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Abstract: Two image compression methods are 
compared: Singular Value Decomposition (SVD) and 
Fast Fourier Transform (FFT).  SVD is the 
factorization of a real or complex matrix, while FFT 
is an algorithm which allows low pass and high pass 
filtering with a great degree of accuracy. FFT is also 
a process that vastly reduces the time needed to 
compute large matrices. Distortion and compression 
ratios for each method were calculated at different 
parameters. Images were compressed without 
sacrificing significant image quality. Comparing the 
compression ratio, distortion, and visual quality of 
the images, FFT was determined to be the better of 
the two compression methods. 
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Section I: Introduction 

Image compression is in high demand because it 
reduces the computational time and consequently the 
cost in image storage and transmission. The basis for 
image compression is to remove unimportant and 
redundant data while maintaining the compressed 
image quality in an acceptable manner.  

In this paper, two different still image compression 
methods were compared: Singular Value 
Decomposition (SVD) and fast Fourier transform 
(FFT). These two lossy compression techniques were 
applied to a single image, and the methods’ 

performances were compared using measures of 
compression ratio, distortion, and visual quality.  

Previous studies have compared image compression 
methods, but none have compared these two. Also, an
image processing toolbox was utilized, and all 
MATLAB codes related to this work are listed in the 
paper.  

Graphical analysis and visual quality of the images 
led to the conclusion that FFT is more effective in 
image compression than SVD. Section II describes 
the basic idea about SVD and FFT. Section III 
contains the experimental data and Section IV 
contains the conclusion.  

Section II: Formulation of the Problem 

SVD: If A is an m x n matrix, the singular values of A
are the square roots of the eigenvalues of ATA and are 
denoted by  ��, … ��. It is conventional to arrange the 
singular values such that �� ≥ �� ≥ ⋯ ≥ ��. There 
exist orthogonal matrices U and V and a diagonal 
matrix , such that � = 	∑��. Here, U is an m x m 
matrix and V is an n x n matrix, so that  is 
rectangular with the same dimension as A.  

The SVD of an m x n matrix � will be observed [1-
4]. Here, the transformation is a mapping from the 
domain ℝ� to the range ℝ�, so it is rational to 
inquire for a natural basis for each of the domain and 
the range. The columns of matrices V and U are used 
to represent vectors in the domain and the range of 
transformation. According to the magnitude of the 
singular values, the transformation simply dilates,
contracts, or possibly discards some components. 
From this perspective, the SVD describes how to 
choose an orthonormal basis so that the 
transformation is represented by a diagonal matrix 
with its simplest possible form.  

To construct an orthogonal matrix V, an orthonormal 
basis {��, … , ��} for ℝ� must be found consisting of 
eigenvectors of the n x n symmetric matrix ATA. This 
orthonormal basis � = [��  …  ��] is an orthogonal 
n x n matrix. 

For an orthogonal matrix U, [���, … , ���] is an 
orthogonal set of vectors in ℝ�. If it is given that �� is an eigenvector of ATA corresponding to an
eigenvalue ��, then, for � ≠ �, we have

(���). ����� = (���)������
                        =��������
                        = �������
                       =�����. ��� = 0
since eigenvectors �� are orthogonal. Furthermore,
the lengths of the vectors ���, … , ��� are the 
singular values of A, and there are r nonzero singular 
values ��� ≠ 0 if and only if 1 ≤ � ≤ � [1-4]. 
Therefore, ���, … , ��� are linearly independent 
vectors found in Col A. Each ��� is normalized to 
obtain an orthonormal basis {��. . . ��}, where   �� =�
‖��!‖ ��� = �

"! ���   for � = 1, … , �.
This normalization guarantees that {��. . . ��}, is an 
orthonormal set in  ℝ�, but if r < m, it will not be a 
basis for ℝ�. The set {��. . . ��} is prolonged to an 
orthonormal basis {��. . . ��} for ℝ�. Then, U
becomes equal to [��. .  ��].
Verification is necessary that with U, V, and  as 
defined, we have A =U∑VT. Since, �� = �#�, this is 
equivalent to showing that AV= UUUUUU

It is known that A�� = ���� for � = 1, … , � and ‖���‖ = �� = 0 for � + 1, . . . , �. Hence, A�� = 0 for � = � + 1, . . . , �. Therefore,  �� =[ ��� … . ��� 0 … .0] =[���� … ����  0     0]

=[�� … … �� ]
⎣⎢
⎢⎢
⎡�� … … . … 0… … … … . 0… … … … 0… … … . �� 00 0 … 0 0⎦⎥

⎥⎥
⎤

= 	∑

Properties: 

If we let A represent an m x n matrix with a singular 
value decomposition of 	∑��, then 
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1. The singular values   ��, … �� of A are 
unique; however, the matrices U and V are 
not unique. 

