
Prototyping and Evaluation of Virtual Cache Server Management
Function for Distributed Web System

Akihiko Horiuchi and Keizo Saisho
Kagawa University

2217-20 Hayashi-cho, Takamatsu 761-0396, JAPAN

Email: s14g481@stmail.eng.kagawa-u.ac.jp, sai@eng.kagawa-u.ac.jp

Abstract—We develop a distributed Web system that adjusts
the number of virtual cache servers in the Cloud according to
load of them to keep responsiveness and reduce running costs.
A method of monitoring load of Web servers, and a algorithm
to adjust the number of virtual cache servers are discussed in
previous researches. This paper describes examination of time
for bootup and shutdown virtual cache server, and prototyping a
virtual cache server management function that boots up and shuts
down virtual cache server using libvirt which provides common
API for managing virtual platforms. From results of experiments,
we confirm that this function is possible to boot up and shut down
virtual cache servers according to load.

Index Terms—Distribyted System, Load Balancing, Web
Server, Cache Server, Auto-scaling, Cloud

I. INTRODUCTION

This research aims to realize the distributed Web system that

adjusts the number of cache servers in the Cloud according

to load of them to keep responsiveness and reduce running

costs. It is called auto-scaling that general feature of cloud

computing services, and scalability by auto-scaling is big

advantage of the Cloud [1]. Fig. 1 shows our distributed Web

system, we develop a extended load balancer that monitors

load of a original Web server (origin server) and virtual cache

servers (VC-Server) provided by the Cloud, boots up and shuts

down a VC-Server according load, and distributes requests to

these servers (working servers). The extended load balancer

boots up a new VC-Server (scale-out) when average load of

working servers exceeds upper threshold and shuts down any

VC-Server (scale-in) when average load falls lower threshold.

In previous research [2], effectiveness of the load moni-

toring function and the destination setting function was con-

firmed. Transition of the number of working servers and re-

sponse time on clients were evaluated when load was changed.

In this paper, prototyping and evaluation of the “VC-Server

Management Function” that boots up and shuts down VC-

Server for auto-scaling are described. As a result, we confirm

that this function is possible to boot up and shut down VC-

Servers according to load.

II. RELATED WORKS

There have been many studies of distributed Web system

for the Cloud. Chieu T.C. et al. proposed a scaling scenario

to address the dynamic scalability of Web applications on the

system constructed with a front-end load balancer and Web

servers in virtual machine instances in the Cloud [3]. Instances

are created from “golden” virtual image template, and added

Fig. 1. Structure of the distributed Web system

and removed according to the number of active sessions

using static upper and lower thresholds. Our distributed Web

system is different in that it aims to use origin server and

cache servers. For example, origin server provides all contents

including secure contents such as accounts and payment, and

cache servers only provide static contents such as images

and style stheets. Our method uses dynamic lower threshold

described in section IV.

Usual load balancers can distribute requests to Web servers

previously designate and have no function that dynamically

changes the number of Web servers according to load and

allocates requests to them. Elastic Load Balancing [4] by

Amazon is one of Load Balancer as a Service (LBaaS) [5].

Although it changes the number of instances according to

amount of requests, it can use only on Amazon Web Service.

Xu G. et al. introduce a load balance model for the public

cloud based on geographical regions [6]. In this study, the

top-level main controller selects idle region and allocates job

to load balancer in that region. The target of this study is a

single public cloud service. In contrast, our distributed Web

system aims to use any virtual machines provided by multiple

cloud services and their regions.

III. OUTLINE OF DISTRIBUTED WEB SYSTEM

The extended load balancer shown in Fig. 1 consists of the

following functions.

• Load Monitoring Function
The load monitoring function monitors load of the origin

server and VC-Servers. We use Apache 2.4 [7] as a Web

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.26

325

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.26

324



server software. This functions periodically measures the

ratio of the current number of Web server processes againt

the maximun number of processes (Operating Ratio, OR),

and calculates average of OR of working servers requests

(Average OR, AVGOR). The extended load balancer uses

AVGOR as load value.

• VC-Server Management Function
The VC-Server management function decides the number

of required VC-Servers according to load measured by

load monitoring function, and boots up / shuts down VC-

Server. We plan to use API provided by virtualization

platforms such as OpenStack [8] and cloud services such

as Amazon EC2 [9] to boot up and shut down VC-Server.

• Destination Setting Function
The destination setting function updates a configuration

of load balancer to change destination of requests to start

and stop allocation to booted up and shutted down VC-

Server, respectively. We use IPVS [10] as a load balancer

which implemented inside the Linux kernel. Web servers

are assigned to weight and IPVS allocates requests to

them according to their weight. When weight of alloca-

tion is set 0, IPVS allocates no requests. This function

changes weight of allocation using IPVS configuration

command.

