2015 International Conference on Computational Science and Computational Intelligence

Key Establishment Using Physically Unclonable Functions

SeongHan SHIN and Kazukuni KOBARA
National Institute of Advanced Industrial Science and Technology (AIST)
2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
Email: seonghan.shin@aist.go.jp

Abstract—As an alternative to tamper-resistant modules, PUFs
(Physically Unclonable Functions) [1], [6], [7], [8], [9], [10],
[11], [14], [15], [18], [25], [26] have received much attention
due to their unclonable physical characteristics. In this paper,
we propose key establishment (KE1 and KE2) protocols using
PUFs which can mitigate side-channel attacks and satisfy two
security requirements (i.e., Freshness and Non-Regeneration).
Also, we discuss security of the KE1 and KE2 protocols, and
compare with the previous PUF-based key exchange protocols
[31, (41, [27].

1. Introduction

In recent years, the needs of cryptographically secure
keys have been rapidly increasing for various field ap-
plications such as IoT (Internet of Things), M2M (Ma-
chine to Machine) communication and CPS (Cyber Phys-
ical Systems). Some applications actually require crypto-
graphic keys in order to protect their communication data
from eavesdropping, modifications, impersonations, and so
on. Ideally, cryptographic keys should be stored in per-
fect tamper-resistant modules, but realizing perfect tamper-
resistance with low costs is still a challenging open problem.
Therefore, better solutions also providing security against
side-channel attacks (e.g., differential power analysis [13])
are desirable. As an alternative to tamper-resistant modules,
PUFs (Physically Unclonable Functions) [1], [6], [7], [8],
[9], [10], [11], [14], [15], [18], [25], [26] have received much
attention due to their unclonable physical characteristics
(e.g., micro- or nanoscale structural disorder and minuscule
manufacturing irregularities).

In this paper, we propose key establishment protocols
using PUFs which can mitigate side-channel attacks and
satisfy two security requirements (i.e., Freshness and Non-
Regeneration). Please, see the following sections for more
details.

2. Assumptions and Requirements

In this section, we explain assumptions and security
requirements for key establishment protocols using PUFs.

Assumption 1: It is hard for an attacker to let the PUF
generate exactly the same response or responses
whose Hamming distances are closer than the

978-1-4673-9795-7/15 $31.00 © 2015 IEEE
DOI 10.1109/CSCI.2015.136

352

exhaustively searchable area for the same chal-
lenge.

Assumption 2: Modules are equipped with low-level
tamper-resistance and an attacker cannot read
a memory in the modules directly. But, side-
channel information leaks out from an internal
value that depends on a part of secrets whose
space is exhaustively searchable, and that can
be changed with known values by the attacker.

Assumption 1 holds by making length of the response
larger (e.g., [11]) and/or combining multiple responses. And
Assumption 2 is true at least against differential power anal-
ysis [13]. We stress that these assumptions are reasonable
because the maximal amount of randomness/entropy in a
physical system is polynomially bounded in the size of the
system [2], and several attacks on PUFs themselves have
been reported recently (e.g., [22], [23]).

Requirement 1 (Freshness): New and independent
common keys should be shared between two
modules after successful key establishment.

Requirement 2 (Non-Regeneration): It should
be hard for an attacker to regenerate the same
secrets in the modules where a certain internal
value (which is possibly used for side-channel
attacks) depends on a part of the regenerated
secrets whose space is exhaustively searchable,
and that can be changed with known values by
the attacker.

Freshness is required to refresh session keys (possibly to
be revealed by side-channel attacks), and Non-Regeneration
is needed to make side-channel attacks (especially, differen-
tial power analysis) much harder.

3. Bad Examples

Before showing our proposals, we give some bad exam-
ples so as to get useful lessons in regard to Freshness and
Non-Regeneration.

3.1. First Example (Pre-Shared Key in Memory)

In this example, two modules share the same secret
beforehand, and then generate fresh session keys depending
on exchanged nonce values and the pre-shared secret.

cpss

Conference Publishing Services

This allows to regenerate the same pre-shared key in the
module where an internal value depends on a part of the
pre-shared secret, and the internal value is changed with the
nonce values. Hence, an attacker can collect a lot of side-
channel information on the internal value and the (guessed)
pre-shared secret, and then can apply powerful side-channel
attacks. The same method holds even if a private (i.e.,
decryption/signature) key for a public-key cryptosystem is
used in order to establish fresh session keys.

