
Bloom Features

Ashok Cutkosky

Computer Science Department

Stanford University

Stanford CA, USA

ashokc@stanford.edu

Kwabena Boahen

Bioengineering Department

Stanford University

Stanford CA, USA

boahen@stanford.edu

Abstract—We introduce a method for function-fitting
that achieves high accuracy with a low memory foot-
print. For d-dimensional data and any user-specified m,
we define a feature map from d to m dimensional Eu-
clidean space with memory footprint O(m) that scales
as follows: As m increases, the space of linear functions
on our m-dimensional features approximates any MAX
(or boolean OR) function on the d-dimensional inputs
with expected error inversely proportional to m. Our
method is the only one in existence with this scaling
that can simultaneously run in O(m) time, process
real-value inputs, and approximate non-linear func-
tions, properties respectively not achieved by random
Fourier features, b-bit Minwise Hashing, and Vowpal
Wabbit, three competing methods. We achieve all three
properties by using hashing (O(m) space) to implement
a sparse-matrix multiply (O(m) time) with addition
replaced by MAX (non-linear approximation). As these
techniques are inspired by the Bloom filter, we call the
vectors produced by our mapping Bloom features. We
demonstrate that the scaling pre-factors are reasonable
by testing our method on simulated (Dirichlet distribu-
tions) and real (MNIST and webspam) datasets.

Keywords-large-scale learning, learning theory

I. LEARNING WITH MEMORY CONSTRAINTS

The use of randomness in order to save some

resource such as memory (or computation time) at

the potential expense of accuracy is an established

strategy throughout computer science. A primary

application of these low-memory footprint methods is

in large-scale settings in which one must process an

extremely large amount of possibly high-dimensional

data. In this situation the original dataset may not fit

into memory and so one turns to methods that reduce

the memory footprint of the dataset but also allow the

user to run some type of analysis on the data.

In machine learning, these memory savings are

achieved by methods that use random projections [1]

to approximate some function f : R
d → R using

a small number of parameters, but state of the art

methods suffer from particular drawbacks. Random

Fourier features [2] has poor asymptotic time com-

plexity; Vowpal Wabbit (VW) [3] can only approxi-

mate linear functions; and b-bit Minwise hashing [4]

can only operate on binary inputs.
We present an algorithm that achieves a low mem-

ory footprint while avoiding these drawbacks. Similar

to the previous methods, for any m we produce

a mapping φ : R
d → R

m such that as m in-

creases linear functions on R
m approximate nonlinear

functions in R
d with error inversely proportional to

m. However our memory footprint increases linearly

with m, and so m represents a trade-off between

memory and accuracy in function fitting.
We call the vectors in R

m produced by our map-

ping Bloom features (Definition A.1), as our method

was inspired by the Bloom filter data structure [5]. To

compute Bloom features, we choose k hash functions

to assign each component of a vector x in R
d to

k components of φ(x) in R
m. We compute the ith

component of φ(x) by taking the MAX of all the

components of x that are mapped to this ith compo-

nent (Figure 1). This is analogous to multiplication

by a sparse m × d matrix (specified by the k hash

functions) with addition replaced by MAX. Using

hash functions and sparsity allows us to have low

memory footprint and small time complexity while

the substitution of MAX for addition allows us to

compute non-linear functions on real-valued inputs.

x: · · · 0 1 0 3 7 0 0 · · ·

φ(x): 1 0 3 7 3 0 7

Fig. 1. Each coordinate of x is mapped to k random coordinates
in φ(x) by hash functions. The final value of each coordinate of
φ(x) is given by taking the maximum of the values hashed to it.
In this case k = 2 and m = 7.

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.144

548

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.144

547

In Section II, we introduce Bloom features and

describe their properties. In Section III, we empir-

ically validate Bloom features on the freely available

MNIST [6], and webspam [7] datasets. We also

provide results on simulated data. We state formal

results and proofs in an appendix.

