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Abstract— We present two applications in image processing 
of an agglomerative clustering method based on mixtures of non-
Gaussian distributions. The method joins pair-wise the mixture 
models estimated for every cluster building a pyramidal or 
hierarchical structure by using the Kullback-Leibler divergence. 
This process can be related with the feedforward process of 
abstraction carried out by the brain. The applications consist of 
grouping images based on their content similarities and 
segmentation of regions of an image in similar areas. The 
capability of the method to distinguish between natural and 
artificial images is also demonstrated.   

Keywords— image processing, non-Gaussian distributions, 
clustering, pattern recognition, ICA, pyramidal structures 

I. INTRODUCTION 
Image pattern recognition tasks involve process such as 

noise filtering and border detection of the incorporated objects 
in an image. This is carried out by humans using visual 
capabilities of the brain. The visual stimulus of the image 
cause depolarization of millions of neurons that activate brain 
circuits to interpret it, which is commonly related with the 
cognitive function of learning and memory [1]. The 
recognition process should be independent of the object size, 
spatial location, and other variables belonging to the image 
context where it is embedded. Thus, the final result of the task 
is the division of an image in several parts that potentially can 
be connected with some cognitive perception, e.g., “a car on a 
road trip in a sunny day”. Actually, depending on the human 
health condition and age, the perception and understanding of 
the image could become quite different (e.g., [2]). 

The study of methods for automatic pattern recognition 
tasks in image processing is a booming field of research which 
include distinguishing objects with similar shapes and 
separating different parts with similar characteristics in an 
image. The challenges are enormous considering the objective 
of emulating human capabilities as explained above. The 
importance of such automatic capabilities can be particularly 
acknowledged in applications of big data where not only the 
quality of the recognition is important, but also the capabilities 
for rapid processing of volumes of data. Examples of these 
applications are the following: imputation of missing 
functional MRI (Magnetic Resonance Imaging) cardiac 
images; processing geographic images to determine the 

current terrain type from onboard mobile sensors; and QBSE 
(query by semantic example) systems for large-scale 
histopathological image analysis (see for instance [3][4] and 
the references within).  

Currently, image pattern recognition is applied using 
statistical operators such as oriented statistical edge detector 
filters (for improved 3D surface detection) [5]; local 
polynomial regression (for cell-average multiresolution) [6]; 
and independent component analysis (ICA) for automatic 
detection of Parkinsonism in nuclear medicine imaging [7]. In 
this line of work, the method applied in this paper models the 
probability density function of the data as a mixture of non-
Gaussian distributions in the framework of latent variable 
modelling (random variable generators that are hidden behind 
the observable variables). The mixture model consists of 
groups of multivariate densities, where each one group is 
modelled by using ICA [8]. ICA is an extension of principal 
component analysis (PCA), but imposing the condition of 
statistical independence in the estimated latent variables that, 
usually, are called sources. The methods for ICA 
implementation can be roughly classified considering how 
they approximate the parameters of the model by minimizing 
a cost function so-called contrast using: non Gaussianity; 
mutual information; higher order statistics (cumulants); and 
time structures [8]. Applications of ICA comprise such diverse 
disciplines such as telecommunications; non-destructive 
testing; and biomedicine (e.g., [9]). 

The degrees of freedom provided by the statistical method 
applied allow local independence and global dependence 
relationships of the variables to de modelled, besides of 
obtaining an automatic partition of the processed image. An 
important part of our methodology is hierarchical and so 
related to pyramidal structures in image processing. The ICA 
decompositions are joined using hierarchical clustering of 
agglomerative type. It starts from a set of ICA mixture 
parameters that are extracted from the data using a learning 
process as explained in [10]. Each cluster at the first level of 
the hierarchy is characterized with the parameters of a single 
ICA model. The proximities between clusters are estimated 
pair-wise using the Kullback-Leibler (KL) divergence [11]. 

During the combination of the clusters, the entropy and 
cross-entropy of the sources have to be estimated [12]. This 
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cannot be obtained analytically, and thus an iterative 
suboptimal approach is applied using a numerical 
approximation from the training data. The structure of several 
ICA subspaces at the bottom level of the hierarchy allows 
non-Gaussian mixtures to be modelled. The independence 
relations between the hidden variables at this lowest level are 
relaxed at higher levels of the hierarchy allowing more 
flexible modelling. The subspaces constructed by the method 
at intermediate levels of the hierarchy represent different 
degrees of dependence of the variables. In addition, 
considering recent works, these subspaces might be analyzed 
as different levels of information fusion (see for instance [13] 
and the references within).  