3.2. Second Example (Key Update)

In this example, two modules update the key stored in
the modules after successful key establishment.

Though this loads different secrets in the memory every
time after successful key establishment, an attacker can halt
it so that the same secret would be used repeatedly.

3.3. Third Example (Typical Use of PUF for Key
Generation [12], [24])

This example proceeds as follows:

1) To let a module hold a cryptographic key, Center
sets a helper data D = R - H to the module where
H is an n X (n — k) parity check matrix of the
underlying error correction code (or a CRC (Cyclic
Redundancy Check) generator if the underlying
error correction code is cyclic), R is a binary vector
of n coordinates (which is a response of the PUF
to a challenge ('), and ’-* is an inner product.

In order to restore the key, the module accepts the
same challenge C' and then obtains its response R’
from its PUF. Since R’ is usually a little bit different
from R, it applies a syndrome decoding to R'-H+D
and obtains F = R'+ R where "+’ is an exclusive-
or operation. Finally, it calculates a keying material
KM with KM =R + FE=R.

The keying material K M is then used to generate
a session key after hashing it or applying a key
derivation function [5] to it.

The above satisfies neither Freshness nor Non-
Regeneration because the purpose of this example [12],
[24] is to restore the same key every time in the memory
using PUF. The restored key may be used to establish fresh
session keys between modules, but it does not satisfy Non-
Regeneration.

2)

3)

3.4. Fourth Example (Naive Key Establishment Us-
ing PUF)

This example, which establishes fresh session keys using
PUF, proceeds as follows:

1) In order to let Modulel and Module2 establish the
same (but changing every time) session key, Center
sets a helper data D; = Ry + N to Modulel and

353

Dy = Ry + N to Module2, respectively, where R;
and Ry are responses of the PUFs in the modules
to the respective challenges C; and Cj, and N
is a random code word of the underlying error
correction code (which is a binary vector of the
same length as R; and R»).

To establish a fresh session key with Module2,
Modulel accepts the challenge C, obtains its re-
sponse R} from its PUF, and then sends the syn-
drome of R (ie., S} R} - H), to Module2.
In the same way, Module2 accepts the challenge
(', obtains its response R/, from its PUF, and then
sends S5 = R, - H to Modulel.

Modulel applies the syndrome decoding algorithm
to S5 + D1 - H and then obtains Fy = Ry + R).
It calculates a keying material K M with KM =
D1 + E>+ R), which is equivalent to N + R, + R}.
In the same way, Module2 applies the syndrome
decoding algorithm to S} + D5 - H and then obtains
E; = R+ R]. Tt calculates a keying material K M
with KM = Dy + Eq + R}, which is equivalent to
N+ R, + Rj.

The keying material KM is then used to generate
a session key after hashing it or applying a key
derivation function [5] to it.

2)

3)

4)

Even though this example enables both modules to es-
tablish the fresh session key every time (for the same pair of
challenges C'; and C?), it does not satisfy Non-Regeneration
since an attacker can regenerate previously-established ses-
sion keys in the module. See the next subsection.

3.5. Key Regeneration Attack on Fourth Example

A key regeneration attack on the fourth example is as
follows:

1) An attacker eavesdrops communications between
Modulel and Module2, and then records a pair of
exchanged S| and S%.

The attacker intrudes in the middle of Modulel and
Module2, intercepts new 57 and SY, and then sends
S = 81 + 84 + S5 to Module2 instead of S7'.
After receiving S7', Module2 applies the syndrome
decoding algorithm to 7'+ D> -H by following the
procedure. Since S{+Do-H = S +S55+55+Do-H,
it obtains Fy = R} + R4 + R, + R; after the error
correction. It calculates a keying material K M with
KM = Dy + Ey + RY, which is the same as the
previous keying material KM = N + R, + R}.

2)

3)

4. Our Proposals

In this section, we propose key establishment (KE1
and KE2) protocols using PUFs which satisfy two security
requirements (i.e., Freshness and Non-Regeneration). The
main idea of the KE1 and KE2 protocols is to make an
attacker’s modifications on communication data not affect

calculating a keying material in order to prevent the key
regeneration attack in Section 3.5.

