
Modelling of Distributed Energy Resources in
Industrial Context Using Service Curves of Network

Calculus

Alemayehu Addisu
METRON, UPEM

12-14 rue de l′Eglise

75015 Paris, France

Email: alemayehu.addisu

@metronlab.com

Laurent George
UPEM, LIGM/ESIEE,

Cite Descartes, 5 bd Descartes,

77454, Champs sur Marne,

France

Email: lgeorge@ieee.org

Pierre Courbin
Léonard de Vinci Pole Universitaire

Technology Lab,

Paris La Defense, France

Email: pierre.courbin@devinci.fr

Vincent Sciandra
METRON

12-14 rue de l′Eglise

75015 Paris, France

Email: vincent.sciandra

@metronlab.com

Abstract—In this paper, we consider an optimized consumption
of energy produced by distributed energy resources (e.g., wind,
solar, storage, ...) to match an energy demand in industrial
microgrid context. In order to match the load with the supply,
we need to optimize the selection of available resources based on
some constraints such as energy costs and weather conditions.
When an imbalance occurs, we consider buying energy from
the main grid or spot market if there is a shortage. In case of
surplus energy, we consider selling the excess on the spot market.
To achieve our goal, we utilize a network calculus approach
(specifically the concept of service curves) to model the energy
resources. In this context, service curves provide a lower bound
on the amount of energy production of the resources. Then,
we propose different strategies and compare their performances
against each other to minimize energy procurement costs. To
apply our model, we consider a real case study of an industrial
site located in France.

Keywords - Network calculus, Service Curves, Distributed

Energy resources, Microgrid

I. INTRODUCTION

Integration of renewable energy resources to an energy

supply system is facilitated by the introduction of microgrids.

The concept of microgrid was first proposed by Lasseter

and Piagi [1]. A microgrid consists of Distributed Energy

Resources (DERs), energy markets and energy storage systems

(e.g., batteries, hydrogen tanks and Plug-in Hybrid Electric

Vehicles (PHEVs)) [2]. The microgrid can be operated as a

single system (island mode) with DERs and loads or it can

be connected to a larger grid. Due to the introduction of IT to

microgrids, a two-way communication of energy data between

producers and consumers is made possible. This enhances

the operational capability of the system. Su and Wang [3]

provided overviews of microgrid technology, including energy

management systems and benefits of microgrids.

A challenging aspect of DERs in the microgrid is that the

energy produced by the renewable resources is intermittent.

For example, the output of solar power systems changes

frequently depending on the position of the sun and clouds.

And also, wind power is subject to some of the same types

of daily and seasonal variations. Due to these characteristics,

integration of renewable resources into the grids at utility

scale creates new operational needs. These conditions require

new operating capabilities as a form of control system and

modelling of resources in the microgrid.

In this context, we consider a model of the DERs to find

a lower bound on their energy production by using service

curves of network calculus. This helps us get the total energy

production of each energy resource of the microgrid. Then,

we want to satisfy the total demand by selecting an energy

resource or combination of resources based on constraints such

as energy costs.

Network calculus is an alternative to classical queueing

theories. It was initially introduced by Cruz [4] for deter-

ministic framework and then different researchers extended it

into stochastic framework. The deterministic network calculus

is used to compute deterministic (worst-case) bounds on

performance metrics, while the stochastic version is used to

additionally capture statistical multiplexing gain when some

violations of the deterministic bounds are tolerable. Further

contribution to network calculus was done by Le Boudec and

Thiran [5]. Network calculus consists of concepts such as

arrival, service curves and shapers [5]. They can help to trans-

form a complex non-linear queueing system into an analyti-

cally tractable system using mathematical theories including

convolution and algebras. The bounds can be conservative or

violated with small probability [6]. Most of the applications

of network calculus are in the context of computer and

communication networks. For example, in [7], the authors used

network calculus to analyse multi-hop fading communication

channels and in [8], Georges et al. applied network calculus

to determine whether a switched network may satisfy the time

constraints of a real-time application.