The next sections are organized as follows: Section II 
explains the hierarchical classification clustering; Section III 
includes the image pattern recognition applications (object 
recognition and image segmentation); and finally Section IV 
contains the conclusions of this work. 

II. HIERARCHICAL ICA MIXTURES 
This section explains the formulation of the hierarchical 

agglomerative algorithm. We define the ICA mixture model 
ICAMM as follows: 
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For K  clusters, where each cluster is defined using an ICA, 

i.e., with a mixing matrix kA , an independent vector  source 

ks  and a bias vector kb . Essentially, the geometry of the data 

is explained by the parameters k kA s  and the bias kb  is used to 
locate the data in the feature hyperspace.  

We suppose that the ICAMM parameters have been 
estimated as in [10], and summarize the hierarchical procedure 
that is introduced in [14]. The clusters are joined attending to 
the symmetric KL divergence between the clusters ,u vC C  as 
follows: 
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where � �H x  is the entropy, which is estimated as the 

negative of the logarithm of the probability distribution, i.e., 

� � � �log xH E p�� 	 
� �x x ; and the other terms are the cross-
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independence of the sources in the ICA model, (3) simplifies, 
but we still have to approximate the densities of the sources 
since they are unknown. We use non-parametric kernel-based 
densities: 
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where � �us n  is the source us  at sample n . The final 

algorithm is (see [14]): 
 

� � � �� � � � � �

� � � �
1 1

1 1

ˆ ˆ/ /

ˆ ˆ, ,

u v i j

i j

M M

KL u v
i j

M M

v u u v
i j

D p p H s H s

H s H s

� �

� �

� � � �

�

� �

� �

x xx x

s s
       (5) 

 
where M  is the number of sources in every ICAMM (the 

same for every cluster) and the estimates for Q  observations 
of every source: 
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where � �ˆ
jvH s  in (5) is calculated in the same way as 

� �ˆ
iuH s  in (6). 

The objective is to build a hierarchy from an initial number 
of K  clusters to only one cluster by combining the closest 
clusters in successive iterations. The number of hierarchy 
levels will be K , for instance, given 4K � , we will obtain 
4  hierarchy levels ,  1, ,4l l � �  with 4,3,2,1  number of 
clusters in each level, respectively. For each hierarchy level, a 
pairwise calculation of the proximities between clusters is 
done using KL divergence. The proximity between clusters 
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depends on all the ICA mixture parameters ( kA , ks , and kb ). 
Thus, the clusters to be combined at hierarchy level l  are 
selected by using the proximities estimated at the previous 
hierarchy level 1l � .  

The proximity at level l  between a cluster l
zC  to a 

combined cluster l
wC  obtained from clusters 1l

uC � , 1l
vC �  at 

level 1l �  is calculated as follows: 
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The iterative application of (7), combining two clusters at 

every step, produces a dendrogram of proximities that 
measures the similarity between clusters at every step.  

III. IMAGE PROCESSING APPLICATIONS 

A. Object Recognition 
We used the public database "Columbia object image 

library-100 (COIL-100)" [15]. This database contains a large 
number of colour images (pictures) of objects over a black 
background (i.e., views of the objects taken from different 
angles). The size of the image is 128x128 pixels. Some of the 
object images are very similar to other images depending on 
the angle from which the picture of the object was made. In all 
the experiments, each image was first converted to greyscale 
and linearly normalized (pixels had zero mean and unit 
variance). 

The first test was to compare the base functions of different 
objects in COIL-100 database. A total of 20 images for each 
one of 8 selected objects were randomly taken from the 
database. A total of 2000 patches of 8x8 pixels were randomly 
taken for each object, subtracting the local mean. These data 
were used for base function calculation after whitening using 
PCA. Thus, dimensionality was reduced from 64 to 40. This 
procedure is explained in detail in [8][16][17]. 

The base functions were calculated with the ICAMM 
algorithm that was performed one time per each object data set 
in order to estimate the parameters. Supervised training and 
the Laplacian prior was used in order to estimate the source 
probability density functions. The estimated base functions 
were converted to the original feature space using the 
dewhitening matrix previously estimated by PCA. Fig. 1 
shows the estimated base functions of 8x8 for two of the 
objects: a box with an inscribed label (Fig. 1a) and a vegetable 
(Fig. 1b). The similarities and differences between the bases 
of each object (borders) can be observed in the figure. 

