
Recommenddit
A Recommendation Service for Reddit Communities

Suphanut Jamonnak, Jonathan Kilgallin, Chien-Chung Chan, En Cheng
(sj70@zips.uakron.edu), (jdk72@zips.uakron.edu), (chanc@uakron.edu), (echeng@uakron.edu)

Department of Computer Science
College of Arts and Sciences

University of Akron
Akron, OH 44325-4003

Abstract—Reddit.com is a popular website consisting
of many online forums, or “subreddits”, each centered on
a particular topic, many of which are closely related.
However, two communities that might appear to be similar
may in fact have little overlap in their user-base or
content, while apparently dissimilar subreddits may
actually represent topics that appeal to substantially
overlapping audiences. At present, there is a lack of
effective methods for identifying these relations. In this
paper, we propose and implement an automated method of
identifying such relations using an association rule mining
algorithm. Given the output from this algorithm, we
develop a web-based application named Recommenddit
that a user can query to retrieve subreddits closely
associated with a given subreddit.

Keywords—Data mining, Association rule mining,
Reddit.com, Web applications, Recommendation services

I. INTRODUCTION
Reddit is a social network and content aggregation site

launched in 2005. Users create posts containing text, photos, or
links, to a particular “subreddit” - a forum on the site centered
around a single topic. As of April 2015, Reddit had over eight
thousand subreddits, ranging across a wide variety of popular
topics such as “jokes”, “art”, “world news”, “gaming”, and
“recipes”, as well as more esoteric subjects like “haskell”,
“doctorwho”, and “cyber laws”. Users may view posts recently
submitted to a subreddit, and can also contribute to a crowd-
based ranking system by voting posts up or down to indicate
approval or disapproval. A user may also comment on a post,
reply to a comment, and vote comments up or down as well.
The interactive nature of the site can best be illustrated by
visiting the site directly – for example, at
“www.reddit.com/r/python” [1] for the forum about the Python
programming language – though note that some actions require
account creation and login.

The Reddit homepage consists of a feed of popular and
recent posts across a set of different subreddits. The nature of
the set of included subreddits depends on whether a user is
logged in or not. A user browsing anonymously (i.e. without
logging in) will see posts from among a select group of
“default” subreddits, which are hand-picked by the site
administrators according to the subreddit’s perceived quality

and applicability to a broad audience. If a user is logged in,
however, the front page will show primarily content from
subreddits to which the user has chosen to subscribe. A user
can subscribe or unsubscribe from any subreddit from either
the subreddit itself or from a list of subreddits available
through a personal settings menu. A particularly popular and
recent post from a subreddit the user has not subscribed to may
also occasionally appear on their front page, but generally, the
relevance, quality, and quantity of posts that appear in this feed
depend on the user’s selection of an appropriate set of
subreddits. As the feed of posts on the front page is so integral
to the site, and as the site entertains hundreds of millions of
visitors per month, the task of selecting a set of subreddits is
important for users’ engagement on the site.

In this paper, we present an automated mechanism for users
to discover subreddits of potential interest. We accomplish this
by examining associations between two subreddits based on the
overlap in the user-base of the two subreddits. We first crawl
existing posts from the Reddit website and from other archives.
We list the subreddits each user posts to. Then, we apply an
association rule mining algorithm to associate subreddits.
Based on the results from association rule mining, we provide
an easy-to-use web-based application named Recommenddit
that a user can query to retrieve subreddits closely associated
with a given subreddit.

II. RELATED WORK
The process of discovering subreddits generally requires a

user to browse through a list of subreddits, or else to come
across links to new subreddits elsewhere on the site or internet.
For example, a user from the United Kingdom requesting help
from the “/r/legaladvice” forum may receive a comment
directing him to “/r/legaladviceuk”. A subreddit’s main page
may list a limited set of ostensibly related subreddits, as
determined by the moderators of that subreddit. For example,
toward the bottom of the sidebar on the r/Python page, a list is
included as shown in Figure 1 [1]. With only this system, a
user could go months or years on the site remaining unaware of
the existence of a subreddit pertinent to the user. Furthermore,
in any case, all of these discovery methods rely on input from
other users, which may at any time be incomplete or out of
date.

