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Abstract—This paper deals with the problem of finding an
optimum M-channel biorthogonal signal adapted filter bank. The
concept of Principal Component Filter Bank (PCFB) has been
proposed, independently by many researchers, as the optimal
solution for signal adapted filter banks. PCFB, however, exist
only for three special cases of orthonormal filter banks: for the
class of transform coders, for 2-channel subband coders and
for sub-band coders with unconstrained filters. Although various
rigorous approximations for practically realizable PCFBs have
also been proposed, but they are only sub-optimal. In this work,
we present a biorthogonal M-channel signal matched FIR filter
bank which satisfies the properties of spectral majorization and
total decorrelation, thus yields optimum coding gain, for any class
of sub-band coders. The design strategy does not assume the input
statistics to be WSS. To validate the theory, the performance of
the proposed algorithm has been compared with the existing
literature, using simulations.

Index Terms—Biorthogonal signal adapted FIR filter bank,
coding gain optimization, data compression, spectral mojoriza-
tion, total decorrelation.

I. INTRODUCTION

Signal adapted filter banks offer high coding gain and high

energy compaction, which makes them useful in a variety

of applications involving compression, representation, de-

noising, signal decomposition etc. [1]–[7]. Researchers have

proposed different design strategies for the same [3], [6], [8]–

[11]. Amongst these, Principal component analysis is one

of the most popular technique [3], [8], [9], [11]–[15]. In

[16], Vaidyanathan et al. stated two necessary and sufficient

conditions to ensure optimum coding gain, which are:

1) for an M-channel filter bank, variances of the decimated

sub-band signals should satisfy the condition of Spectral

majorization i.e. σ2
0 ≥ σ2

1 ≥ · · · ≥ σ2
M−1, where σ2

i is

the variance of i-th channel, and

2) the set of sub-band signals should have total decorrela-

tion, that implies decorrelation across channels.

Since PCFB satisfies both these conditions, it has been

suggested as the optimum solution. PCFB, however, exist only

for three special cases of orthonormal filter banks [14]: for

the class of transform coders, for 2-channel subband coders

and for sub-band coders with unconstrained filters. Various

rigorous approximations for practically realizable PCFBs have

also been proposed which are only sub-optimal [15], [17],

[18]. A signal adapted M-channel biorthogonal filter bank of

finite length, was proposed by Lu et al. in [9], obtained by

minimizing a coding gain related objective function. However,

their coding gain results are not better than PCFB and the

initial values of parameters affect the performance of the

algorithm. Using the concept of PCFB, Jhawar et al. [14]

proposed an FIR PU (Para Unitary) filter bank, for a uniformly

decimated 3-channel sub-band coder. Although the filters are

of finite length, the results and the design presented were

only for a 3-channel filter bank, also the complexity increases

many folds as the filter order increases. Recently, Weng and

Vaidyanathan [3] proposed that a restricted class of biorthog-

onal GTD (generalized triangular decomposition) filter banks

can give optimum coding gain when the input is wide sense

stationary.

In this paper, we propose a biorthogonal M-channel signal

adapted FIR filter bank, which satisfies the conditions of

spectral majorization as well as total decorrelation and, thus,

yields an optimum coding gain. The proposed filter bank

exist for any class of sub-band coders and is not restricted

to only WSS signals. The filter bank is designed based on the

following conditions:

1) Output of first channel is a M-step ahead prediction

error, second channel output is (M-1)-step ahead pre-

diction error and so on and output of (M-1)-th channel

provides 1-step ahead prediction error. This structure

ensures that the sub-band signals follow spectral ma-

jorization.

2) Set of sub-band signals are orthogonalized using a lower

triangular matrix, with the diagonal elements as 1.

These two steps results in orthogonalization in time as well

as across channels respectively, and, thus, yields an optimum

coding gain. The algorithm proposed in this paper, gives M-

channel N-order FIR filter bank matched to a single realization

of the input signal.

This paper is organized as follows: section II presents design

of the proposed signal matched filter bank. In section III, we

discuss the implementation of the algorithm for the given data

case, by developing the required geometrical framework. In

section IV, performance of the proposed algorithm is compared

with the results of GTD sub-band coder [3], DCT, with the

biorthogonal filter bank [9] and with the signal matched filter

bank [6]. Conclusions are presented in section V.
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A. Notations Used

Given data vectors are represented using bold letters and

corresponding matrices by capital letters. The notations V −1

and V T denotes inverse and transpose of the matrix V,

respectively. The projection (in this work projection would

always mean orthogonal projection) of a vector ν, on the space

S ≡ Span{νi | 1 ≤ i ≤ n}, is denoted by ν | S and the

orthogonal complement space of S is denoted by S⊥. The

notation R
M stands for the real vector space of dimension M.

The norm of a vector x is denoted by || x ||, where x belongs

to a Hilbert space.