II. BLOOM FEATURES

Approximating functions with Bloom features of-

fers a good tradeoff between space, time and accu-

racy. Given input/output pairs (xi, yi) ∈ R
d × R,

this problem may be formulated as follows: Find

fw : Rd → R of the form fw(x) = 〈φ(x), w〉 where

〈a, b〉 indicates inner-product, such that fw(xi) ≈ yi,
where φ : Rd → R

m is a fixed map and w ∈ R
m is

chosen to achieve the best approximation. The degree

of approximation is measured by some loss function

L. For example, L(fw, x, y) = (fw(x) − y)2 is a

common choice. Linear regression can be formulated

in this manner with φ(x) = x and quadratic-kernel

support vector regression corresponds to φ(x) equal

to a vector of all 2nd order interactions in x.
Formulating function-approximation as a linear-

map on a set of m-dimensional features φ(x), pro-

vided by a fixed mapping φ, introduces a tradeoff

between resources and accuracy. As m increases, φ
maps into higher dimensional spaces, resulting in

more accurate function-fitting through inner products

with φ(x), but requiring more time and space to be

computed. A desirable φ will obtain a good tradeoff

between space, time and accuracy.
The Bloom feature map achieves a good tradeoff

by using hash functions to specify a sparse matrix

and replacing the addition in matrix multiplication

by MAX. This map φ operates on d-dimensional

non-negative inputs—that is, elements of Rd
≥0. It can

approximate any linear combination of binary OR

functions or real-valued MAX functions with error

that decreases inversely proportional to m (Theorems

A.4, A.8) and can be computed in O(m) space and

O(m) time (Proposition A.2). While its space scaling

is the same as three state-of-the-art methods, its time

scaling is n to n/m times better (Table I).

TABLE I
COMPARISON BETWEEN METHODS

Feature Time Non-Binary Non-linear
Bloom O(m) Yes Yes
Fourier O(nm) Yes Yes

b-bit Minwise O(nm
2b

) No Yes

VW O(n) Yes No

III. EMPIRICAL RESULTS

To verify that Bloom features’ resource scaling

factors are reasonable and confirm that its theoretical

performance generalizes to the real-world, we tested

it on simulated data (binary and real-valued) and real

data (MNIST and webspam).

A. Simulated Data

We first tested Bloom features on a simulated clas-

sification task with binary vectors. The binary vectors

were drawn from {0, 1}100 with 10 randomly selected

non-zero entries. The two classes were defined by an

OR function computed on either 3, 5 or 10 randomly

chosen bits. We chose a subset of the data that had

an equal fraction belonging to each class. We used

Bloom features with m = 100, 1000, 10000 and

k = �m10 log(2)�, the optimal value for a Bloom

filter. We found that Bloom features achieve low MSE

using m values significantly smaller than
(
100
F

)
, the

number of possible OR functions of fan-in F (Figure

2).

10
2

10
3

10
4

m value

0.00

0.05

0.10

0.15

0.20

M
e
a
n
S
q
u
a
re
d
E
rr
o
r

Fan-in: 10

Fan-in: 5

Fan-in: 3

Fig. 2. Mean squared error vs m for a boolean OR of fan-in 3 and
10, with d = 100. Horizontal lines indicate best linear regression
error for comparison. Error bars represent one standard deviation.

Next, we tested Bloom features on a simulated real-

valued classification task consisting of two classes

defined by two distinct, 100-dimensional Dirichlet

distributions with parameters α and 3α+β
4 respec-

tively. α and β were drawn uniformly at random

from (0, 1)100. This particular choice results in a

Bayes risk of 0.3% (error of optimal classifier). We

compared Bloom features to random Fourier features

with m ranging from 50 to 10000 for both. k was

set to �m10 log(2)� for Bloom features; b-bit Minwise

hashing was not included because this method only

549548

applies to binary inputs. We found that Fourier fea-

tures were more accurate for small m whereas Bloom

features were more accurate for large m (Figure 3).

10
2

10
3

10
4

m

0.70

0.75

0.80

0.85

0.90

0.95

A
c
c
u
ra
c
y

Bloom Features

Fourier Features

Fig. 3. Bloom features vs. random Fourier Features on simulated
dataset. Error bars represent one standard deviation.

We then proceeded to test Bloom features on

more realistic data by classifying the MNIST [6]

and webspam [7] datasets. For all tasks, we applied

one-vs-all linear classification on a Bloom feature

representation of the data.