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.64

375

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.64

374

Figure 1. Subreddits related to /r/python

Some third-party sites aim to facilitate this discovery
process. For example, the site “subreddits.org/” and other third-
party sites group subreddits by category; again, the site
development teams largely build these by hand. At least a few
projects do aim to programmatically build recommendation
engines though. In one case, Sundaresan et al. build weighted
graphs to identify communities on the site [2]. A github project
called Recommendit [3] appears to have begun on a similar
path to the one we develop, but has had no updates in 2 years.

Reddit itself, through its API, offers a similar mechanism
for recommending subreddits. While the sidebar on a subreddit
may give a handpicked list of similar subreddits based on the
subreddit moderators’ opinion, the Reddit API provides a
method for recommending subreddits based on common
appearance in users’ custom-made “multireddits” – that is, sets
of subreddits that a user may define and view posts from
concurrently. The get_subreddit_recommendations method [4]
takes a subreddit as input and returns a list of related
subreddits. However, with the API method, the
recommendations are based on what users view together, while
ours is based on content actually hosted on the subreddits. We
believe that our approach, in that it reflects the overlap in the
user-bases of two subreddits, can more accurately predict the
degree of common interest in the two topics.

III. METHODOLOGY

To facilitate the process of discovering subreddits pertinent
to a user, we propose an association-rule based
recommendation engine, associating two subreddits when a
large number of individual users post to both. The degree to
which the user-base overlaps provides insight into the degree to
which interest in the topics themselves overlap.

The general process of association rule mining consists of
identifying “transactions”, each containing multiple “items”,
and selecting those items that appear together in sufficiently
high proportion. In our case, an “item” is a subreddit and a
transaction is a set of subreddits that a given user frequently
posts to. By mining Reddit for many users’ post history, we
create rules to identify and associate subreddits that have
several joint users by using the “Apriori” association rule-

mining algorithm, with appropriate support and confidence
thresholds (as discussed in section V). From the rules
produced, we develop a web application that allows a user to
input a subreddit of interest, and returns related subreddits
which may be of interest to the user as well.

To identify similar subreddits, we perform the following
five steps, further illustrated in Fig. 2:

1. For each of the top 4000 subreddits by subscriber
count, as obtained from redditlist.com [5], we scrape
Reddit to obtain the set of users who have made a
popular post to the subreddit this year. This is done
with a Python program using Reddit’s API [6] and is
stored in a Comma-Separated Value file (CSV) for
each subreddit. This dataset is augmented with the top
1000 posts of all time as of August 2013, downloaded
from [7]. See section IV.A for more information on
this part.

2. We then strip the irrelevant attributes and unusable
records from the data collected in step 1, and remove
posts containing adult content or missing critical data.
This is explained in section IV.B.

3. Third, we group records by author in order to form a
list of transactions as described in our formulation
above, in preparation for passing to the Apriori
algorithm. This is done by loading the CSV files into
SQLite and using SQL queries to transform the data,
and is elaborated in section IV.C.

4. We next pass the list of transactions to an
implementation of the Apriori algorithm written in
Python [8], in order to find the list of association rules.
See section V for details on this step.

5. Using the association rules discovered, we host a
simple web application, also written in Python and
using the CherryPy library [9]. It allows a user to query
for the set of subreddits associated with a given input
subreddit. This is discussed in section VI.

Figure 2. Recommenddit Methodology

These steps, taken together, allow users to find subreddits
of interest. Due to the growing and shifting nature of Reddit
communities, all steps should be repeated periodically -
perhaps on the order of once a month. This is an informal
estimation, but refreshing less frequently may cause data to

376375

become excessively stale, while more often may waste effort
without significantly changing the results.

IV. DATA COLLECTION AND PROCESSING

A. Data acquisition

The data we require consists of the author and subreddit for
as many posts as we can collect, store, and process. There are
many ways to obtain such data - from Reddit itself we can
scrape the HTML site or use their provided API. In this case,
we have used a Python library called “Python Reddit API
Wrapper”, or PRAW [10]. PRAW is a Python package that
allows for simple access to Reddit’s API. It aims to be easy to
use and is also designed to respect all of Reddit’s API rules.
Another approach we make use of is to rely on data previously
collected by others and hosted elsewhere. Fortunately, an
existing github project provides an older, but still usable, copy
of usable data - post information from the top 2500 subreddits
by subscriber count [7].

