
AMBiDDS: A system for Automatic
Mining of BIg Discrete Data-Sets

Ola Ågren

Department of Applied Physics and Electronics

Umeå University

SE-901 87 Umeå

Sweden

Email: ola.agren@umu.se

Abstract—This paper introduces an automatic algorithm that
can be seen as an extension to the Eclat algorithm, as well as a
corresponding proof of concept prototype. It uses inverted indices
and statistical pruning of the possible solution space as early as
possible.

Keywords-Data mining, inverted indices, statistical pruning

I. INTRODUCTION

Data mining denotes a number of different procedures and

methods for finding interesting information in large amounts

of data. Other names used for the concept include deductive

learning, exploratory data analysis, and data driven discov-

ery [1].

Most data mining tools will not directly work on the

real time database that contains day to day operations of

a business, but are often operating on a modified and/or

summarised database called a data warehouse [2]–[4]. These

databases usually contain summarised or otherwise aggregated

information from the “live” databases, but the data tends to be

cleaned, i.e., no false or extraneous data [2], [4].

Another difference between a standard database and a data

mining system is in their operation. The user of a database

system expects a crisp answer to each query (e.g. is a seat

available on a certain flight). The data mining user might not

know what he or she is looking for. The answer given by the

data mining system might even be in the form of meta-data

describing something in the database [2].

While there exist various types of data mining system

operating on data warehouses, most fall in one of two classes:

• A predictive system will make some sort of a prediction

for new values based on already known values in the

database.

• A descriptive system tries to find relationships in data,

e.g. patterns. Most of the time it is not used to predict

future values, but can be used to analyse different at-

tributes in the data.

The main focus of this work is on a specific version of the

latter – finding association rules in a data warehouse. Mining

for association rules is looking for patterns where one event

is connected to another event. The rules found are usually in

the form of X ⇒ Y , as given in Def. 2.1.

A. Unsupervised Mining for Association Rules

Unsupervised systems will automatically search for associ-

ations without being guided by input from the user. The most

commonly used algorithm is called Apriori [2], [5].

The basic idea of Apriori is that only subsets of large sets

can be large, and only large subsets can give new information

that is potentially important. This means that the possible

solution space can be pruned quickly while checking the

combination of all itemsets that differ in only one member. A

support parameter s is used in Apriori to decide which itemsets

are considered large. This means that the system will ignore

rules with high confidence if the support is too small [1], [2],

[5].

B. Depth-First Based Approaches

A different approach is trying to find the association rules

using a depth based version, such as with Eclat [6]. One of

the major strengths of this approach is that most of the data

(especially all terms in the potential rules) require very little

memory. Only the data required for each recursion for the

current path needs to be stored, everything else can be disposed

of whenever we leave an item.

It has been shown that using a DF (Depth-First) algorithm

works approximately as well as the Apriori algorithm, depend-

ing mostly upon the database being mined [7]. The algorithm

described in this work belongs to this category, while using

pruning (and gives output) based on statistically significant

changes of the itemsets. It can also give similar output as

Apriori and Eclat, as can be seen in Section III-A.

C. Other algorithms

Some other algorithms include:

• AprioriDP [8] uses Dynamic Programming in Frequent

itemset mining. The working principle is to eliminate

the candidate generation like frequent pattern-tree, but it

stores support count in specialized data structure.

• CBPNARM [9] mines association rules using context

variables on the basis of which the support of an itemset

is changed on the basis of which the rules are finally

populated to the rule set.

• Another approach is the Node-set-based algorithms, they

use nodes in a coding frequent pattern-tree to represent

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.142

425

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.142

424

itemset, employing a depth-first search strategy to find

frequent itemsesets using node set intersection. Three

examples include FIN [10], PrePost [11] and PPV [12].

D. Paper Organization

The rest of the paper is organised as follows; Section II

contains the definitions and algorithms, Section III describes

the prototype, and Section IV discusses the results.