2. Since ��� = �∑�∑��, it follows that V 
diagonalizes ��� and that the ��′s are 
eigenvectors of ���

3. As ��� = 	∑∑�	�, it is clear that U 
diagonalizes ��� and that the ��′s are 
eigenvectors of ���.

4. The m x n matrix A can be written as the 
sum  of rank-one matrices� = ∑ ����2� �����,                    (1)
where � is the rank of �, and �� and �� are 
the �34 columns of U and V, respectively. 

Proof: 4. Given that A= 	∑��:

= 	 5�� ⋯ 0⋮ ⋱ ⋮0 ⋯ ��
8 �� = 	 95�� ⋯ 0⋮ ⋱ ⋮0 ⋯ 08 +

50 ⋯ 0⋮ �� ⋮0 ⋯ 08 +. . . + 50 ⋯ 0⋮ ⋱ ⋮0 ⋯ ��
8: ��

=������� + �������+ . . . +�������
Property 4 is the low rank approximation property of 
SVD. The best least square approximation of A
whose rank ; ≤ � is provided by retaining the first p 
terms of equation (1). 

FFT: For simplicity, one dimensional signal is first 
addressed, followed by two dimensional images. A
continuous signal <(>) can be defined on a time 
interval [0, T] and therefore can be sampled at N 
times where > = �?/A for � = 0, 1, … , A − 1. We 
get a discretized signal x =(<B, <�, . . . , <C#�), a vector 
in ℝC. The <(>) can be written as an infinite sum of 
basic waveforms  D�E�F3/� for G ∈ I and sampled at > = �?/A. The sequence of basic waveform which 
we denote by JC,F, indexed by k, is of the form:

JC,F =
⎣⎢
⎢⎢
⎡ D�E�FB/C

...D�E�F(C#�)/C⎦⎥
⎥⎥
⎤
.

JC,F forms an orthogonal basis for KC. Any < ∈ KC
can be written as < = ∑ �L,MN,O�

�MN,O,MN,O�C#�F2B JC,F =
�
C ∑ �<, JC,F�JC,FC#�F2B using the fact that
�JC,F, JC,F� = A for each k. 

The discrete Fourier transform (DFT) of x is the 
vector P ∈ KC with components

QF = �<, JC,F� = ∑ <�C#��2B D#�E�F�/C            (2)

for 0 ≤ G ≤ A − 1. Then we can let P ∈ KC be a 
vector (QB, Q�, . . . , QC#�).

The inverse discrete Fourier transform (IDFT) of X is 
the vector x = �

C ∑ Q�C#��2B D�E�F�/C.

The IDFT shows how to synthesize < from JC,F,
which are the basic waveforms. P =DFT(R) and R =IDFT(X) are used to indicate the DFT or IDFT of
a given vector. The DFT and IDFT were used for 
analyzing sampled signals and images. Every object
that exists in the time domain has a representation in 
the frequency domain. The DFT and IDFT allow us 
to easily move back and forth between the discrete 
time and the frequency domains. 

The computational cost for evaluating the sums of 
equation (2) was examined. The computation for any 
given QF requires N complex multiplication followed 
by N-1 additions for a total of 2N-1 operations. Since 
there are QF for 0 ≤ G ≤ A − 1, we had to perform A(2A − 1) = 2A� − A operations. 
The quantity ‖R‖� is interpreted as the energy of a 
sampled signal x. Since signals often contain 
unnecessary components, a graphical analysis of the 
signal’s spectrum was used that revealed the fact that
high frequency components contribute very little
energy. To compress a signal or an image, higher 
frequencies needed to be removed.

