
COMPARISON OF SVD AND FFT IN
IMAGE COMPRESSION

1Vinita Cheepurupalli, 2Sierra Tubbs, 3Khadijah
Boykin, 4Dr. Naima Naheed

1 Spring Valley High School, 120 Sparkleberry Ln,
Columbia, SC 29229

2Biology, Chemistry, and Environmental Health
Science Department

3Physics and Engineering Department

4Math and Computer Science Department

Benedict College, 1600 Harden Street, Columbia SC
29204

Email addresses for 4 persons mentioned above:

cheepurupalli@yahoo.com

sierratubbs424@gmail.com

kboykin13@sljhs.org

naheedn@benedict.edu

 keywords: Image, SVD, FFT, Compression Ratio,
Distortion

Abstract: Two image compression methods are
compared: Singular Value Decomposition (SVD) and
Fast Fourier Transform (FFT). SVD is the
factorization of a real or complex matrix, while FFT
is an algorithm which allows low pass and high pass
filtering with a great degree of accuracy. FFT is also
a process that vastly reduces the time needed to
compute large matrices. Distortion and compression
ratios for each method were calculated at different
parameters. Images were compressed without
sacrificing significant image quality. Comparing the
compression ratio, distortion, and visual quality of
the images, FFT was determined to be the better of
the two compression methods.

Contact Person: Dr. Naima Naheed

Email: naheedn@benedict.edu

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.56

527

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.56

526

Section I: Introduction

Image compression is in high demand because it
reduces the computational time and consequently the
cost in image storage and transmission. The basis for
image compression is to remove unimportant and
redundant data while maintaining the compressed
image quality in an acceptable manner.

In this paper, two different still image compression
methods were compared: Singular Value
Decomposition (SVD) and fast Fourier transform
(FFT). These two lossy compression techniques were
applied to a single image, and the methods’

performances were compared using measures of
compression ratio, distortion, and visual quality.

Previous studies have compared image compression
methods, but none have compared these two. Also, an
image processing toolbox was utilized, and all
MATLAB codes related to this work are listed in the
paper.

Graphical analysis and visual quality of the images
led to the conclusion that FFT is more effective in
image compression than SVD. Section II describes
the basic idea about SVD and FFT. Section III
contains the experimental data and Section IV
contains the conclusion.

Section II: Formulation of the Problem

SVD: If A is an m x n matrix, the singular values of A
are the square roots of the eigenvalues of ATA and are
denoted by ��, … ��. It is conventional to arrange the
singular values such that �� ≥ �� ≥ ⋯ ≥ ��. There
exist orthogonal matrices U and V and a diagonal
matrix , such that � = 	∑��. Here, U is an m x m
matrix and V is an n x n matrix, so that is
rectangular with the same dimension as A.

The SVD of an m x n matrix � will be observed [1-
4]. Here, the transformation is a mapping from the
domain ℝ� to the range ℝ�, so it is rational to
inquire for a natural basis for each of the domain and
the range. The columns of matrices V and U are used
to represent vectors in the domain and the range of
transformation. According to the magnitude of the
singular values, the transformation simply dilates,
contracts, or possibly discards some components.
From this perspective, the SVD describes how to
choose an orthonormal basis so that the
transformation is represented by a diagonal matrix
with its simplest possible form.

To construct an orthogonal matrix V, an orthonormal
basis {��, … , ��} for ℝ� must be found consisting of
eigenvectors of the n x n symmetric matrix ATA. This
orthonormal basis � = [�� … ��] is an orthogonal
n x n matrix.

For an orthogonal matrix U, [���, … , ���] is an
orthogonal set of vectors in ℝ�. If it is given that �� is an eigenvector of ATA corresponding to an
eigenvalue ��, then, for � ≠ �, we have

(���). ����� = (���)������
 =��������
 = �������
 =�����. ��� = 0
since eigenvectors �� are orthogonal. Furthermore,
the lengths of the vectors ���, … , ��� are the
singular values of A, and there are r nonzero singular
values ��� ≠ 0 if and only if 1 ≤ � ≤ � [1-4].
Therefore, ���, … , ��� are linearly independent
vectors found in Col A. Each ��� is normalized to
obtain an orthonormal basis {��. . . ��}, where �� =�
‖��!‖ ��� = �

"! ��� for � = 1, … , �.
This normalization guarantees that {��. . . ��}, is an
orthonormal set in ℝ�, but if r < m, it will not be a
basis for ℝ�. The set {��. . . ��} is prolonged to an
orthonormal basis {��. . . ��} for ℝ�. Then, U
becomes equal to [��. . ��].
Verification is necessary that with U, V, and as
defined, we have A =U∑VT. Since, �� = �#�, this is
equivalent to showing that AV= UUUUUU