II. METHOD

Definition 2.1: Let I = {I1, I2, . . . , Im} be a set of items

or itemset. Let D be a set of transactions, where each trans-

action T is a set of items, T ⊆ I. We say that a transaction T
contains X if X ∈ T . The fraction of transactions containing

X is called the frequency of X . An association rule is an

implication in the form Y ⇒ Z , where Y, Z ⊆ I, and

Y ∩ Z = ∅. This rule holds in the transaction set D with

a confidence α if the fraction of the transactions containing Y
that also contain Z is at least α. The rule has support s in the

transaction set D if the fraction of the transactions in D that

contain Y ∩ Z is at least s [2].

Definition 2.2: A path is a conjunction of the transactions

by all the items contained in it, so path =
∧

item.

Definition 2.3: By using the standard transformation from

the binomial to normal form and given that p is the relative

frequency, α equals the interval and n is the number of records

we can say that the confidence interval is given by Eq. (1).

CI = p± α

√
p(1− p)

n
(1)

Corollary 2.1: Def. 2.3 breaks down when np < 5 or n(1−
p) < 5, so we have a logical point of pruning the solution

space if either of these cases appear.

Definition 2.4: A statistically significant change is when

P(item1|path∧item2) is not in the confidence interval for

P(item1|path).

A. The Algorithm

It is basically a depth first search, stopping at each node

just for pruning the solution space as well as presenting any

changes from the parent node. All subscripts denote index

positions and superscripts denote iteration positions.

The line marked with † has not been implemented in our

prototype, it uses numerical order instead. The lines marked

with ‡ here and in Section II-B are ignored when doing a full

resulting set in the prototype.

Globals:

Order All items, in cardinality order †

CIji confidence interval for all items

PATH array of items

Parameters:

c cutoff value

α confidence interval multiplier

CurrSpace0 ← all transactions

Card0 ← |CurrSpace|

Ignore0 ← ∅
for each i ∈items

item0

i = read inverted indexi

if (Cardl − c) � |item0

i | � c then

p = |item0

i |/Card0

CI0i = p± α
√
p(1− p)/Card0

else

Ignore0 ← Ignore0 ∪ {i}
for each i ∈ Order - Ignore0

AmbiRec(1, i, item0

i , Ignore0 ∪ {i})
Ignore0 ← Ignore0 ∪ {i} ‡

B. AmbiRec

Parameters:

l current level

k current item

C current transaction space

Ignorel current list of ignores

PATH(l) ← k
Cardl ← |C|
Present data that has changed from parent

for each i ∈ Order - Ignorel

iteml
i ← iteml−1

i ∩ C
p = |iteml

i|/Cardl

if p /∈ CIl−1

i then

Present stat. significant change

if (Cardl − c) � |iteml
i| � c then

CIli = p± α
√

p(1− p)/Cardl

else

Ignorel ← Ignorel ∪ {i}
Handle recursion

for each i ∈ Order - Ignorel

AmbiRec(l+1, i, iteml
i, Ignorel ∪ {i})

Ignore0 ← Ignore0 ∪ {i} ‡

III. RESULTS

The prototype is written in ANSI C89, using the BitSet [13]

library to handle all the set operations performed on the the

inverted indices.

The number of visited items and the time required from

the two major testing databases can be seen in Table I. It

shows that time required (tested on a laptop with a 2.00GHz i7-

3537U processor) is close to linear to the total number of items

visited, which is the expected result. Furthermore, most of the

426425

changes are indeed statistically significant when changing the

path: A minimum of 64.58% of the normal path changes are

statistically significant in all of our test databases, while all of

the changes to a confidence of 0% or 100% are significant.

TABLE I
NUMBER OF ITEMS VISITED AT A SPECIFIC DEPTH AND THE TIME

REQUIRED USING THE TWO MAJOR TEST DATABASES

Small database Large database
Depth Normal Full Normal Full

1 102 102 222 222
2 304 405 2937 5398
3 366 709 7189 29360
4 259 777 6542 70752
5 83 283 2820 84729
6 573 50845
7 46 13325
8 864

Time 0.64s 1.31s 19.96s 4m 14.25s

A. Association Rules

Adding the flag to get association rules generates data that

corresponds to what you get from Eclat or Apriori. There is

also a small perl script (called asso) to rewrite the output

from the prototype to just the set of associations with the

corresponding support and confidence (see Fig. 1 for a short

example).