Our motivation to extend network calculus theory to energy
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management in a microgrid is that the theory can provide an

analytical framework for different scenarios and its applica-

bility to different research domains. Among the concepts of

network calculus theory, we rely on the theories of service

curves. In our context, we use service curves to model dis-

tributed energy resources of the power system. After that, we

obtain the total energy production which is used to satisfy the

total energy demand. When the demand is greater than the

supplies, we can purchase energy from either the spot market

or the main grid. Hence, our objective is to propose different

strategies to minimize energy procurement costs.

The remainder of this paper is organized as follows. In

section II, we provide basic notations on service curves and

DER modelling. Then in section III, we detail our service

curve model of distributed energy resources and description

of our problem. Then in section IV, we provide experimental

results and discussions. Finally, concluding remarks are given

in section V.

Figure 1. Microgrid components

II. NOTATIONS AND DER MODELLING

Developing clean energy and insuring energy safety have

gained much attention from energy industry since the begin-

ning of 21st century. At the center of clean energy, there are

DERs. However, DERs impose challenges to integrate them

into electricity grid due to their intermittent nature. In order

to overcome the negative impact of DERs on power system,

and maximize the potential of DERs, a concept of microgrid

was proposed by Lasseter and Piagi [1] in 2004. A microgrid

is a modern small-scale grid that can operate in ”islanded” or

grid-connected mode.

In the following section we discuss components of microgrid

and modelling of the DER elements using service curves of

network calculus.

A. DER modelling using Service curves

We first introduce basic notations of network calculus theory.

The theory is based on a (min,+) algebra and it is used to

model flows and services in a network with non-decreasing

functions [5].

We denote by F a set of non-negative, wide-sense increasing

functions, i.e.,

F = {f(·) : ∀0 ≤ x1 ≤ x2, 0 ≤ f(x1) ≤ f(x2)}

Then for two functions f and g, their (min,+) convolution

under (min,+) algebra is defined as:

(f ⊗ g)(t) = inf
0≤s≤t

{f(s) + g(t− s)}

(min,+) convolution has a number of desirable algebraic

properties: it is associative and commutative. Assume that

f(0) = g(0) = 0, then f ⊗ g ≤ min(f, g), with equality

if both functions are concave. If the functions are convex and

piecewise-linear, we can obtain f⊗g by putting end-to-end the

different linear pieces of the individual service curves, sorted

by increasing slopes [5].

The concept of service curve is used to abstract the details of

packet scheduling [5] which requires a network to offer some

guarantees to flows. We say that the network offers a service
curve β to flows if and only if: R∗ ≥ R⊗ β, where R∗(t) is

a cumulative output in number of bits in interval (0,t]. This is

equivalent to say R∗(t)−R∗(t0) ≥ β(t−t0) for all t≥0, t0 ≥0

and t≥t0. For constant bit server (e.g., Generalized Process

Sharing (GPS) [9]) that serves several flows with rate r, the

service curve is β(t) = rt [5]. It can be written in (min,+)

algebra as: R∗(t) ≥ inf
0≤s≤t

[R(s) + r(t − s)]. More examples

and detailed description of service curves are provided in [5],

[10].

Before introducing service curves for each DER, we describe

how to setup service curve functions. We use Concave Piece-

wise Linear (CPL) curves to define service curve functions.

CPL curves allow us to represent a service curve function

using a finite number of parameters. These curves are ex-

pressed in the form of affine functions y = b + a ∗ x, where

x is an independent variable. In [11], Sariowan used CPL

curves to define service curves for performance guarantees in

integrated service networks. In this paper, we define service

curves to model the minimum amount of energy that a DER

node provides. We can define a service curve Si(t) as:

Si(t) = αi + βi ∗ t (1)

where (αi, βi) are service curve parameters of energy resource

i. This is to say that the DER node provides the amount of

energy which is represented by its service curve Si(t).

In our context, we rely on service curves to model energy

provided by DERs. The next section details modelling of wind

and solar powers.