It is known that A�� = ���� for � = 1, … , � and ‖���‖ = �� = 0 for � + 1, . . . , �. Hence, A�� = 0 for � = � + 1, . . . , �. Therefore, �� =[��� … . ��� 0 … .0] =[���� … ���� 0 0]

=[�� … … ��]
⎣⎢
⎢⎢
⎡�� … … . … 0… … … … . 0… … … … 0… … … . �� 00 0 … 0 0⎦⎥

⎥⎥
⎤

= 	∑

Properties:

If we let A represent an m x n matrix with a singular
value decomposition of 	∑��, then

528527

1. The singular values ��, … �� of A are
unique; however, the matrices U and V are
not unique.

2. Since ��� = �∑�∑��, it follows that V
diagonalizes ��� and that the ��′s are
eigenvectors of ���

3. As ��� = 	∑∑�	�, it is clear that U
diagonalizes ��� and that the ��′s are
eigenvectors of ���.

4. The m x n matrix A can be written as the
sum of rank-one matrices� = ∑ ����2� �����, (1)
where � is the rank of �, and �� and �� are
the �34 columns of U and V, respectively.

Proof: 4. Given that A= 	∑��:

= 	 5�� ⋯ 0⋮ ⋱ ⋮0 ⋯ ��
8 �� = 	 95�� ⋯ 0⋮ ⋱ ⋮0 ⋯ 08 +

50 ⋯ 0⋮ �� ⋮0 ⋯ 08 +. . . + 50 ⋯ 0⋮ ⋱ ⋮0 ⋯ ��
8: ��

=������� + �������+ . . . +�������
Property 4 is the low rank approximation property of
SVD. The best least square approximation of A
whose rank ; ≤ � is provided by retaining the first p
terms of equation (1).

FFT: For simplicity, one dimensional signal is first
addressed, followed by two dimensional images. A
continuous signal <(>) can be defined on a time
interval [0, T] and therefore can be sampled at N
times where > = �?/A for � = 0, 1, … , A − 1. We
get a discretized signal x =(<B, <�, . . . , <C#�), a vector
in ℝC. The <(>) can be written as an infinite sum of
basic waveforms D�E�F3/� for G ∈ I and sampled at > = �?/A. The sequence of basic waveform which
we denote by JC,F, indexed by k, is of the form:

JC,F =
⎣⎢
⎢⎢
⎡ D�E�FB/C

...D�E�F(C#�)/C⎦⎥
⎥⎥
⎤
.

JC,F forms an orthogonal basis for KC. Any < ∈ KC
can be written as < = ∑ �L,MN,O�

�MN,O,MN,O�C#�F2B JC,F =
�
C ∑ �<, JC,F�JC,FC#�F2B using the fact that
�JC,F, JC,F� = A for each k.

The discrete Fourier transform (DFT) of x is the
vector P ∈ KC with components

QF = �<, JC,F� = ∑ <�C#��2B D#�E�F�/C (2)

for 0 ≤ G ≤ A − 1. Then we can let P ∈ KC be a
vector (QB, Q�, . . . , QC#�).

The inverse discrete Fourier transform (IDFT) of X is
the vector x = �

C ∑ Q�C#��2B D�E�F�/C.

The IDFT shows how to synthesize < from JC,F,
which are the basic waveforms. P =DFT(R) and R =IDFT(X) are used to indicate the DFT or IDFT of
a given vector. The DFT and IDFT were used for
analyzing sampled signals and images. Every object
that exists in the time domain has a representation in
the frequency domain. The DFT and IDFT allow us
to easily move back and forth between the discrete
time and the frequency domains.

The computational cost for evaluating the sums of
equation (2) was examined. The computation for any
given QF requires N complex multiplication followed
by N-1 additions for a total of 2N-1 operations. Since
there are QF for 0 ≤ G ≤ A − 1, we had to perform A(2A − 1) = 2A� − A operations.
The quantity ‖R‖� is interpreted as the energy of a
sampled signal x. Since signals often contain
unnecessary components, a graphical analysis of the
signal’s spectrum was used that revealed the fact that
high frequency components contribute very little
energy. To compress a signal or an image, higher
frequencies needed to be removed.

In 1965, Cooley and Tuckey published an algorithm
called FFT, similar to DFT. This algorithm shortens
the work for computing an N sampled DFT from 2A� − A floating point operations (flop) down to KAlog(A) operations for some constants C. This
reduction is a significant saving of computation when
N is large [5].

Section III: Method

Any m x n image is m x n matrix, where the entry (i,
j) is interpreted as the brightness of pixel (i, j). Here,
2 methods, SVD and FFT, were used to compress an
image. The image “peppers.png,” which is available

in MATLAB, was used as a visualization
demonstration file. The image was first converted
from PNG to JPEG format since the latter is used for
lossy compression.
The following command was used to view the image.