IV. DISCUSSION

The major novelty in this paper is the use of the inverted

indices directly in the algorithm and the statistical pruning.

The general idea for the latter is that if item A and item B are

statistically independent then P (A ∪ B) = P (A)P (B). Any

major change when applying one more step in a path indicates

that there is a statistical dependance (positive or negative) or

possibly even a mutually exclusive situation between them.

This can easily be used to (dis)prove correlations between

items.

Generating all commonly generated association rules to the

statistically generated rules was an added bonus, meaning

that the results in general matched the output of state of art

algorithms as well.

The only major drawback of the prototype is that it currently

does not handle the items in decreasing cardinality order,

meaning that it might at times start with one node and never

go “backwards” in the order. Switching off the tree pruning

removes this, but at a much higher computational cost as well

as bigger output files. As an example, text ∧ c ⇒ program

is given by the program but not text ∧ program ⇒ c. In

this particular case they do have the same support, but very

different confidences (68.52% vs. 99.77%). The latter case

is close enough as to be pruned by the algorithm (due to

Cor. 2.1). There are currently plans for an updated prototype

that would use the sorted order instead.

Total = 12492

ascii => text [12.4959974383606, 100.0]

text => english [7.356708, 10.052505]

text => c [10.566763, 14.438854]

text => program [15.385847, 21.023846]

text => data [0.184118, 0.251586]

text => bourne [0.672430, 0.918836]

text => shell [1.304835, 1.782980]

text => script [1.360871, 1.859549]

text => html [22.214217, 30.354408]

Fig. 1. The first ten lines from asso when applying it to the output of the
prototype

REFERENCES

[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques. San
Francisco, California: Morgan Kaufmann Publishers, Inc., 2001.

[2] M. H. Dunham, Data Mining, Introductory and Advanced Topics.
Englewood Cliffs, New Jersey: Prentice Hall, inc., 2003.

[3] M. Humphries, M. W. Hawkins, and M. C. Dy, Data Warehousing:
Architecture and Implementation. Upper Saddle River, New Jersey:
Prentice Hall PTC, 1999.

[4] Two Crows Corporation, “Introduction to Data Mining and Knowledge
Discovery, Third Edition,” Potomac, MD, USA, 2005.

[5] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Reading, Massachusetts: Addison-Wesley, 2006.

[6] M. J. Zaki, “Scalable Algorithms for Association Mining,” IEEE Trans-

actions on Knowledge & Data Engineering, vol. 12, no. 03, pp. 372–390,
May/Jun. 2000.

[7] J. Hipp, U. Güntzer, and G. Nakhaeizadeh, “Algorithms for Association
Rule Mining – a General Survey and Comparison,” SIGKDD Explor.
Newsl., vol. 2, no. 1, pp. 58–64, Jun. 2000. [Online]. Available:
http://doi.acm.org/10.1145/360402.360421

[8] D. Bhalodiya, K. Patel, and C. Patel, “An efficient way to find frequent
pattern with dynamic programming approach,” in Proceedings of the 4th

Nirma University International Conference on Engineering (NUiCONE),
Ahmedabad, India, Nov. 28-30, 2013.

[9] M. Shaheena, M. Shahbazb, and A. Guergachic, “Context Based Positive
and Negative Spatio-Temporal Association Rule Mining,” Knowledge-
Based Systems, vol. 37, pp. 261–273, Jan. 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950705112002237

[10] Z. Deng and S.-L. Lv., “Fast mining frequent itemsets
using Nodesets,” Expert Systems with Applications, vol. 41,
no. 10, pp. 4505–4512, Aug. 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417414000463

[11] Z. Deng, W. ZhongHui, and J. Jiang, “A new algorithm for fast
mining frequent itemsets using N-lists,” SCIENCE CHINA Information

Sciences, vol. 55, no. 9, p. 2008, 2012. [Online]. Available:
http://info.scichina.com/sciFe/EN/abstract/article_508369.shtml

[12] Z. Deng and W. ZhongHui, “A New Fast Vertical Method for Mining
Frequent Patterns,” International Journal of Computational Intelligence

Systems, vol. 3, no. 6, pp. 733–744, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417414000463

[13] O. Ågren, “BITSET: Implementing Sets of Natural Numbers Using
Packed Bits,” Umeå University, Umeå, Sweden, Tech. Rep., Oct. 2002,
uMINF 02.10, ISSN 0348-0542.