1) Wind power: To setup a service curve for wind power

generation, we study the characteristics of wind turbines

and their power production. Wind turbines generate electrical

power by extracting kinetic energy from the air flow using

rotors and blades. A typical wind turbine is characterized by
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its power curve [12]. In [13], Slootweg et. al described the

relationship between wind speed and power extracted from

wind speed.

Performing mathematical integration on extracted power

over a specific time interval will give us energy(in kWh). From

these sets of data, we can obtain the service curve parameters

(αwind, βwind) of wind power. Where αwind is in kWh and

βwind is in kW.

2) Solar power: Solar photovoltaics (PVs) are arrays of

cells containing a material, such as silicon, that converts

solar radiation into electricity. Service curve parameters

(αsolar, βsolar) can be set the same way as wind power case.

3) aggregation: Different DERs can be aggregated to pro-

vide a single service curve that represents the total energy

production. This can be seen as:

(S1 ⊗ S2 ⊗ · · · ⊗ SN )(t) (2)

where Si(·) is a service curve of resource i ∈ [1, .., N ].

B. Storage

Energy storage devices are the main components of a

microgrid which allow the smoothing of renewable energy

outputs and the time-shifting of demand away from peak times.

Common storage technologies in use today include mechan-

ical, thermo-dynamic, electrochemical and electro-magnetic.

Among electrochemical storage technologies, most common

battery types are lead-acid and lithium-ion batteries [14].

A battery can be characterized by its maximum capacity

C, Depth of Discharge (DoD), charging and discharge times,

efficiency, etc. When the energies generated by wind turbines

and/or solar panels are greater than the load for a particular

time, the surplus energy is stored in the battery. Assume that

b(t) represents state of charge at time t, the charging process

can be represented as:

b(t) = min[C, b(t− 1) + [S(t)−D(t)]] (3)

where C is the maximum capacity of the battery, S(t) repre-

sents a system service curve as shown in equation 2 and D(t)
is the energy demand at time t.

In case of discharging the battery to fill the void between

supply and demand, if there is enough energy in the battery,

we discharge it using:

b(t) = min[C, b(t− 1)− [D(t)− S(t)]] (4)

This consideration assumes perfect batteries as described in

[15]. There exist other research papers on modelling of storage

systems. For instance, in [6] and [14], the authors used

stochastic network calculus to model energy storage systems.

C. Spot market

An electricity spot market can be regarded as a market where

the electricity can be sold or purchased at varying prices. There

are two types of spot market: day-ahead and real-time markets.

In real-time energy markets, the selling or buying of energy

is done close to a real-time (e.g., in 15 minutes). However,

in day-ahead energy markets, energy prices are announced to

buyers and sellers a day before energy transaction. In Europe,

EPEX (European Power EXchange) is a marketplace for day-

ahead markets of electricity. EPEX calculates the offer and

demand curves and their intersection for each hour of the

following day (see Figure 2) [16]. It operates in Germany,

France, Austria and Switzerland.

Figure 2. Energy supply and demand curve in the context of

spot market

In the EPEX SPOT market, the volume of energy exists

in very large amount (in GWh). Hence, there is no limit on

amount of purchased energy from the spot market. If energy

demand is higher than energy of wind, solar and storage, we

buy energy from the spot market or the main electricity grid

based on their costs. In case of surplus energy, we have an

option of selling the energy on the spot market at market price.

D. Energy net cost

In our work, we consider energy net procurement cost to

compare different strategies to be described in the next section.

Annual net cost can be given as:
∑

t∈year

[Prbuy(t) ∗ Ebuy(t)− Prsell(t) ∗ Esell(t)] (5)

where Pr(·) and E(·) are selling/buying prices in e/MWh and

sold/bought energy in MWh. When we consume local energy

from wind, solar or battery, we assume that the energy price

is zero.