Let Hash be a cryptographic hash function (e.g., SHA-
2/3 [16], [17]) and let KDF be a secure key derivation
function (e.g., [5]).

4.1. KE1 (Asymmetric Type)

The KE1 protocol proceeds as follows:

1) In order to let Modulel and Module2 establish
the same fresh session key securely, Center sets a
helper data D; = R; to Module2 where R; is a
response of the PUF in the Modulel to a challenge
Ci.

To establish a fresh session key with Module2,
Modulel accepts the challenge C, obtains its re-
sponse R from its PUF, and then sends the syn-
drome (e.g., [28]) of R} (i.e., S R} -H) to
Module2. Also, Modulel calculates a keying mate-
rial KM with KM = Hash(R)).

After receiving S7, Module2 applies the syndrome
decoding algorithm to S7 + D1 -H and then obtains
E; = Ry + R). Tt calculates a keying material K M
with KM = Hash(D; + E).

Finally, both modules generate a session key SK =
KDF(Modulel, Module2, S, K M).

2)

3)

4)

4.2. KE2 (Symmetric Type)

The KE2 protocol proceeds as follows:

1) In order to let Modulel and Module2 establish
the same fresh session key securely, Center sets a
helper data Dy = R+ N5 and N; to Modulel, and
Dy = R; + N; and N3 to Module2, respectively.
Here, R, and Ry are responses of the PUFs in
the modules to the respective challenges C; and
(5, and N; and N, are random code words of the
underlying error correction code (which are binary
vectors of the same length as Ry and R).

To establish a fresh session key with Module2,
Modulel accepts the challenge C', obtains its re-
sponse R from its PUF, and then sends the syn-
drome of R} (i.e., S; = (N1+R})-H), to Module2.
In the same way, Module2 accepts the challenge
(5, obtains its response R/, from its PUF, and then
sends S5 = (N2 + R5) - H to Modulel.

Modulel applies the syndrome decoding algorithm
to S5 + Do - H and then obtains Ey = R) + Ro.
It calculates a keying material KM with KM =
Hash(K My, K Ms) where KM, = R} + N; and
KMy = Dy + E5 = R, + Ns. In the same way,
Module2 applies the syndrome decoding algorithm
to S; + D; - H and then obtains By = R} + R;.
It calculates a keying material KM with KM
Hash(K My, KMs) where KM, = Dy + E;
R/l +N1 and KM2 = RIQ —|—N2

Finally, both modules generate a session key SK =
KDF(Modulel, Module2, S7, S5, KM).

2)

3)

4)

354

5. Discussions

5.1. Security

In this subsection, we show that the KE1 and KE2
protocols provide two security requirements (i.e., Freshness
and Non-Regeneration).

Theorem 5.1. The KE1 and KE2 protocols satisfy Freshness
under Assumption 1.

Proof. 1t is obvious from the descriptions of Section 4.1
and 4.2.]

Theorem 5.2. Under Assumption 1 and 2, the KE1 and
KE2 protocols satisfy Non-Regeneration if Hash is a
cryptographic hash function.

Proof. Breaking Non-Regeneration of Modulel in the KE1
protocol and Modulel and Module2 in the KE2 protocol is
as hard as finding a collision of the hash function Hash.
According to Assumption 1 and 2, it is hard for an attacker
to let the PUF generate exactly the same response. This
guarantees that the inputs (Rj and/or Rj) to the hash
function Hash are distinct. If the attacker could regenerate
the same KM, it would mean that a collision was found
for the hash function Hash since the outputs of Hash are
the same while the inputs are distinct. g

5.2. Comparison

Here, we compare the KE1 and KE2 protocols (Section
4) with the previous PUF-based key exchange protocols [3],
[4]1, [27].