B. MNIST

The MNIST dataset contains 70000 28× 28 gray-

scale images of handwritten digits 0 through 9, which

are split into a training and test set of size 60000
and 10000 respectively. The task is to determine

which digit a given image represents. We consider

the permutation-invariant form of the task, in which

one cannot take advantage of any previously known

structure in the data (such as the fact that the inputs

are 2D images). We chose k via cross-validation on

m = 400, which gave k = 4. We therefore used

k = m/100 (rounded to the nearest integer) for all

other values of m.

We compared Bloom features’ performance on

MNIST with that of random Fourier Features and b-
bit Minwise hashing, which have the same memory

footprint. We did not include VW because it can

only classify linearly separable data; it is well-known

that MNIST is not linearly separable. In the case

of Minwise hashing, we converted the images to

binary vectors by thresholding values to 1, an easy

and natural process for MNIST. For other datasets

(e.g. our simulation in Figure 3), this may not be

true. We found that the performance gap between

Bloom and Fourier features narrowed as m increased

(Table II), as expected from our results with simulated

data (Figure 3). And both out-performed Minwise

hashing, demonstrating the advantage of using real-

valued vectors.

We also compared Bloom features’ performance on

MNIST with several state-of-the-art algorithms that

have a much larger memory footprint as measured

by parameter count (taken from Table 1 of [8]). One

of these algorithms (Maxout MLP, described in [8])

is similar in spirit to Bloom features. In this method,

one trains a multi-layer perceptron whose activation

function takes the maximum of its inputs. We found

that Bloom features use 95% fewer parameters than

any of these algorithms while achieving an error-rate

within a factor of two of the lowest result (1.6%
versus 0.79%).

TABLE II
MNIST PERFORMANCE (AVERAGE ERROR)

m Bloom Fourier b-bit Minwise
400 6.3% 5.3% 11.1%
1000 3.8% 3.1% 7.4%
10000 1.8% 1.6% 2.8%

TABLE III
MNIST PERFORMANCE (OTHER METHODS)

Method Error Parameter Count
ReLU MLP [9] 1.05% 1794000

Maxout MLP [8] 0.94% 2392800
Manifold Tangent Classifier [10] 0.81% 5588000

DBM (with dropout) [11] 0.79% 2392800
Bloom Features 1.6% 100000

C. webspam

The webspam [7] dataset consists of 350000

sparse vectors of trigram counts representing either

spam or non-spam documents. The data have a di-

mensionality of 16609143, of which only 680715

components are ever nonzero. webspam is nearly

linearly separable, with linear classification accura-

cies in excess of 99%. Thus, we consider classifying

webspam as a demonstration that Bloom features are

still able to capture linear relationships. To classify

webspam we selected 80% of the data to be a

training set and 20% to be a testing set.

We compared Bloom features’ performance on

webspam with that of random Fourier Fea-

tures, b-bit Minwise hashing, and VW for m =
100, 1000, 10000. All three choices use much less

550549

memory than is needed to represent the original

features (up to 10000 vs 680715). webspam’s sparse

binary features and linearly separability are exactly

the conditions required by b-bit Minwise hashing

and VW, respectively, hence they performed the best

(Table IV). Nevertheless, across the range of m values

tested, Bloom Features’ error was no worse than

1.625 times that of these methods.

TABLE IV
WEBSPAM PERFORMANCE (AVERAGE ERROR)

m Bloom Fourier b-bit Minwise VW
100 9.4% 26.4% 10.8% 8.1%
1000 2.9% 14.7% 2.1% 1.9%
10000 1.3% 7.9% 0.8% 1.1%

IV. CONCLUSIONS

We have introduced Bloom features and analyzed

their performance. Bloom feature representations are

memory-efficient (O(m)) and can be computed very

quickly (O(m)). As their dimensionality m increases,

they approximate boolean functions and non-linear

real-valued functions with error decreasing inversely

proportionally to m. We prove these results in the

Appendix and show that Bloom features operate by

approximating a high-dimensional RKHS consisting

of all interactions among inputs.

We demonstrated the practical viability of Bloom

features using simulated data and the MNIST and

webspam datasets. On the simulated and MNIST
datasets, Bloom features represented non-linear func-

tions on real-valued inputs accurately and efficiently.