III. PROBLEM FORMULATION

In the above section, we provided our approach of modelling

the Distributed Energy Resources using service curves. In this

section, we use the models to formulate our problem which is

to balance demand and supply.
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Figure 3. Demand and supply curves

We consider a constant energy demand D for a specific

period and N distributed energy resources. Suppose that each

resource i = 1, 2, ..., N provides a service curve guarantee

Si(·). Then, the total energy demand is satisfied if

N∑

i=1

Si(t) ≥ D · t (6)

The inequality 6 can be interpreted as the convolution of all

the source service curves have to be greater than the demand

curve. Using (min,+) convolution, the inequality 6 can be

expressed as:

(S1 ⊗ S2 ⊗ · · · ⊗ SN )(t) ≥ D · t

As shown in Figure 3, the cumulative energy demand is

given by straight line D · t. When the summation of energy

provided by wind and solar is greater than the demand line

(Equation 6), we say that the demand is met. Otherwise, we

discharge the battery if there is enough energy. If the battery

is unable to cover the shortage, we need to buy the energy

shortage from either the spot market or the main grid based on

the energy costs. We outline different strategies that minimizes

energy procurement costs and enables us to use as much as

possible local energy.

Our goal is to propose different strategies that minimizes

the reliance on external energy sources and make use of local

energy more often. In this way, the procurement costs are

minimized. We provide three strategies and compare their

performance against total net energy procurement cost. We

outline the strategies in the following section.

A. Strategy 1: Sell excess energy

In this strategy, we would like to sell the excess energy

which is a leftover after a demand is met. According to EPEX

Spot, the possibility to sell energy on the spot market depends

on the minimum energy volume available to be sold. The

minimum is set to 1MWh. Therefore, if we have an excess

energy greater than 1MWh for some period, we can sell it on

the spot market at the market price. Otherwise, we store it in

the battery for future use.

B. Strategy 2: Store excess energy

In this scheme, instead of selling the excess energy, we

would like to store it for future use if the battery is not full.

If the battery is full, there are two possibilities: either sell

the excess energy if it is above 1MWh or otherwise dispose

it. For bigger battery size, this condition cannot happen too

often. However, for smaller battery sizes, if there are lower

energy consumption, the user can opt to sell the excess and

this can be another strategy. The strategy 2 also minimizes

the net energy cost by providing zero-cost local energy from

battery and wind. If the energy from battery and wind cannot

meet the load, we buy from either the main grid or spot market

that has lower cost.

C. Strategy 3: External energy to charge battery

The cost of energy on the spot market is cheap during some

periods of the day. Charging the batteries during these periods

can be a good strategy. We assume that the battery can start

charging at the beginning of time slot of 1 hour length and can

be ready at the end of the slot. We give charging precedence

for local energy from wind and if the battery is not full yet, we

can buy the energy from the spot market. Furthermore, we set

a price limit that we would like to buy from the market. For

example, If we set this limit to 20e/MWh, then we buy energy

from the market whenever the price is under 20e/MWh. Under

this strategy, we store more energy for future use.

IV. SIMULATION

In this section, we provide descriptions of our datasets and

discussions on the results.

A. Description of datasets

1) Wind speed data: We obtained hourly average wind

speed for 2014 from Weather Underground website [17]. We

use the hourly average wind speed data for a wind plant

located in France (refer to Figure 4).

2) Solar data: Base on PVWatts Calculator of National

Renewable Energy Laboratory (NREL) [18], we retrieved

hourly per unit (25m2) solar PV energy generation data.

3) Storage: We consider different battery capacities ranging

from [0,100]MWh.

4) Energy demand data: For energy demand (load) data, we

obtained hourly energy consumption data from METRONLab

servers [19]. These data represent a yearly energy demand of

an industrial site located in France (see Figure 5).
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Figure 4. Hourly average wind speed data for 2014

Figure 5. Load profile of the factory

Figure 6. EPEX Day-ahead spot price data for 2014

5) Spot market data: We obtained hourly market price from

EPEX Spot website [16]. These prices were published for day-

ahead spot market type (see Figure 6).