In [27], Tuyls and Skoric proposed a PUF-based session
key exchange protocol. Later, Busch et al., [4] showed an
impersonation attack on Tuyls and Skoric’s protocol [27]
when an attacker has access to the PUF for a short period of
time, and then proposed PUF-based authentication and key
establishment protocols using Bloom filters and hash trees.
In [21], Rithrmair et al., also showed a key regeneration at-
tack on Tuyls and Skoric’s protocol [27] under the provision
that an attacker gains physical access to the PUF twice. At
CRYPTO 2011, Brzuska et al., [3] proposed PUF-based pro-
tocols for Oblivious Transfer (OT), Bit Commitment (BC)
and Key Exchange (KE). In [19], Rithrmair and Dijk gave
a quadratic attack on Brzuska et al.,’s OT and BC protocols
[3] if optical PUFs or electrical PUFs with challenge length
of 64 bits are used. Also, Brzuska et al.,’s KE protocol [3]
turned out to be insecure in the PUF re-use model, and in
the combined PUF re-use and bad PUF model [20].

The KE1 and KE2 protocols of Section 4 are quite
different from [3], [4], [27] in that:

o Freshness and Non-Regeneration of the KE1 and
KE2 protocols are guaranteed under Assumption 1
and 2.

o The KE1 and KE2 protocols allow modules to es-
tablish a fresh session key without using a set (or

an exponential number) of PUF’s challenge-response
pairs as in [3], [4], [27].

o The helper data D; and/or D5 do not leave Modulel
and Module2 all the time.

o The helper data in the KE2 protocol are composed
of PUF responses and random code words of the
underlying error correction code.

6. Conclusions

In this paper, we have proposed key establishment (KE1
and KE2) protocols using PUFs which can mitigate side-
channel attacks and satisfy two security requirements (i.e.,
Freshness and Non-Regeneration) under Assumption 1 and
2. Also, we have discussed security of the KE1 and KE2
protocols, and compared with the previous PUF-based key
exchange protocols [3], [4], [27].

Future works include formal security proofs for the KE1
and KE2 protocols, and their implementations along with
experimental evaluations in terms of side-channel attacks.

Acknowledgment

We appreciate the anonymous reviewers’ constructive
comments on this paper. This research was partly supported
by JST, Infrastructure Development for Promoting Interna-
tional S&T Cooperation.

References

[1] Y. Alkabani, F. Koushanfar, N. Kiyavash and M. Potkonjak, "Trusted
Integrated Circuits: A Nondestructive Hidden Characteristics Extrac-
tion Approach,” In Proc. of Information Hiding, LNCS 5284, pp.

102-117, Springer, 2008.

J. D. Bekenstein, "How does the Entropy/Information Bound work?,”
Foundations of Physics, Vol. 35, No. 11, pp. 1805-1823, Springerm,
2005.

C. Brzuska, M. Fischlin, H. Schroder and S. Katzenbeisser, “Physical
Unclonable Functions in the Universal Composition Framework,” In
Proc. of CRYPTO 2011, LNCS 6841, pp. 51-70, Springer, 2011.

H. Busch, S. Katzenbeisser and P. Baecher, "PUF-Based Authentica-
tion Protocols — Revisited,” In Proc. of WISA 2009, LNCS 5932, pp.
296-308, Springer, 2009.

[5S] L. Chen, "Recommendation for Key Derivation Using Pseudorandom
Functions (Revised),” NIST Special Publication 800-108, 2009. Avail-
able at http://csrc.nist.gov/publications/nistpubs/800- 108/sp800-108.

pdf.

B. Gassend, D. E. Clarke, M. v. Dijk and S. Devadas, "Silicon Phys-
ical Random Functions,” In Proc. of ACM Conference on Computer
and Communications Security, pp. 148-160, 2002.

B. Gassend, D. E. Clarke, M. v. Dijk and S. Devadas, ”Controlled
Physical Random Functions,” In Proc. of 18th Annual Computer
Security Applications Conference, pp. 149-160, IEEE, 2002.

B. Gassend, M. v. Dijk, D. Clarke, E. Torlak, S. Devadas and P.
Tuyls, “Controlled Physical Random Functions and Applications,”
ACM Transactions on Information and System Security (TISSEC),
Vol. 10, No. 4, pp. 1-22, 2008.

J. Guajardo, S. S. Kumar, G. J. Schrijen and P. Tuyls, "FPGA Intrinsic
PUFs and Their Use for IP Protection,” In Proc. of CHES 2007, LNCS
47217, pp. 63-80, Springer, 2007.