On the webspam dataset, Bloom features were com-

petitive with more restrictive methods such as b-bit

Minwise hashing and VW when representing linear

functions on binary inputs. Thus Bloom features not

only possess theoretical advantages in terms of either

handling real-valued inputs, computation time, or

non-linear approximation over other methods, they

also compare favorably on practical tasks in terms of

test error for a given memory footprint.

REFERENCES

[1] William B Johnson and Joram Lindenstrauss. Extensions
of lipschitz mappings into a hilbert space. Contemporary
mathematics, 26(189-206):1, 1984.

[2] Ali Rahimi and Benjamin Recht. Random Features for Large
Scale Kernel Machines. In Advances in Neural Information
Processing Systems, 2007.

[3] W Kilian, D Anirban, L John, S Alex, and A Josh. Feature
Hashing for Large Scale Multitask Learning Feature Hashing
for Large Scale Multitask Learning. In International Confer-
ence on Machine Learning (ICML), pages 1113–1120, 2009.

[4] Ping Li and Christian König. b-bit minwise hashing. In
Proceedings of the 19th international conference on World
wide web, pages 671–680. ACM, 2010.

[5] B Bloom. Space/Time trade-offs in hash coding with allow-
able errors. Communications of the ACM, 13(7):422–426,
1970.

[6] L Yann, B Léon, B Yoshua, and H Patrick. Gradient-Based
Learning Applied to Documnet Recognition. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

[7] Steve Webb, James Caverlee, and Calton Pu. Introducing the
webb spam corpus: Using email spam to identify web spam
automatically. In CEAS, 2006.

[8] G I J, W David, M Mehdi, C Aaron, and B Yoshua. Maxout
Networks. Journal of Machine Learning Research (JMLR),
28(3):1319–1327, 2013.

[9] Nitish Srivastava. Improving neural networks with dropout.
PhD thesis, University of Toronto, 2013.

[10] Salah Rifai, Yann N Dauphin, Pascal Vincent, Yoshua Ben-
gio, and Xavier Muller. The manifold tangent classifier. In
Advances in Neural Information Processing Systems, pages
2294–2302, 2011.

[11] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580, 2012.

[12] Michael Mitzenmacher and Eli Upfal. Probability and com-
puting: Randomized algorithms and probabilistic analysis.
Cambridge University Press, 2005.

APPENDIX

Definition A.1. Bloom Features Suppose h1, . . . , hk
are functions mapping N to {0, . . . ,m−1} drawn at
random from a pair-wise independent family of hash
functions. For x ∈ R

d
≥0, define φh(x) ∈ R

m
≥0 by

φh(x)i = max
j,l: hl(j)=i

xj

where the subscript h in φh is intended to emphasize
that φh(x) depends on the choice of hash functions.

Proposition A.2. Computation Suppose x ∈ R
d

with n non-zero components, and let φh(x) be a
Bloom feature map using k hash functions. Then
φh(x) can be computed in O(kn) time when vec-
tors are represented in sparse format (only non-zero
quantities stored), and in O(d+ kn+m) time when
vectors are represented in dense format.

Proposition A.3. Memory Standard Bloom filter
analysis [12] suggests a value for k: If our inputs
x have n non-zero components, then we should set
k = log(2)mn . Using this value of k and Proposition
A.2, we get a complexity of O(kn) = O(m).

Theorem A.4. Binary Input Approximation Sup-
pose B(x) is a boolean function of fan-in F and

551550

φh(x) : R
d → R

m is a Bloom feature map with
k hash functions (see Definition A.1). Let n be the
number of set bits of some vector x ∈ {0, 1}d. Let
p = 1 − (1 − 1

m)k be the probability that a bit of x
is hashed to a given component of φh(x). Then for
sufficiently large m there exists wh ∈ R

m such that

E
h
[φh(x) · wh] = B(x)

E
h
[(φh(x) · wh −B(x))2] = O

(
2F

pF (1−1/m)knm

)

Proof: Our proof has two steps. First we observe

that we can write B(x) as a linear combination of ORs

involving no negations: B(x) =
∑s

i ai(xi1∨· · ·∨xiz)
with ai ∈ R, z ≤ F and s ≤ 2F . Then we show that

xi1∨· · ·∨xiz ≈ φh(x)·wh,i for some appropriate wh,i

(see Lemma A.5). Substituting this approximation in

to the expression for B(x) completes the proof with

wh =
∑

i aiwh,i.