529528

A=imread (‘peppers.tif’); imwrite (A, ‘peppers.jpg’);

imshow (A)

The RGB or true color image can be seen such that
the total number of bits required for each pixel is 24
(8 for red, 8 for green, and 8 for blue). To reduce the
storage space, the image can be converted to
grayscale, in which only 8 bits are required per pixel.

SVD: The image was compressed using SVD, and
the compression ratio was calculated. The MATLAB
[5-6] code is given below.

function [Ak,CR1] = svdPartSum(A, k)
B = double(rgb2gray(A));
[m, n] = size(B);
% m= number of row, n= number of col.
[u, s, v] = svd (B);
Ak=u(:,1:k)*s(1:k,1:k)*v(:,1:k)';
% k is the index of the singular value.
CR1= k*(m+n)/m/n; % Compression ratio
imshow (Ak, []);
end

FFT: After converting the RGB image to grayscale,
the image was converted to the frequency domain
using the command “fft2.” Seeking for the highest
frequency “M”, different thresh parameters were
chosen [5]. All frequencies in the image which were
below a thresh parameter times M were zeroed out,
resulting in less entries than the original image. Using
“ifft2” command, the compressed image was
converted to the time domain using the MATLAB
code given below:

function [FO,CR2] = FFTthresh(A, t)
B=double(rgb2gray(A));
[m,n] = size(B);
A1 = fft2(B); % DFT of the image
M=max(max(abs(A1)));
Ath = (abs(A1)>t*M).*A1;
% zeroing out all the frequencies below t*M
CR2 = sum(sum(abs(Ath)>0))/m/n;
%Compression ratio
Ath = real(ifft2(Ath)); % IDFT of Ath
FO = ath; imshow(FO, [])
end

When the image A is approximated as O (using
singular values k or thresh parameter t), the measure
of the distortion is approximated as T = ‖�#U ‖V

‖�‖V [5].
It is also called relative error in any physical
application. When multiplied by 100, relative error
becomes percent distortion. The MATLAB code to
calculate the distortion is given below:

function D = Distortion(A, O)
% This equation calculates the distortion between
% the original image and the compressed image
B = double(rgb2gray(A));
D = 100*norm(B-O,'fro').^2/norm(B,'fro').^2;
end
The “fro” argument indicates that the Frobenius norm
should be used for the matrices, which can be
obtained by taking the square root of the sum of the
squares of the matrix entries.

Section IV: Result and Conclusion

The images were created using 150, 100, 50 and 43
singular values. At a singular value of less than 43,
the visual quality is inadequate. The compression
ratio is given by KW1 = F(�X�)

�.� , where k indicates
the index of singular values [7]. It is clear that the
relation between singular values and compression
ratio is linear since m and n are constants.

Figure 1: Compressed images using singular values

We chose different thresh parameters in the FFT
method to compress the image.

530529

Figure 2: Compressed images using thresh values

Figure 3: Relation between Thresh value and
compression ratio

In Fig. 3, we see that the relation between thresh
value and compression ratio is not linear.

Figure 4: Comparison of SVD and FFT methods

The visual quality of the images becomes
unacceptable when the number of singular values is
decreased. From Figure 4, we see that at the same
compression ratio, distortion is 0.27 for the image
that was compressed using SVD, while the percent
distortion is only 0.06 for the image when using FFT.
Therefore, compressing an image using SVD is
nearly five times more deteriorated than FFT.
Therefore, it was concluded that FFT is a more
effective approach for image compression than SVD.
Further research can be conducted by comparing FFT
with a wavelet method.

REFERENCES:

1. Strang, G. (2006). Linear algebra and its
applications (4th ed.). Boston, MA: Brooks/Cole
Cengage Learning.

2. Poole, D. (2006). Linear algebra (4th ed.).
Boston, MA: Cengage Learning.

3. Lay, D. C. (2012). Linear algebra and its
applications (4th ed.). Boston, MA: Addison-
Wesley.

4. Leon, S. J. (2006). Linear algebra with
applications (9th ed.). New York, NY: Pearson.

5. Broughton, S. A. & Bryan, K. (2009). Discrete
Fourier analysis and wavelets. Hoboken: NJ.
John Wiley & Sons, Inc.

6. Chapman, S. J. (2008). MATLAB programming
for engineers. Natick, MA: Cengage Learning.

7. Demmel, J. W. (1997). Applied numerical linear
algebra. Philadelphia, PA: Society for Industrial
and Applied Mathematics.

ACKNOWLEDGEMENTS:

This research was supported by NSF Grant
#1436222.

531530