[6]

[7]

(8]

[9]

355

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

B. Gassend, D. Lim, D. Clarke, M. v. Dijk and S. Devadas, “Identi-
fication and Authentication of Integrated Circuits,” Concurrency and
Computation: Practice & Experience, Vol. 16, No. 11, pp. 1077-1098,
2004.

Y. Hori, H. Kang, T. Katashita, A. Satoh, S. Kawamura and K.
Kobara, “Evaluation of Physical Unclonable Functions for 28-nm
Process Field-Programmable Gate Arrays,” Journal of Information
Processing, Vol. 22, No. 2, pp. 344-356, 2014.

H. Kang, Y. Hori, T. Katashita, M. Hagiwara and K. Iwamura,
”Cryptographic Key Generation from PUF Data Using Efficient Fuzzy
Extractors,” In Proc. of The 16th International Conference on Ad-
vanced Communications Technology (ICACT 2014), pp. 23-26, IEEE,
2014.

P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis,” In Proc.
of CRYPTO’99, LNCS 1666, pp. 388-397, Springer, 1999.

S. Katzenbeisser, U. Kogabas, V. v. d. Leest, A.-R. Sadeghi, G. J.
Schrijen and C. Wachsmann, "Recyclable PUFs: Logically Reconfig-
urable PUFs,” Journal of Cryptographic Engineering, Vol. 1, No. 3,
pp. 177-186, 2011.

J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. v. Dijk and S.
Devadas, ”A Tchnique to Build a Secret Key in Integrated Circuits
with Identification and Authentication Applications,” In Proc. of 2004
Symposium on VLSI Circuits, pp. 176-179, IEEE, 2004.

NIST FIPS PUB 180-4, “Secure Hash Standard (SHS),” March
2012. Available at http://csrc.nist.gov/publications/fips/fips180-4/
fips- 180-4.pdf.

NIST FIPS PUB 202 (Draft), "SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions,” May 2014. Available at http:
/csre.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf.

R. Pappu, B. Recht, J. Taylor and N. Gershenfeld, "Physical One-Way
Functions,” Science, Vol. 297, pp. 2026-2030, 2002.

U. Rithrmair and M. v. Dijk, "Practical Security Analysis of PUF-
based Two-Player Protocols,” In Proc. of CHES 2012, LNCS 7428,
pp. 251-267, Springer, 2012.

U. Rithrmair and M. v. Dijk, ”"PUFs in Security Protocols: Attack
Models and Security Evaluations,” In Proc. of 2013 IEEE Symposium
on Security and Privacy, pp. 286-300, IEEE, 2013.

U. Rithrmair, C. Jaeger and M. Algasinger, "An Attack on PUF-
based Session Key Exchange and a Hardware-based Countermeasure:
Erasable PUFs,” In Proc. of Financial Cryptography 2011, 2011.

U. Riihrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas and J.
Schmidhuber, "Modeling Attacks on Physical Unclonable Functions,”
In Proc. of ACM Conference on Computer and Communications
Security, pp. 237-249, 2010.

U. Rithrmair, J. Solter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson and S. Devadas, "PUF Mod-
eling Attacks on Simulated and Silicon Data,” IEEE Transactions on
Information Forensics and Security, Vol. 8, No. 11, pp. 1876-1891,
2013.

G. E. Suh and S. Devadas, "Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” In Proc. of The 44th
Design Automation Conference, pp. 9-14, IEEE, 2007.

A.-R. Sadeghi and D. Naccache, Towards Hardware-Intrinsic Secu-
rity, Springer, 2010.

D. Suzuki and K. Shimizu, "The Glitch PUF: A New Delay-PUF
Architecture Exploiting Glitch Shapes,” In Proc. of CHES 2010,
LNCS 6225, pp. 366-382, Springer, 2010.

P. Tuyls and B. Skoric, ”Strong Authentication with Physical Unclon-
able Functions,” In Proc. of Security, Privacy and Trust in Modern
Data Management, 2007.

M.-D. Yu and S. Devadas, ’Secure and Robust Error Correction for
Physical Unclonable Function,” IEEE Design & Test of Computers,
Vol. 27, pp. 48-64, 1IEEE, 2010.

