6 1.20 20.78 0.15 0.45 -2302.8 
11 -4832.6 0.83 -209.4 1.17 21.15 0.13 0.43 -2300.3 
12 -4832.7 0.83 -213.5 1.23 23.04 0.12 0.40 -2307.6 
13 -4832.2 0.83 -215.2 1.30 25.41 0.10 0.39 -2310.8 

TABLE III.  ALGORITHM PERFORMANCE ON THE YEAST-MIPS DATASET 

#c fzBGO PC FS XB CWB PBMF BR fzBLE 
2 -2288.4 0.90 25.43 0.35 16.76 0.72 2.00 -1316.5 
3 -2286.8 0.91 -32.85 0.30 10.16 0.80 1.25 -1317.4 
4 -2283.9 0.82 -39.49 2.53 39.84 0.54 1.32 -1304.0 
5 -2285.1 0.83 -54.50 2.43 35.00 0.36 0.96 -1308.7 
6 -2286.3 0.82 -59.89 2.35 35.45 0.27 0.83 -1310.0 
7 -2286.8 0.81 -65.49 2.36 38.88 0.24 0.73 -1315.4 
8 -2287.5 0.80 -67.68 2.50 43.95 0.20 0.67 -1315.2 
9 -2288.3 0.81 -72.32 2.29 41.21 0.17 0.61 -1321.2 

10 -2289.0 0.82 -74.79 2.04 37.62 0.14 0.56 -1324.2 

We first ran fzBGO using GO-CC annotations and 
compared with the other methods. The results are shown in 
TABLE IV. Only fzBGO and fzBLE identified six clusters in 
the dataset, corresponding to the six waves, two of which are 
invariant, in the analysis results of Wen et al. [10]. We then 
reran fzBGO using GO-BP annotations and compared with the 
other methods. Results are shown in TABLE V. fzBGO 
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identified four clusters in the dataset that are corresponding to 
the four stages in the rat central nervous system developmental 
process. This result of fzBGO again shows that GO-BP 
annotations are strong correlated with gene-gene differential 
co-expression patterns. It also shows that GO-BP annotations 
are useful in creating effective external criteria for cluster 
analysis of gene expression data. 

TABLE IV.  ALGORITHM PERFORMANCE ON THE RCNS DATASETa 

#c fzBGO PC FS XB CWB PBMF BR fzBLE 
2 -970.34 0.99 -568.8 0.06 5.51 4.21 1.11 -580.1 
3 -970.46 0.94 -487.6 0.49 4.13 4.28 1.66 -564.2 
4 -969.91 0.95 -430.5 0.93 6.12 3.37 1.32 -561.0 
5 -969.67 0.89 -397.1 1.30 9.48 2.61 1.17 -561.7 
6 -969.66 0.87 -300.7 2.52 20.65 1.95 1.10 -553.0 
7 -970.15 0.87 -468.3 2.14 21.02 2.87 0.79 -556.3 
8 -969.79 0.89 -462.1 1.73 20.01 2.53 0.59 -555.4 
9 -970.30 0.89 -512.4 1.62 22.48 2.60 0.50 -558.9 

10 -970.49 0.89 -644.2 1.19 21.99 3.50 0.39 -565.8 
a. fzBGO was run using GO cellular component (CC) annotations 

TABLE V.  ALGORITHM PERFORMANCE ON THE RCNS DATASETb 

#c fzBGO PC FS XB CWB PBMF BR fzBLE 
2 -1374.0 1.00 -568.8 0.06 5.51 4.21 1.11 -580.1 
3 -1374.0 0.94 -487.6 0.49 4.13 4.28 1.66 -564.2 
4 -1373.8 0.91 -430.5 0.93 6.12 3.37 1.32 -561.0 
5 -1374.2 0.89 -397.1 1.30 9.48 2.61 1.17 -561.7 
6 -1374.5 0.87 -300.7 2.52 20.65 1.95 1.10 -552.9 
7 -1374.5 0.87 -468.3 2.14 21.02 2.87 0.79 -556.3 
8 -1374.8 0.89 -462.1 1.73 20.01 2.53 0.59 -555.4 
9 -1375.2 0.89 -512.4 1.62 22.48 2.60 0.50 -558. 9 

10 -1375.4 0.89 -644.2 1.19 21.99 3.50 0.39 -565.8 
b. fzBGO was run using GO biological process (BP) annotations 

IV. CONCLUSIONS 
We have presented fzBGO, a novel method to evaluate 

results of cluster analysis using a standard FCM algorithm or a 
crisp clustering algorithm. fzBGO is novel in that it uses 
statistical models with Gene Ontology based semantic 
similarity to describe the data distributions and to validate the 
clustering results. By using GO annotations as external 
validation criteria, fzBGO successfully identifies the correct 
number of clusters in gene expression datasets. The results 
have also shown that fzBGO performs effectively on biological 
datasets with both internal and external criteria. In future work, 
we will integrate this method with our former cluster validation 
method, fzBLE [8], and apply into optimization algorithms to 
develop new clustering algorithms that can effectively support 
cluster analysis on gene expression data. 
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