B. Results and discussions

In this section, we provide different results on the per-

formance of the strategies. First, we compare the strategies

against the case of no strategies. From table I, we can see

that the net cost is decreased from 621ke to 396ke which

corresponds to 36% cost saving.

Next, we compare the performance of the strategies against

Strategies Net cost (in ke)

No strategy 621.915

Strategy 1 400.845

Strategy 2 405.815

Strategy 3 396.387

Table I
COST COMPARISON OF DIFFERENT STRATEGIES (TAKING 40e/MWH FOR

COST OF MAIN GRID ENERGY, BATTERY SIZE OF 20MWH FOR THE THREE

STRATEGIES, AND SPOT MARKET PRICE LIMIT OF 5e/MWH FOR

STRATEGY 3)

each other. Referring to Figure 7-a, we can see that for smaller

batteries (≤10MWh), strategy 1 is the best among the 3

strategies. This means that it is better to sell energy instead

of storing it as the battery capacity is small. However, as the

battery size increases, strategy 3 outperforms the others. This

shows that for bigger battery sizes, it is good to buy energy

from spot market and then store it. The stored energy could

be used when the prices are high or load-shedding is required.

Figure 7-b shows the effect of different spot market prices

on the performance of the strategies. They affect strategy 3

more than the others. This is because strategies 1 and 2 buy

cheaper energy either from the spot market or the main grid.

For strategy 3, an optimal point is at [30e/MWh, 329ke]

which corresponds to a saving of 47%. These results are based

on the assumptions such as perfect batteries and no loss of

energy during conversions.

Finally, we would like to say few words on payback periods.

One of the major hindering factors of microgrid development

is the cost of microgrid components such as batteries, wind

turbines, photovoltaic(PV) panels, AC/DC (Alternating cur-

rent/ direct current) converters, etc [20]. In this paper, we

consider the costs of batteries, wind turbines and PV cells.

Nowadays, the cost of a lithium-ion battery ranges from $400

- 600 per kWh [21]. Taking $400/kWh, the 20MWh battery

will cost $8m which is enormous. However, for smaller battery

capacity of 2MWh, the cost is $800k (approx. 700ke) which is

a significant decrease from the previous value. Concerning the

cost of a wind turbine, Bolinder and Wiser [23] did a study on

trends of wind turbine prices for the past decade (from 2000

to 2010). According to the authors, the trend for wind turbine

prices declined an average of 20% from 2002 to 2010. They

also pointed out that the price for a wind turbine ranges from

$900 - 1,400 per kW and the average cost is $1,100/kW. For

a wind turbine of 3MW, the average cost could be $3.1m

(approx. 2.72me). For PV panels, 1W costs $4.9[24]. For

100 units of 4kW rated PV panels, the cost could be approx.

1.72me. The payback period for a combination of 3MW wind

turbine and 2MWh battery is (2.72me + 0.7me)/(621ke -

411ke) = 16 years. However, for a combination of wind,

solar and battery, the payback would be around 23 years. This

shows that due to low irradiation in France, it is better to use

a combination of wind turbines and battery.
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(a) All strategies with different battery sizes and fixed spot price
limit of 5e/MWh for strategy 3

(b) Effect of varying spot price with fixed battery capacity of
20MWh

Figure 7. Performance of the strategies

V. CONCLUSION AND FUTURE WORKS

In this paper, we adopted service curves of network calculus

theories to model DERs in industrial context. We relied on

service curve concepts for modelling the capacity of DERs.

After modelling the resources, we set up three strategies for

testing the benefits of our approach. We applied our approach

on a use case based on real data of an industrial factory in

France. We considered an offline algorithm that uses historical

data of wind speed, energy consumption and spot market

prices. Based on these data, we compared the performance

of different strategies. Our results show that we could gain an

energy cost saving upto 47% which can be very interesting

to large industries. These results are gained through different

simulations considering perfect conditions where energy losses

during conversion in AC/DC are ignored. However, in real-

world implementation, these factors could affect the results. As

a future work, we would like to propose an online algorithm

for energy management taking into account energy losses

during AC/DC conversion.
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