II. OPTIMAL SIGNAL MATCHED FILTER BANK

Fig. 1: M-channel multirate filter bank

From the multirate filter bank theory [19], i-th sub-band

signal i.e. decimated version of output of i-th analysis filter,

Hi(z) =
∑N−1

k=0 hi(k)z
−k, Figure 1, can be written as:

vi(n) =

N−1∑
p=0

hi(p)x(Mn− p), 0 ≤ i ≤ M− 1. (1)

If we substitute hi(p) = 0 for 0 ≤ p ≤ M − 1, p �= i and

hi(i) = 1, equation(1) reduces to the following form:

vi(n) = x(Mn− i) +

(N−1)∑
p=M

hi(p)x(Mn− p),

0 ≤ i ≤M − 1. (2)

We attach geometric significance to this expression by

regarding each one of them, 0 ≤ i ≤ M − 1, as prediction

error, therefore we can write the above equation as:

vi(n) ≡ ei(Mn− i) � x(Mn− i) +

(N−1)∑
p=M

hi(p)x(Mn− p),

0 ≤ i ≤M − 1. (3)

The channel outputs, so defined, represent different step

ahead predictors starting from 1-step(when i=0) to M-step

(when i=M-1), as shown in Figure 2.

Fig. 2: M-forward linear predictors

It is pertinent to mention here that, although a similar filter

bank was proposed in [6], coding gain was not optimized. As

stated in the introduction, our objective is to obtain optimized

coding gain, thus we want the sub-band signals, ei(Mn − i)
for 0 ≤ i ≤ M − 1, to achieve spectral majorization and

total decorrelation. The structure, proposed above, will ensure

that the sub-band signals follow spectral majorization. As

the output variance of the 1-step ahead prediction error filter

should be minimum and that of M-step ahead prediction error

should be the maximum, i.e. σ2
0 ≥ σ2

1 ≥ · · · ≥ σ2
M−1, where

σ2
i is the variance of (M-i)-step ahead prediction error.

Spectral majorization is necessary but not sufficient condi-

tion for optimum coding gain, we must satisfy the condition

of total decorrelation also. To achieve this, ai’s are selected in

the following equation, such that ei(Mn− i) for 0 ≤ i ≤M1

are orthogonalized:

εi(Mn− i) = ei(Mn− i) +

M−1∑
p=1

ai(p)ei−p(Mn− i + p),

0 ≤ i ≤M − 1. (4)

The proposed M-channel signal matched filter bank is,

therefore, obtained by selecting filter parameters, Figure 3,

which satisfy the following constraints:

1) ai’s are chosen such that ei(Mn− i) are orthogonal to

space Si ≡Span{ej(Mn − j) | i + 1 ≤ j ≤ M − 1},
for 0 ≤ i ≤ M − 1, to ensure orthogonalization across

channels, and

2) hi’s should be chosen such that || ei(Mn− i) ||2 is

minimized, satisfying constraint 1.
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Fig. 3: Signal Matched Filter Bank

III. IMPLEMENTATION OF THE ALGORITHM

Equations (3) and (4) gives the mathematical representation

of the proposed filter bank. In this paper, we present the

design of the filter bank matched to a single realization of

the given signal such that it satisfies constraints (1) and (2) as

stated in the previous section. In this section, we first propose

the geometrical framework required for the development and

implementation of the given data algorithm.

A. Notations

We call a signal v(n) to be in a pre-windowed form if

v(n) = 0 for n < 0. For a given discrete time signal/sequence,

v(n), the data vector at time ‘n’, is defined as 1× L (L is a

fixed number) vector :

v(n) ≡ [ 0 · · · 0 v(0) v(1) · · · v(n) ] ,

with L � n. Note that we have inserted enough number

of zeros (the condition on L i.e. L >> n ensures that the

dimension, of this vector, does not change with time). This is

basically a collection of all present and past values of v(n),
upto time n, in its natural chronological order.

The corresponding 1×L vector, for the i-th delayed and M-

down-sampled version of the signal v(n), denoted as v(Mn−
i) ∈ R

L, is given as follows:

v(Mn− i) ≡ [ 0 · · · 0 v(M− i)

v(2M− i) · · · v(Mn− i) ] , (5)

and the set of p vectors,{v(Mn−k)|i ≤ k ≤ i+p−1}, forms
a p× L matrix, denoted as VMn−i

p , and is given as follows:

VMn−i
p ≡

⎡
⎢⎢⎣

v(Mn− i)
v(Mn− i− 1)

...
v(Mn− i− p+ 1)

⎤
⎥⎥⎦ . (6)

Here the superscript denotes the top row vector used and the

subscript “p” denotes number of rows. The projection operator

is denoted by P and P⊥ = (I− P), denotes the projection

operator corresponding to the orthogonal complement space.

π is the pining vector defined as [ 0 · · · 0 1 ] ∈ R
L.

B. Geometrical framework for the given data case

Using equations (3), (4) and the notations defined above,

we now present the geometric setting required for the devel-

opment of the algorithm for signal matched filter bank. Using

equation(3), we write all the outputs for time upto Mn, in

matrix form as follows:

[
0 · · · 0 ei(2M − i) · · · ei(Mn− i)

]
=

[
0 · · · 0 x(2M − i) · · · x(Mn− i)

]

+
[

hi(M) hi(M + 1) · · · hi(M +N − 1)
]

⎡
⎢⎢⎢⎢⎣

0 · · · 0 x(M) · · · x(Mn−M)

0 · · · 0 x(M − 1) · · · x(Mn−M − 1)
..
.