To prove the first step, we consider OR functions

as vectors in R
2F (defined by their truth tables), and

show that they are linearly independent in this space.

To see this, first set yj = 1−xj . Then by De Morgan’s

rules we have xi1 ∨ · · · ∨ xiz = 1 − yi1 · · · yiz .

Thus there is a 1-1 linear map from OR functions to

monomials yi1 · · · yiz . Now since the set of distinct

monomials is linearly independent, so are the OR

functions.

Lemma A.5. Suppose C1(x) and C2(x) are OR

functions of fan-in F 1 and F 2. Further, define F∪

as the number of inputs shared by C1 and C2 and
let F = (F 1 + F 2) − F∪. Suppose φh(x) is a
Bloom feature map with k hash functions. Then for
sufficiently large m there exists w1

h and w2
h such that:

E
h
[φh(x) · wi

h] = Ci(x)

Var(φh(x) · wi
h) ≤ 4

mp
−F i

(1− p)−n

Cov(φh(x) · w1
h, φh(x) · w2

h) ≤ 2
mp

−F (1− p)−n

where p, m, n, x were defined previously (see Theo-
rem A.4).

Proof: If φh(x)’s components were both zero-

mean and independent, then we can prove this result

with bounds improved by a factor of 4 (Lemma

A.7). To prove this result for the non-zero-mean,

non-independent φh, we subtract φh(x)’s first m/2
components from its second m/2 components to form

a new vector φh(x)
′ that is half the size but is

now zero-mean while still having non-independent

components. Since φh(x)
′ is half the size, we lose a

factor of 2 in the bounds. Now we complete the proof

by showing that the lack of independence between

components introduces another factor of 2 in the

bounds.

The factor of 2 loosening due to the lack of

independence comes from distributing expectations

over products. Specifically, we need to show that

distributing the expectation Eh[φh(x)iφh(x)j] over

the product accrues a error that goes down as m
increases. To do this we show that φh(x)i concen-

trates about its mean. Let e be the number of zero

bits in φh(x) and q = e
m . Mitzenmacher and Upfal

show [12] for Bloom filters (which applies to Bloom

features in the binary case) that P(|q−E[q]| > λ
m) <

2 exp(−2λ2/m). Thus

E[q
2] ≥ (1− 2 exp(−2λ2/m))(E[q]− λ/m)2

E[q
2] ≤ (1− 2 exp(−2λ2/m))(E[q] + λ/m)2

+ 2 exp(−2λ2/m)

So that for any δ, for sufficiently large m, we must

have 1
1−δ E[q]

2 ≤ E[q2] ≤ (1 + δ)E[q]2. Now

E[φh(x)iφh(x)j] =
∑
t

P(q = t)(1− t)(1− t m
m−1)

= 1− 2m−1
m−1 E[q] + m

m−1 E[q
2]

Thus for any δ′, for sufficiently large m,

E[φh(x)iφh(x)j] is within a factor of 1 + δ′

of (1 − E[q])2 = E[φh(x)i]E[φh(x)j]. Choosing

δ′ = 1, for sufficiently large m the error from the

independence assumption is bounded by a factor of

2.

Definition A.6. Independent Features Let p ∈
(0, 1). Suppose z+i,j , z

−
i,j are independent Bernoulli

random variables with the same mean p for i ∈
{0, . . . ,m− 1}, j ∈ {0, . . . , d− 1}. Then define

T+(x)i = max
j:z+

i,j=1
xj

T−(x)i = max
j:z−i,j=1

xj

φz(x)i = T+(x)i − T−(x)i
where here the subscript z indicates that φz depends
on the values of the variables z+i,j and z−i,j .

Lemma A.7. Let C1, C2, F 1, F 2, F∪, F , x and n be
as defined previously (Theorem A.4). Let φz(x) be an

552551

independent feature with parameter p (see Definition
A.6). Then there exists w1

z , w
2
z ∈ R

m such that:

E
z
[φz(x) · wi

z] = Ci(x)

Var(φz(x) · wi
z) ≤ 1

mp
−F i

(1− p)−n

Cov(φz(x) · w1
z , φz(x) · w2

z)

≤ 1
2mp

−F (1− p)−n

Proof: We’ll prove the bias and variance results

for C = C1. The results for C2 are symmetric. Let

C = xc1 ∨ · · · ∨ xcF .