In 1965, Cooley and Tuckey published an algorithm
called FFT, similar to DFT. This algorithm shortens
the work for computing an N sampled DFT from 2A� − A floating point operations (flop) down to KAlog(A) operations for some constants C. This 
reduction is a significant saving of computation when 
N is large [5].

Section III: Method

Any m x n image is m x n matrix, where the entry (i, 
j) is interpreted as the brightness of pixel (i, j). Here,
2 methods, SVD and FFT, were used to compress an 
image. The image “peppers.png,” which is available 

in MATLAB, was used as a visualization 
demonstration file. The image was first converted
from PNG to JPEG format since the latter is used for 
lossy compression. 
The following command was used to view the image. 
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A=imread (‘peppers.tif’); imwrite (A, ‘peppers.jpg’); 

imshow (A)

The RGB or true color image can be seen such that 
the total number of bits required for each pixel is 24
(8 for red, 8 for green, and 8 for blue). To reduce the 
storage space, the image can be converted to 
grayscale, in which only 8 bits are required per pixel. 

SVD: The image was compressed using SVD, and 
the compression ratio was calculated. The MATLAB
[5-6] code is given below.

function [Ak,CR1] = svdPartSum(A, k ) 
B = double(rgb2gray(A)); 
[m, n] = size(B);  
% m= number of row, n= number of col. 
[u, s, v] = svd (B); 
Ak=u(:,1:k)*s(1:k,1:k)*v(:,1:k)'; 
% k is the index of the singular value. 
CR1= k*(m+n)/m/n; % Compression ratio
imshow (Ak, []);
end

FFT: After converting the RGB image to grayscale,
the image was converted to the frequency domain 
using the command “fft2.” Seeking for the highest 
frequency “M”, different thresh parameters were 
chosen [5]. All frequencies in the image which were 
below a thresh parameter times M were zeroed out, 
resulting in less entries than the original image. Using 
“ifft2” command, the compressed image was 
converted to the time domain using the MATLAB 
code given below: 

function [FO,CR2] = FFTthresh( A, t ) 
B=double(rgb2gray(A));  
[m,n] = size(B); 
A1 = fft2(B); % DFT of the image
M=max(max(abs(A1))); 
Ath = (abs(A1)>t*M).*A1; 
% zeroing out all the frequencies below t*M
CR2 = sum(sum(abs(Ath)>0))/m/n; 
%Compression ratio
Ath = real(ifft2(Ath)); % IDFT of Ath
FO = ath; imshow(FO, []) 
end 

When the image A is approximated as O (using 
singular values k or thresh parameter t), the measure 
of the distortion is approximated as T = ‖�#U ‖V

‖�‖V  [5].
It is also called relative error in any physical 
application. When multiplied by 100, relative error 
becomes percent distortion. The MATLAB code to 
calculate the distortion is given below: 

function D = Distortion( A, O )
% This equation calculates the distortion between 
% the original image and the compressed image
B = double(rgb2gray(A));
D = 100*norm(B-O,'fro').^2/norm(B,'fro').^2;
end
The “fro” argument indicates that the Frobenius norm 
should be used for the matrices, which can be 
obtained by taking the square root of the sum of the 
squares of the matrix entries.  

Section IV: Result and Conclusion 

The images were created using 150, 100, 50 and 43 
singular values.  At a singular value of less than 43,
the visual quality is inadequate. The compression 
ratio is given by     KW1 = F(�X�)

�.� , where k indicates 
the index of singular values [7]. It is clear that the 
relation between singular values and compression 
ratio is linear since m and n are constants.

Figure 1: Compressed images using singular values

We chose different thresh parameters in the FFT 
method to compress the image. 
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Figure 2: Compressed images using thresh values 

Figure 3: Relation between Thresh value and 
compression ratio 

In Fig. 3, we see that the relation between thresh 
value and compression ratio is not linear.  

Figure 4: Comparison of SVD and FFT methods 

The visual quality of the images becomes 
unacceptable when the number of singular values is
decreased. From Figure 4, we see that at the same 
compression ratio, distortion is 0.27 for the image 
that was compressed using SVD, while the percent 
distortion is only 0.06 for the image when using FFT. 
Therefore, compressing an image using SVD is 
nearly five times more deteriorated than FFT.
Therefore, it was concluded that FFT is a more 
effective approach for image compression than SVD. 
Further research can be conducted by comparing FFT
with a wavelet method. 
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