IV. DESIGN AND PROTOTYPING

OF VC-SERVER MANAGEMENT FUNCTION

This section describes design and prototyping of the VC-

Server management function. The VC-Server management

function boots up and shuts down VC-Server at the following

cases.

• Scale-out
When load exceeds threshold of scale-out (Thhigh), the

VC-Server management function boots up a new VC-

Server. After waiting the VC-Server starts service, this

function notifies the destination setting function of bootup

it to start allocation to it.

• Scale-in
When load falls threshold of scale-in (Thlow), the VC-

Server management function shuts down a latest booted

up VC-Server. After notifing the destination setting func-

tion of shutdown that VC-Server to stop allocation to it,

this function shuts down it.

Thhigh is given by system manager and Thlow is decided

according to the number of VC-Servers. If the number of VC-

Servers decreases from n to n − 1, average load becomes

n/(n− 1) times. If this value is lower than Thhigh , average

load is still below Thhigh theoretically when one VC-Server is

shuted down. Therefore, Thlow can be calculated by formula

(1). m is margin to suppress fluctuation of load.

Thlow = Thhigh × n− 1

n
−m (1)

The current our distributed Web system uses KVM (Kernel-

based Virtual Machine) hypervisor that standardly equipped

with the Linux kernel. Since KVM has no API, we prototype

the VC-Server management function using libvirt [11] which

provides common API for managing virtualization platforms.

libvirt is usually used to manage virtual machines in several

hypervisors and build cloud environments [12]. It consists

of API library for several programming languages and the

daemon (libvirtd) that receives operations from API on hy-

pervisors.

Fig. 2. Structure of prototype of the VC-Server management function

Fig. 2 shows the structure of prototype of the VC-Server

management function. This function uses libvirt to boot up

and shut down VC-Server one-by-one by the following steps.

1) Open TCP connection to libvirtd using “NewVirConnec-

tion” function with hypervisor’s IP address.

2) Specify a virtual machine that operated using “Lookup-

DomainByName” function with VC-Server’s domain

name.

3) Execute “Create” and “Shutdown” function when bootup

and shutdown VC-Server, respectively.

4) Close TCP connection to libvirtd using “CloseConnec-

tion” function.

Fig. 3 shows a sample configuration of the extended load

balancer. Hypervisor’s IP addresses and VC-Server’s domain

names are set. Prototype of the VC-Server management func-

tion is able to manage multiple hypervisors.

V. EXAMINATION OF BOOTUP AND SHUTDOWN TIME

In this section, bootup and shutdown time are examined.

Bootup / shutdown time is the time between the VC-Server

management function starting bootup / shutdown VC-Server

and VC-Server starting / stopping service. We use VC-Server

that allocated 1 CPU core and 1GB memory, and its operating

system is Ubuntu Server 14.04 [13]. Table I shows results of

10 times measured.

As shown in Table I, bootup time is about 10 seconds and

shutdown time is about 3 seconds. We examine whether bootup

VC-Server can start service at this bootup time with large

amount of requests or not. Shutdown time is also examined.

As a result, many time-outs occur. We consider that many other

service programs also start up and they disturb processing

requests at booting up VC-Sercer. In contrast, VC-Server that

stopped allocation still returns responses at shutting down VC-

Server. We try to wait 20 and 30 seconds. No time-out occurs
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{
"hvs": [ // Hypervisors

{
"host": "192.168.11.20", // HV’s IP Address
"vms": [ // Virtual Machines

{
"name": "cache-server-1", // VM’s Domain Name
"host": "192.168.11.21" // VM’s IP Address

},
{

"name": "cache-server-2", // VM’s Domain Name
"host": "192.168.11.22" // VM’s IP Address

}
]

},
{

"host": "192.168.11.30", // HV’s IP Address
"vms": [ // Virtual Machines

{
"name": "cache-server-3", // VM’s Domain Name
"host": "192.168.11.31" // VM’s IP Address

},
{

"name": "cache-server-4", // VM’s Domain Name
"host": "192.168.11.32" // VM’s IP Address

}
]

}

]
}

Fig. 3. A Sample configuration of the extended load balancer

TABLE I
RESULTS OF BOOTUP AND SHUTDOWN TIME

Bootup time Shutdown time
1 9.724 3.004
2 9.726 3.031
3 9.512 3.049
4 9.556 3.003
5 9.265 3.029
6 9.681 3.067
7 9.432 3.021
8 9.494 299
9 9.440 296

10 9.767 3.050
Average 9.767 3.025

with 30 seconds. Therefore, time between starting bootup VC-

Server and starting allocation (allocation start time, ALLC-

START) is set 30 seconds. Time between stopping allocation

and starting shutdown VC-Server (allocation stop time, ALLC-

STOP) is set 30 seconds too.