We created a crawling application implemented in Python
using PRAW called “subrtime.py”. This application takes as
input the name of a subreddit, along with starting and ending
timestamps, then will crawl the subreddit’s posts within the
given timestamp range and return data regarding the included
posts and their attributes. After collecting around 1000 posts
from each of 4103 subreddits in the augmented results, we are
left with 4 million posts.

B. Data preprocessing

 In this step, we clean the data to preserve only the posts we
are able to use. Strictly speaking, Recommenddit requires the
author name in order to compute a transaction set for the
Apriori algorithm. Thus, we have to remove posts with “none”
or “NULL” values for the author. Moreover, we also remove
posts marked “Not Safe For Work” (NSFW) or “over_18”.
These are posts with adult or explicit material, which in general
the site allows but we wish to disregard. We removed the
missing-author and NSFW posts by writing a Python script
called transubreddit.py to filter the data. The preprocessing step
decreased the number of records from 4 million to 3.7 million;
i.e. by about 7.5% of our original data set.

C. Data transformation

To apply the Apriori algorithm, all post records need to be
grouped by authors. In other words, we need group the records
to a set of subreddits that each author posts to. We use SQL
queries to group the records and develop a Python script called
Transaction_Builder.py to accomplish the data transformation
task. The script automatically process post records, selects
author, and generates a set of distinct subreddits for each
author. After one week of execution, 3.7 million records were
grouped to ~200,000 authors with a set of subreddits. Fig. 3
shows an example of data transformation process.

Created Score Author Num_comment Subreddit
12/30/14 8379 Author1 1194 InternetIsBeautiful

05/04/15 7318 Author1 1763 crusadersquest

08/18/15 6505 Author2 554 startups

05/19/15 5773 Author2 906 Meditation

07/16/15 5068 Author2 1463 InternetIsBeautiful

04/08/15 5037 Author3 2543 worldnews

06/07/15 5012 Author3 297 rollerblading

08/26/15 5018 Author3 612 PostHardcore

01/13/15 4999 Author3 1258 InternetIsBeautiful

07/24/15 5006 Author4 307 TrueReddit

05/11/15 5126 Author4 783 Frisson

11/23/15 6773 Author4 241 Heavymind

06/19/15 4802 Author4 1587 apple

Figure 3. An example of grouping records by authors

V. APRIORI APPLICATION

Discovering interesting relations between variables in large
databases is a popular and well-researched problem in data
mining. These techniques are very popular in several fields
such as marketing strategy, data analytics, machine learning
and so on. For instance, in marketing strategy, association rule
mining may be used for discovering patterns of purchase
behavior in large-scale transaction data recorded by Point-Of-
Sale (POS) systems in a supermarket.

For example, “{milk, bread}⇒{butter}”, found in sales
data of a supermarket indicates the premise that, if a customer
buys bread and milk together, they may be also likely to buy
butter. Such information can be used and adapted for several
marketing activities such as promotional pricing, product
placements, and so on.

Apriori is a classic algorithm for solving and finding
association rules, introduced by Agrawal and Srikant in 1994
[11]. This technique is popular for this type of data mining
problem, and although it is not the only algorithm for solving
this problem, it is sufficient for our case. We address only the
necessary concepts for our application here, but further
information on the algorithm can be found in Agrawal [11] or
in many texts or other resources on data mining.

An association rule is defined through the following terms:

• Let I = {I1, I2, …, Im} be a set of m binary attributes
called “items”.

• Let T = {T1, T2, …, Tn} be a set of transactions, where
Ti � I.

• A rule is an implication of the form (X⇒Y), where (X,
Y) ����������X ∩ Y) = 	.

Author Subreddits
Author1 crusadersquest InternetIsBeautiful

Author2 startups Meditation InternetIsBeautiful

Author3 worldnews rollerblading PostHardcore InternetIsBeautiful

Author4 TrueReddit Frisson Heavymind apple

377376

To illustrate this concept, in TABLE I. we use a simple
example from our data. The set of subreddits are {Python,
Compsci, Django, Java}.