[14] ——, “Automatic Generation of Concept Hierarchies for a Discrete Data
Mining System,” in Proceedings of the International Conference on
Information and Knowledge Engineering (IKE ’02), Las Vegas, Nevada,
USA, Jun. 24-27, 2002, pp. 287–293.

[15] ——, “CHIC: A Fast Concept HIerarchy Constructor for Discrete
or Mixed Mode Databases,” in Proceedings of the Fifteenth Interna-
tional Conference on Software Engineering and Knowledge Engineering

(SEKE’03), San Francisco, California, USA, Jul. 1-3, 2003, pp. 250–258.

427426

APPENDIX

Users’ Guide to the prototype

A. Input Data

It uses the same type of databases as did the CHiC concept

hierarchy constructor [14], [15], i.e. a directory for each

database containing the following files:

DB is a list of the discrete items in the database, one on

each line.

names is a list of the transaction names (not used in this

work).

stdin is a hex-coded version of the database, one transac-

tion per line. Only used to calculate the number of

transaction in the database in the prototype.

400– are the inverted indices, one per discrete item. The

file names are given as a hexadecimal enumeration,

starting with 40016 = 102410. Each line in the file

contain a transaction number, given in hexadecimal

form.

B. Parameters and output from the prototype

Each line of output is given using tab characters as sepa-

rators between each major data point. They start out with a

hexadecimal line number, followed by a number that corre-

sponds to the search depth. In all cases, an integer value is

given in hexadecimal form, while real numbers are given in

decimal form.

The basic output lines are as follows:

F indicates that the two items given share

the same transactions, and are therefore

handled using the first one. Only used

in the header, at depth 0.

START . . . STOP indicates that we are adding a "∧ item"

at the end of the PATH. On the first

line, first the item and the cardinality of

it is given. On the last line, there is a

reference to the line number of the first

line.

PATH is a conjunction of each given item.

Please note that this list is space sep-

arated.

ZR(S) the given items do not appear in any re-

maining transactions in the path. The S

is added if the change from the previous

path is statistically significant.

ON(S)(T) the given item appears in all remaining

transactions in the path. The S is added

if the change from the previous path is

statistically significant and T indicates

that it is a terminal.

CHNG starts information about a item, given

the current PATH.

(C)CONF contains the confidence interval for the

last given CHNG line. The C correspond

to a change that is statistically signifi-

cant.

1) Mining for association rules: Adding the -a flag indi-

cates that actual association rules should be mined for, so the

prototype will give output more comparable to that of Apriori.

The following two line type are added to the output:

TOT with a single number, corresponding to the number

of transactions in the database.

ASS is the association for the latest CHNG line, given

from the latest PATH: PATH ⇒ CHNG. The two

numbers given correspond to the support and confi-

dence of this rule, given as percentages.

2) Other command line parameters: The -c <value> flag

can be used to set the cutoff (c in Section II-A). The default

value is 5, and can only be increased.

The -d flag is mainly for debugging purposes, creates a

very verbose output with a lot more answer types. Please note

that this output is subject to change between versions of the

software.

The -D <path> flag is used to point out the database to use.

The -i <value> flag is used to change the confidence interval

size, the default value is 1.96 for a 95% confidence interval.

The -M <value> flag can be used to set a maximum cutoff

depth for the prototype.

The -f flag is used to get a richer data mining, i.e. it

will try to go combinatorially through all possible paths. This

includes possibly reaching the same logical path multiple times

combinatorially by going first A → B and then B → A. It

will find all possible search paths in the dataset, but it is much

slower.

There is also a flag (-h) to get output that is more easily

parsed by humans. This means that the search depth is shown

as a number of tab stops instead, and the references to items

are given as the actual items rather then the corresponding

hexadecimal values.

428427