We start by defining Qn = 1 − (1 − p)n, Z+
j =∏F

i=1 z
+
ci,j

, and Z−j =
∏F

i=1 z
−
ci,j

. The following

facts will be useful:

E[Z
+
j] = E[Z

−
j] = pF (1)

E[Z
+
j T

+(x)j] = pFC(x) + pF (1− C(x))Qn (2)

E[Z
+
j T

−(x)j] = pFQn (3)

With (rz)j = Z+
j − Z−j , some algebra gives:

E
z
[φz(x) · rz] = mE

z
[φz(x)1(rz)1]

= 2mE
z
[T+

1 Z
+
1]− 2mE

z
[T−1 Z

+
1]

= 2mpF (1−Qn)C(x)

For the variance, we compute

Var(φz(x) · rz) = mVar(φz(x)1(rz)1)

E[(φz(x)1(rz)1)
2] = E[(Z

+ − Z−)2(T+
1 − T−1)2]

from which we obtain (from equations 1, 2, 3):

Var(φz(x) · rz) ≤ 4mpF (1−Qn)

Now if we set (wz)j =
1
2p
−F (1−Qn)

−1 1
m (rz)j then

we recover the expectation and variance statements.

The covariance statement is computed similarly.

Theorem A.8. Approximating a space of MAX
functions Suppose φh(x) is a Bloom feature con-
structed with k hash functions. Suppose K(x, y) is
a scaled inner product of MAX functions as defined
below. Then:

E
h
[1√

m
φh(x) · 1√

m
φh(y)] = K(x, y)

P

(
sup

x,y∈Dn

∣∣∣φh(x)√
m
· φh(y)√

m
−K(x, y)

∣∣∣ > ε

)
< δ

as long as

m > 2
ε2

(
log(1/δ) + 2 log

(
2
(
d
n

)))

Where Dn ⊂ [0, 1]d is the set of vectors with at most
n non-zero components.
K(x, y) is given by the following construction.

For x ∈ [0, 1]d, let MAXq(x) ∈ R
(dq) be the vector

obtained by applying all q-ary MAX functions to the
entries of x. Define K(x, y) = ψ(x) · ψ(y) with

ψ(x) =

d⊕
q=1

√
(1− p)d−qpqMAXq(x)

where p = 1− (1− 1
m)k. Thus K(x, y) is the kernel

of the RKHS H defined by

H ∼=
d⊕

q=1

R

(
d
q

)
∼= R

2d

with v(x) = v · ψ(x) for v ∈ H.

Proof: First we compute the expectation:

E
h
[1√

m
φh(x) · 1√

m
φh(y)] = E

h
[φh(x)1φh(y)1]

Let Aq be the event that there are exactly q values

of t such that hl(t) = 1 for some l. Then P (Aq) =
(1− p)d−qpq

(
d
q

)
. Further,

E
h
[φh(x)1φh(y)1|Aq] =

(
d
q

)−1
MAXq(x) ·MAXq(y)

E
h

[
φh(x)√

m
· φh(y)√

m

]
=

n∑
q=1

P (Aq)
(
d
q

)−1
MAXq(x) ·MAXq(y) = K(x, y)

For the concentration inequality, we apply the

Azuma-Hoeffding inequality to the Doob martingale

given by

Bi =
1

m
E[φh(x) · φh(y)|φh(x)1, . . . , φh(y)i]

Since each component of φh(x) is in [0, 1], |Bi+1 −
Bi| ≤ 1, and so

P
(∣∣∣φh(x)√

m
· φh(y)√

m
−K(x, y)

∣∣∣ > ε
)
≤ 2 exp(− ε2m

2)

The maximum error occurs at corners of Dn, so by

applying a union bound over all
(
d
n

)2
pairs x, y we

bound the probability of error more than ε by

2
(
d
n

)2
exp(−ε2m/2) = δ

Solve for m to prove the theorem.

553552

