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Abstract— In the last few decades, new 
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matching methods implemented to have o
recognition by the use of principal component a
extract the principal characteristics and featur
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board circuits (PCBs) and compute linear
Bayesian discriminant functions to classify and
numerical character that corresponds to those
first step of this work, grayscale color images a
a charge-coupled device (CCD) camera, then im
is manually computed to create a dataset of 5
for the character digits from 0 to 9. Then, a f
method is applied to get the principal compon
used in the character recognition state. Finally,
that applying Bayesian linear and quadratic dis
principal component features can improve o
recognition (OCR) detectability of damaged 
actual 95–97% to 99.88% in early tests. This su
the problem probably follows a linear mod
hyperplanes separate decision regions with sat
no) errors.  
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[4], [5]. Then, classifiers are used to compare
features with some stored image features and
match. 
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The principal problem is that operators have lower 
throughput than automatic OCR software, and this leads to 
manually writing down the information from the screen when 
the actual recognition software fails, increasing the process 
time, making possible errors from wrong readings, inducing 
higher production costs. Taking into consideration these facts, 
a better approach has to be considered [3].  

This paper presents the proposal for implementing a 
character recognition technique for unreadable characters using 
extraction features and Bayesian classifiers.   

II. DATA SET CONSTRUCTOR 
Our implementation starts with an experimental dataset 

constructed of 500 character images. In this dataset, we have 
50 images that correspond to each numerical digit image from 
0 to 9. Next, Fig. 3 shows several digit image samples. 

 

 

 

 

 

 
Fig. 3. Some damaged digit images from dataset 

For our previous dataset, we let Ii any (k,l) digit image, 
Fig.4, from the original dataset. �Ii: 

 
Fig. 4. Ii digit image matrix with size (k,l) 

• Convert Ii to gray-scale (if previous images are RGB type). 

• Transform matrix Ii to a row-vector of size (1, k*l). 

• Create a matrix M of size (n, k*l), where n is the number of 
samples for each digit image, M ��M�� Ii��� 

 

III. PRINCIPAL COMPONENTS ANALYSIS AND BAYESIAN 
CLASSIFICATION 

The purpose of this portion of the paper is to map the 
matrix M into the eigenspace by means of the the first P 
principal components. We follow the next steps: 

 
 

1) Extract the mean for each column: 
 

(1) 

2)     Compute the covariance matrix � of �	 . 

3)     Compute eigenvectors and eigenvalues (PC,V) of �. 

4)     Sort matrix PC by columns in descend order ruled by 
vector V. 

5)     Project �	  into the first P principal components: 

(2) 

6)     A new digit dataset is now assembled, X. 

The principle component analysis (PCA) digit image test 
dataset must be processed by applying the first 5 steps, but 
using 
j and �	  calculated from the training set.  

Given the new Eigen-data set, two Bayesian algorithms, 
linear and quadratic discriminant classifiers must be trained 
and tested by means of 10x10 cross-validation method. These 
algorithms are widely used parametric methods, which assume 
that the class distributions are multivariate Gaussian [7], [8], 
[9]. 

With linear discriminant analysis (LDA), all classes are 
assumed to have the same covariance matrix, but quadratic 
discriminant analysis (QDA) does not need such an 
assumption; however, the number of parameters to be 
estimated from the data available for each class is much higher, 
entailing lower statistical significance. The discriminant 
functions associated to each classifier are defined as: 

1) Linear Discriminant Classifier: 

 
(3) 

 

2) Quadratic Discriminant Classifier: 

 
 (4) 
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IV. EXPERIMENTAL RESULTS 
 In the following Fig. 5 we show the first 3 principal 
components from matrix X with only 3 characters of data: 0, 1 
and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. 1 PC, 2 PC and 3 PC for characters 0, 1 and 2. 

 

For more digit characters, the principal components were 
not easy to visually classify, as shown in Fig. 6: 

 

 
 

 
Fig. 6. 1 PC, 2 PC and 3 PC for Characters 0 to 6. 

From previous simulations we can see that using 2 or 3 
principal components is not enough to have a difference in the 
proximity of the characters groups. It’s clear that groups for 
characters 0, 1 and 2 are close. The next step will use the linear 
and quadratic discriminant classifiers using more than 3 
principal components from X matrix.  

Our classification process, for linear and quadratic 
discriminants, was trained in the complete training data set and 
tests the performance in the test data set. A 10x10 cross-
validation model validation technique was computed to 
estimate how our classification model was performed [10]. 
Fig.7 shows these experimental results: 
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Fig. 7. 10x10 cross-validation for LDC and QD

For previous simulations, it’s seen th
algorithms yield promising results. The 10x10
recognition rate for the linear discriminant cla
interesting 99.88%, by using the first 30 princ
To check the performance of the linear discri
we compute the confusion matrix, where it s
recognition rate at characters 0, 1, 3, 6, 7, 8
difficulties are seen in character 2, which was
character 7 in one case. Character 4 was class
1 in just one case. 

Quadratic discriminant classifier perfor
follow: 10x10 cross-validation recognition ra
means of the first 15 principal componen
confusion matrix shows perfect recognitio
character, 9.  
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