The obtained base functions were used as input to apply the 
algorithm explained in Section II. Experiments to create a 

hierarchical classification of objects were also performed 
using the data set of the previous example. The ICA mixture 
parameters were estimated using the algorithm in [10] for 

8K �  (a class per object). These ICA parameters build the 
lowest level of the hierarchy. Fig. 2 shows the obtained 
hierarchical classification of the eight objects correctly 
grouped into three main kinds of objects: cars and boxes; 
bottles and cans; and vegetables. The proposed clustering 
algorithm found meaningful groupings that describe the 
objects at higher hierarchy levels from the bases extracted in 
ICA mixtures at the bottom of the hierarchy. 

 
 

 
 

Fig. 1.  Estimated base functions for two objects from the COIL-100 database. 

 

 
Fig. 2.  Hierarchical clustering of the objects. 

B. Image Segmentation 
The goal of this application was to obtain logical perceptual 

partitions of an image such as those obtained by a human. Fig. 
3 shows an image with 9 numbered zones. The total size of the 
image is 449x512 pixels. In all the experiments of image 
segmentation the following was done:  

 
(i) a set of 1000 image patches (windows) of 8x8 pixels 

were taken at random location from each zone,  
(ii) the normalization, whitening, and dewhitening 

procedure explained above was applied,  
(iii) the number of classes of the ICA mixture algorithm 

462461



was configured to be the number of zones of the image,  
(iv) supervised training was used to estimate the ICA 

parameters for the lowest level of the hierarchy, and  
(v) a hierarchical representation using the proposed 

clustering algorithm was obtained. 
 
Fig. 3 includes a dendrogram that describes how the zones 

are combined starting from the base functions. Five segments 
have been found: sky and persons; roof skeleton; cone; stairs; 
stairs and persons. These segments are grouped into two broad 
segments (stairs and sky) distinguishing the differences in the 
base functions. The values of the proximities explain the 
similarities of the different partitions of the image. 

 

 
Fig. 3. Image segmentation; (a) image partition; (b) hierarchical clustering 
(two broad groups of zones are found). 

Fig. 4 and Fig. 5 correspond to images of 1344x800 and 
1140x786 pixels that are divided into 16 and 40 zones, 
respectively. The order of zone numbering is left to right at 
columns and top to down at rows; for instance, in Fig. 4 (left) 
the lowest zone number (1) is located at the top left corner and 
the highest zone number (16) is at bottom right corner of the 
image.  Fig. 4 (left) shows a mixed image that includes two 
subimages: a natural image (a frog) and a text image. There 
are clear differences in the borders of each subimage, which 
are indicated in the proximities at which these subimages are 
combined at the penultimate level of the hierarchy (Fig. 4 

(right)). Thus, the segmentation of the image into the two 
different subimages has been found. 

Fig. 5 shows an image segmentation example where all the 
zones are natural. The algorithm built a suitable hierarchy by 
grouping zones with similar textures and borders. The 
proximities of the objects in the photo also determine their 
borders and thus the way that zones are clustered.  The result 
in Fig. 5 indicates that there are three broad segments in the 
image: the sky, the horizon line area, and the rice field. 
Therefore, the hierarchical structures obtained from the zones 
of the natural image allow for an intuitive interpretation of the 
scene from different degrees of generalization. This is 
significant since it can be related with a complex abstraction 
process. 

 

 
 
Fig. 4. Natural and text subimages. 
 

 
 

Fig. 5. Natural image. 
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IV. CONCLUSIONS 
Two applications of image pattern recognition using 

mixtures of non-Gaussian distributions have been presented. 
Logical partitions and classifications of object images and 
natural images have been obtained using an agglomerative 
clustering algorithm formulated in the framework of 
independent component analysis. The statistical differences 
captured in the base functions of the images, that were 
combined step by step using the Kullback-Leibler divergence, 
allow hierarchical pattern structures like those produced in 
human perception were obtained.        

The importance of image pattern recognition is currently 
recognized, especially in big data applications. The degrees of 
freedom provided by the statistical method applied allow local 
independence and global dependence relations of the variables 
were modelled for an automatic partition of the processed 
images. Thus, from the presented results, applications such as 
content-based image retrieval in semantic spaces might be 
attempted. 
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