TABLE I. EXAMPLE TRANSACTION AND STRUCTURE

Author Subreddits
Author1 Compsci Django
Author2 Python Compsci Django
Author3 Python Compsci Django
Author4 Java Django
Author5 Python Compsci Django
Author6 Python Compsci Java

We can predict that a user interested in Python and
Compsci is interested in Django as well. In larger cases of
association rule mining, a set of items may need to appear
together many times before it can be considered significant.
Our dataset contains millions of transactions, and so constraints
on the associations made are needed. The best-known
constraints are minimum thresholds on support and confidence,
as defined below:

• Support - The proportion of transactions in the data set
which contain the input transaction as a subset.

• Confidence – The fraction of transactions containing the

items from itemsets X and Y, over the items from X
alone.

 In the example database above, the set {Python, Compsci,
Django} has a support of 3/6 = 0.50 since it occurs in 50% of
all transactions. For the rule {Python, Compsci} => {Django}
we have the following confidence: supp({Python, Compsci,
Django}) / supp({Python, Compsci}) = 0.50 / 0.66 = 0.75. This
means that for 75% of the transactions containing “Python”
and “Compsci” the rule is correct.

Apriori uses a bottom-up search to count candidate itemsets
efficiently. Starting with sets of a single item, (i.e. L1=I) it
generates “candidate sets” of size K from sets of size K-1.
Then, since any candidate set cannot meet the support and
confidence thresholds unless ALL of its subsets of length K-1
do as well, it prunes the candidates of length K whose (K-1)-
length subsets do not all appear in LK-1, to finally achieve LK.
The algorithm terminates when it reaches some round J where
LJ = LJ-1. This makes it effective for exploring transactions with
a large number of items and transactions. In this project, we
make use of an existing implementation of the Apriori
algorithm in Python [8], which takes the transaction list along
with support and confidence thresholds, and outputs the set of
subreddits associated with each subreddit in the dataset.

In the Apriori implementation [8], the default threshold of
support is set between 0.1 – 0.2, and 0.5 – 0.7 for confidence.
After some test executions of the Apriori algorithm on our
dataset, we found that the number of recommendation results
increased drastically when decreasing the support value. We

prefer to be liberal with our recommendations, so we selected
thresholds for support and confidence as: support = 0.05 and
confidence = 0.60, in order to get appropriate recommendation
results with approximately 200,000 users’ transactions.

VI. RECOMMENDATION SERVICE
The output of the Apriori algorithm now gives us the data

we need to host Recommenddit as a Python-based web
application. We have developed a simple version of such a
service, which is hosted at “kilgallin.com” as of Sept. 2015.
This version allows a user to enter the name of a subreddit in a
web-form, and returns a formatted list of related subreddits
with links directly to the subreddit so that a user can quickly
examine the forum and determine if it is actually of interest. It
is suitable to be used as a web service or integrated into a richer
application. It is important to note, however, that the
underlying data will quickly become stale as the Reddit
communities evolve, and repeated mining would be necessary
to maintain such a service.

VII. RESULTS

A. Precision
With the web application hosted, we can now easily

examine the results of our mining process and evaluate their
usefulness to the Reddit community at large. We evaluate the
precision of Recommenddit using this formula:

Here, A and B are the sets of subreddits recommended by

two different methods. We use the Recommenddit results for
group A and the existing Reddit API method
“get_subreddit_recommendations” for group B [4]. We also
perform a comparison to the moderator-provided list of related
subreddits listed on the sidebar of the input subreddit.

 We implemented a precision calculator in order to
perform the comparison and apply the precision formula
between those two groups. Fig. 4 is an example of usage by
inputting “/r/bloomington” as the subreddit.