VI. EVALUATION OF

VC-SERVER MANAGEMENT FUNCTION

We evaluate prototype of the VC-Server management func-

tion. Fig. 4 shows experiment environment that includes the

extended load balancer, the origin server, 8 VC-Servers and

9 clients. DokuWiki [14] runs on the origin server. We use

copy instance of the origin server as VC-Servers bacause cache

mechanism suitable for our system is now developing. Each

client accesses to the load balancer using Apache Bench [15].

The number of simultaneous accesses is set to 100, so that the

maximum number of simultaneous accesses is 900 (100 × 9).

Fig. 4. Experiment environment

In order to examine load and the number of working servers,

the number of simultaneous accesses to the load balancer is

stepwise changed. The scenario of experiment is shown in

below.

1) Start with no accesses.

2) Add 1 client every 30 seconds (add state).

3) After all clients are added, keep all clients accessing for

60 seconds.

4) Remove 1 client every 30 seconds (remove state).

5) End when no accesses.

Fig. 5 and Fig. 6 show results without and with the VC-

Server management function, respectively. In without case,

VC-Servers are always running and change destination of

requests only. In Fig. 5, AVGOR increases according to the

number of simultaneous accesses, and VC-Server is added to

destination of requests immediately when AVGOR exceeds

Thhigh = 0.8. AVGOR never reaches 1.0 by a dissolution

of load. In contrast, AVGOR dose not decrease immediately

because a new VC-Server can be available at 30 seconds after

starting bootup as shown in Fig. 6. Therefore, AVGOR reaches

1.0 in some cases. The number of working servers is 5 at the

maximum simultaneous accesses compared with Fig. 5 (the

number is 7).

In remove state in with case, the number of VC-Servers is

smaller than that in without case in spite of same simultaneous

accesses. The maximum number of running virtual servers is

8 (1 load balancer + 7 web servers) in without case, and

this number is more than the number of CPU cores (6) of

the hypervisor. In contrast, the maximum number of running

virtual servers is 6 (1 + 5) in with case, and this number equals

the number of CPU cores. Therefore, the performance of VC-

Server in with case is thinkable better than that in without

case.

In order to investigate influence of ALLC-START on AV-

GOR, we check ORs of each Web server (the origin server and

VC-Servers). Fig. 7 and Fig. 8 shows results of without and
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Fig. 5. without the VC-Server management function

Fig. 6. With the VC-Server management function

with case, respectively. In without case, accesses is distributed

to each Web server almost equality. In with case, however, high

OR causes by convergence of accesses on current working

servers. High OR is kept until allocated requests are processed

because it is impossible to reallocate already allocated requests

to a new VC-Server. This problem might degrade the quality

of service such as increase of response time on clients. In the

next section, we discuss a method to relax high OR during

ALLC-START.

VII. BOOTUP MULTIPLE VC-SERVERS

We consider bootup multiple VC-Servers to relax high OR

during ALLC-START. In Auto Scaling by Amazon, users can

define stepwise thresholds for auto-scaling and set the number

of bootup / shutdown instances at each threshold [16]. We use

increase ratio of AVGOR to deside the number of bootup VC-

Servers.

A. Decision Algorithm for the Number of Bootup VC-Server
Based on Increase Ratio

We define IR as increase ratio of AVGOR. The load moni-

toring function saves latest 10 AVGORs at every second and

calculates IR from them when AVGOR exceeds Thhigh.. IR is

calculated by formula (2) that means dividing latest AVGOR

(AV GORL) by 9 seconds before AVGOR (AV GORL−9).

IR =
AV GORL

AV GORL−9
(2)

Fig. 7. ORs without the VC-Server management function

Fig. 8. ORs with the VC-Server management function

The number of bootup VC-Servers (N) is decided by

formula (3). The number of bootup VC-Servers is rounded

up IR to the nearest integer.

N = �IR� (3)

B. Evaluation of Bootup Multiple VC-Servers

We implement decision algorithm in the VC-Server manage-

ment function and experiment. The environment and scenario

of experiment are same as described in section VI. The number

of shutdown VC-Server is always 1.