..

.
..
.

..

. · · ·
..
.

0 · · · 0 x(M −N + 1) · · · x(Mn−M −N + 1)

⎤
⎥⎥⎥⎥⎦
,

0 ≤ i ≤M − 1. (7)

Using the notations defined in the above section, equation(7)

can be written, in vector form, as follows:

ei(Mn− i) = x(Mn− i) + hiX
Mn−M
N , 0 ≤ i ≤ M− 1.

(8)

Equation (8) is the “ given data case” counterpart of (3).

The filter parameters, hi’s, can be obtained using the least

squares criteria, i.e. minimizing || ei ||
2, and , thus, can be

written as:

hi = x(Mn− i)XMn−M
N

T
[
XMn−M

N XMn−M
N

T
]−1

,

0 ≤ i ≤M − 1.
(9)

In a similar manner, the given data case counterpart of

equation (4) can be written as follows:

εi(Mn− i) = ei(Mn− i) + aiE
Mn−i+1
i , 0 ≤ i ≤M− 1.

(10)

where, EMn−i+1
i ≡

⎡
⎢⎢⎢⎣

ei−1(Mn− i+ 1)
ei−2(Mn− i+ 2)

...

e0(Mn)

⎤
⎥⎥⎥⎦.

The filter parameters, ai’s, can be obtained using the least

squares criteria:
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ai = ei(Mn− i)EMn−i+1
i

T
[
EMn−i+1

i EMn−i+1
i

T
]−1

,

0 ≤ i ≤M − 1.
(11)

The errors εi(Mn− i)’s, so obtained, satisfy the conditions

of spectral majorization and total decorrelation and, thus,

gives an optimum coding. It should also be noted here that, for

equations similar to (9) and (11), we already have fast order

as well as time recursive algorithms existing in the literature

[20]. These algorithms can be used to obtain computationally

efficient solution of the proposed methodology.

IV. SIMULATION RESULTS

We now present simulation results to validate the proposed

algorithm. Since we have not come across any other work

dealing with given data case algorithm in the context of signal

adapted multirate filter banks, we compare our work with most

recent block processing algorithms in the context. We consider

three cases, considering different input signals and compare

our results with different signal adapted sub-band coders.

Case 1: Simulations are performed for a four channel

SMFB, with filters of order 8. We consider two AR(2) inputs,

with poles at 0.975e±jθ and compare the coding gain of

proposed filter bank with the results presented by Lu et al.

[9] and with Nalbalwar [6]. Coding gain of any transform

coder is defined as the ratio of the mean square error in pulse

coded modulation over that in the transform coder [21]. The

results have been appended in Table I.

TABLE I: Coding Gain Comparison

θ [9] [6] Proposed algorithm

π/2.8 6.6411 7.5498 12.8996

π/1.75 4.9174 7.1294 10.5934

Case 2: In [3], design of a GTD-biorthogonal sub-band

coder is presented, it has been shown that as number of

channels increases the coding gain comes closer to the

theoretically maximum coding gain. Here, for the same input

signal, an AR(2) process with poles at 0.975e±jπ/3, we show

that the coding gain of the proposed filter bank converges

even when the number of channel is as small as 2, this result

is embedded in Table II. The filter bank is designed with

each analysis filter of order 5.

Case 3: Here a comparison, between the coding gain

performance of DCT(Discrete Cosine Transform) algorithm

and the proposed algorithm, is presented for a WSS AR(1)

input signal with pole at 0.95.

TABLE II: Behavior of Coding gain (in dB) as number of

channels change

Number GSBC using Approximate GSBC

of channels the proposed algorithm from [3]

2 11.4773 10.4

3 11.5202 9.9

4 11.4947 11.2

5 11.5233 11.3

6 11.8081 11.1

TABLE III: Coding Gain Comparison between DCT and the

proposed algorithm

Discrete Cosine Transform Proposed Filter bank

4× 4 point 7.57 10.0421

8× 8 point 8.83 10.075

Coding gain is a measure to compare performance of

different transforms [21], and it is evident from tables I,II

and III that the proposed filter bank provides better coding

gain than other sub-band coders. Also, the proposed analysis

filter bank is essentially a single input multi output whitening

filter. The filter bank can, thus, be used as a classifier for

pattern recognition or machine learning, where coding gain

can be the decision criteria and the filter coefficients provides

the required features. Since the algorithm can be implemented

in an order as well as time recursive manner, the proposed

method is also computationally efficient and can be used in

real time applications.

V. CONCLUSIONS

In this paper, a biorthogonal signal matched filter bank,

which yields an optimum coding gain, has been proposed.

Unlike PCFB, the proposed filter bank exist for any class of

sub-band coders, filters are of finite length and the input is

not assumed to be WSS only. It has also been shown, in

Tables I-III, that the proposed algorithm has better coding

gain performance than other sub-band coders. Since the filter

bank parameters can also be obtained by fast algorithms, the

proposed method is computationally efficient. In this work, we

discussed given data case, however, for given statistics also the

algorithm can be easily developed.
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