Figure 4. Comparing precision value between Recommenddit and Praw

 From Fig. 4, the number of recommended results of
/r/bloomington is 3 from Recommenddit and 4 from the Reddit
API. The size of the intersection is 3, so we have a precision of
3 / 3 = 1.00, or 100.0%. Since the precision formula is
undefined if one set is empty, we consider only subreddits for

support(X) =
|{Ti ∈ T |X ⊆ Ti}|

|T |

confidence(X ⇒ Y) =
support(X ∪ Y)

support(X)

Precision =
|A| ∩ |B|

min(|A|, |B|)

378377

which both services produce at least one recommendation.
From the original 4,000 subreddits, only 2,908 pass this
requirement, for which the precision results are summarized
and illustrated in TABLE II and Fig. 5

TABLE II. PRECISION PERCENTAGE AND NUMBER OF SUBREDDIT

Precision Number of subreddits
0% - 9.9% 1768

10% - 19.9% 242
20% - 29.9% 265
30% - 39.9% 204
40% - 49.9% 78
50% - 59.9% 177
60% - 69.9% 55
70% - 79.9% 15
80% - 89.9% 10
90% - 99.9% 0

100% 49

Figure 5. Number of subreddits by precision percentages

This shows that while, for many subreddits, the results are
comparable, we see that for most others, there is no or little
overlap in the two lists. However, we see this as an indication
that our results may effectively augment the results from the
Reddit API. In subsection B we provide 3 example subreddits
with 100% precision, each with a different reason for such a
result, along with 2 examples having 0%. For these examples,
we perform a 3-way comparison between the results from
Recommenddit, those from the Reddit API, and the moderator-
selected results appearing on the sidebar for the subreddit page.
The subreddits we consider are:

• /r/indianauniversity
• /r/Unity3D
• /r/lawschool
• /r/lectures
• /r/Homestead

B. Knowledge Discovery Comparision
Here we look at these examples in more depth, showing the
similarities and differences between the two sets of results.

• Equality and 100% precision – Based on the result
listed in TABLE III, we can see that Recommenddit,
PRAW, and the subreddit sidebar sometimes share the
same set of multiple recommendation results.

TABLE III. INPUT: /R/INDIANAUNIVERSITY

Sidebar Recommenddit API

/r/bloomington
/r/indianapolis
/r/indiana

/r/bloomington
/r/indianapolis
/r/indiana

/r/bloomington
/r/indianapolis
/r/indiana

• Inequality and 100% precision – As shown in TABLE
IV and TABLE V, sometimes one list will be a proper
subset of another. Looking at TABLE IV, we mostly
see subreddits related to games development or to
content related to the Unity3D engine. In TABLE V, we
see only one result from Recommenddit, but several
law-related subreddits from the API, along with
/r/VetTech, which is not as clearly related. In TABLE
IV, when comparing to the moderator’s selections on
the sidebar, we achieve a precision of 50% compared to
the API’s 100%, yet the list we provide clearly provides
more substantive overlap. In TABLE V the reverse is
true – where we have a precision of 100%, the API has
50% yet still more useful results.

TABLE IV. INPUT: /R/UNITY3D

Sidebar Recommenddit API
/r/Unity2D
/r/Oculus
/r/GameDev
/r/Gamedesign
/r/Indiegames
/r/Unity_tutorials
/r/LearnProgramming
/r/Blender
/r/Devblogs
/r/Playmygame
/r/UnityAssets�

/r/Unity2D
/r/gamedev
/r/low_poly
/r/gamedesign
/r/shittyprogramming
/r/iOSProgramming
/r/oculus
/r/IndieGaming
/r/indiegames

/r/Unity2D

TABLE V. INPUT: /R/LAWSCHOOL

Sidebar Recommenddit API
r/law
r/lsathelp
r/lsat
r/lawschoolscam
r/legaled
/r/CABarExam
/r/lawschooladmissions

/r/law

/r/law
/r/lawschoo
ladmissions
/r/LSAT
/r/LawFirm
/r/VetTech
/r/legal

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0% 20% 40% 60% 80% 100%

N
um

be
r o

f s
ub

re
dd

its

Precision percentage

Precision percentage vs Number of subreddits

379378

• No overlap and 0% precision – TABLE VI and TABLE
VII show more surprising results; in TABLE VI we
have 0% precision between Recommenddit and the
API, and no related subreddits listed in the sidebar to
which we can compare. Our results do largely consist of
topics about which one may wish to view lectures,
while the API provides just one source of lecture
content. In TABLE VII, we do have results from all
three methods, but still there is 0% overlap between the
API and the sidebar, and only 11% between
Recommenddit and the Sidebar, though these last two
lists do appear to have more in common – the Reddit
API does not give particularly meaningful results here.
This goes to illustrate that our method can provide
distinct results that augment existing methods for
finding subreddits of interest, or even provide
recommendations where no existing method produces
useful recommendations.

TABLE VI. INPUT: /R/LECTURES

Sidebar Recommenddit API

/r/Economics
/r/philosophy
/r/physics
/r/socialism
/r/worldpolitics
/r/compsci
/r/EndlessWar
/r/collapse
/r/humor
/r/math
/r/education
/r/Foodforthought
/r/wikipedia
/r/TrueReddit
/r/Anarchism
/r/Anticonsumption
/r/skeptic
/r/Documentaries

/r/TED

TABLE VII. INPUT: /R/HOMESTEAD

Sidebar Recommenddit API
/r/permies
/r/frugal
/r/diy
/r/food2
/r/beekeeping
/r/green
/r/renewableEnergy
/r/livestock
/r/collapse
/r/seedstock
/r/financial
independence
/r/GuerrillaGardening
/r/canning
/r/mason jars
/r/ecoevents
/r/poultry
/r/cottage_industry�

/r/Beekeeping
/r/mycology
/r/simpleliving
/r/Anticonsumption
/r/collapse
/r/RenewableEnergy
/r/SelfSufficiency
/r/gardening
/r/energy

/r/homeless
/r/Dreadlocks

VIII. CONCLUSION & FUTURE WORK
We have shown that association rule mining can be a useful

and effective method for identifying relations between
subreddits, and that this can be used to facilitate the process of
discovering additional Reddit communities of potential interest
to a user. While there is ample room for future development of
this technique, the results we obtained in this paper are
indicative of a promising automated method for identifying
such associations.

While our process appears sound for our data, there are
some limitations that could be overcome in future work. First,
by only looking at the largest subreddits, we miss out on the
ability to suggest new or small subreddits. Since these are
typically the hardest subreddits to discover on one’s own, this
could be a valuable application of our program, and one that
could help smaller communities to grow more quickly.
However, since the 2500th subreddit has only 0.01% the user
count of one of the top few subreddits, the bottom half of the
subreddits by subscriber count will correspond, at most, to the
number of users in the top 4-6 subreddits. The overhead to
scrape and store the data for these subreddits is an important
factor we have to consider when we expand the project to
include them. Additional site functionality such as sorting
results is possible as well. However, our web app architecture
as written is limited in its ability to serve a large amount of
traffic. Since Reddit has several million unique daily visitors,
we need to provide a scalable application which can serve
millions of concurrent sessions. These limitations are
surmountable and this approach therefore appears quite
promising for identifying relationships between communities
on Reddit and other similar sites.

REFERENCES
[1] Reddit. (2008). Python [Online]. Available:

http://www.reddit.com/r/python
[2] V. Sundaresan et al. (2014, Dec 9). Subreddit Recommendations within

Reddit Communities [Online]. Available:.
http://web.stanford.edu/class/cs224w/projects/cs224w-16-final.pdf

[3] ben444422. (2013, May 12). Recommendit [Online]. Available:
https://github.com/ben444422/Recommendit/

[4] Shulurbee. (2013, Aug 1). New beta feature: subreddit suggestions
[Online]. Available: https://redd.it/1jisr2

[5] Redditlist. (2010, June 19). Reddit list [Online], Available:
http://www.redditlist.com

[6] Reddit. (2012, Jan 1). Reddit API documentation [Online]. Available:
https://www.reddit.com/dev/api

[7] Umbrae. (2013, Aug 27). Reddit Top 2.5 Million [Online]. Available:
https://github.com/umbrae/reddit-top-2.5-million

[8] Asaini. (2015, Jul 1). Python Implementation of Apriori Algorithm for
finding Frequent sets and Association Rules [Online]. Available:
https://github.com/asaini/Apriori

[9] The CherryPy Team. (2015). CherryPy: A Minimalist Python Web
Framework [Online]. Available: http://cherrypy.org/

[10] B. Boe. (2015, Sept 4). PRAW: The Python Reddit API Wrapper
[Online]. Available: https://github.com/praw-dev/praw

[11] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases” in Proceedings of the 20th International Conference
on Very Large Data Bases, Santiago, Chile, 1994, pp. 487-499.

380379