Fig. ?? shows result of experiment using bootup multiple

VC-Servers. 2 VC-Servers are booted up around 100 and 200

seconds. In previous experiment, AVGOR decrease about 0.5

at the first time of bootup VC-Server as shown in Fig. 6.

In contrast, AVGOR decrease about 0.65 at the first time of

bootup VC-Server in this experiment. It is larger than that of

previous experiment. ABGOR more decreases when starting

allocation by multiple VC-Servers bootup simultaneously. The

maximum number of working servers is 7. This number equals

that of without case (Fig. 5). At start of remove state, AVGOR

in Fig. ?? is less than that in Fig. 6. So, the method is effective.

But the current version has the following problems.

• A VC-Server is shutted down soon after first bootup

because AVGOR falls Thlow.

328327



• The interval between starting allocation to 4th and 5th

VC-Servers is too short. It must be longer than ALLC-

START. It is thinkable that exclusive control is missed.

• VC-Servers are not shutted down after around 350 sec-

onds. It is thinkable that error handling of libvirt is

insufficient.

Fig. 9. With multiple VC-Servers bootup

VIII. EVALUATION OF RESPONSE TIME

Response time would increase during ALLC-START caused

by high OR. Similarly, response time would decrease when

starting allocation to the new VC-Server. In order to verify

the assumption, we examine response time on clients.

The environment and scenario of experiment are same as

described in section VI. New virtual machine (1 CPU core,

1GB memory) for measuring response time is introduced on

the hypervisor 2 and a measuring script written in Ruby runs

on it. The script creates threads for measuring response time

at every second. It accesses to the load balancer and measures

response time.

The following 3 cases are examined to compare response

time.

A) Without the VC-Server management function.

B) With the VC-Server management function.

C) With the VC-Server management function using bootup

multiple VC-Servers.

Fig. 10, Fig. 11 and Fig. 12 show results of case A, B and

C, respectively. Response time is moving average calculated

from each 30 samples.

In Fig. 10, response time in case A (without the VC-Server

management function) is small and stable. In contrast, in Fig.

11, response time in case B (with the VC-Server management

function) suddenly rises when AVGOR exceeds Thhigh = 0.8

(see Fig. 6). In Fig. 12, response time in case C (using bootup

multiple VC-Server) is same tendency as that in case B. The

peak response time in case C is, however, lower than that

in case B. Although, allocation to one VC-Server is stopped

soon, it decreases the peak time of response time.

The difference of case B and C shows that bootup mul-

tiple VC-Server is effective to reduce response time at high

AVGOR, but we think it is insufficient. In order to reduce

response time moreover, we plan to introduce mechanism that

Fig. 10. Without the VC-Server management function

Fig. 11. With the VC-Server management function

Fig. 12. Using multiple VC-Servers Booting

forecasts when AVGOR exceeds Thhigh and boots up VC-

Server adjusting to ALLC-START in advance.

IX. CONCLUSION & FUTURE WORKS

In this paper, the VC-Server management function that boots

up and shuts down VC-Server for auto-scaling is described.

We prototype this function using libvirt. By the experiment

with the virtual environment, it is confirmed that this function

is possible to boot up and shut down VC-Server according to

load. However, high OR causes by convergence of accesses

on current working servers. In order to relax high OR during

ALLC-START, bootup multiple VC-Servers is introduced.

Results of experiments show that it is possible to join new
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VC-Servers faster than bootup single VC-Server. Bootup mul-

tiple VC-Servers is effective to reduce response time at high

AVGOR, but it is insufficient.

Future works include the following things.

• Improvement of VC-Server Management Function
A mechanism that forecasts when AVGOR exceeds

Thhigh and boots up VC-Server adjusting to ALLC-

START in advance will be implemented. Moreover, bugs

of error handling of libvirt will be fixed.

• Evaluation of Threshold of Scale-out
Thhigh will be evaluated to find a optimum value. (Be-

cause current Thhigh is hard-coded to 0.8.)

• Experiment with More Hypervisors
In comparison with Fig. 6, Fig. 5 shows that AVGOR

at the beginning of experiment suddenly increases. We

consider that decreases of allocated machine power per

virtual machine cause because all 9 Web servers run on

single 6 cores hypervisor. Therefore, a case of running

Web servers in multiple hypervisors will be experimented.

• Practical Scenarios of Experiment
Practical senarios such as using access logs of working

Web servers will be experimented.

• Experiment in Private Cloud
Current virtual environment by KVM will be shift to

private cloud such as OpenStack. VC-Server management

function using API of private cloud will be implemented

and evaluated.

• Improvement of Distribution Algorithm of Load Bal-
ancer
It is impossible to reallocate already allocated requests

when new VC-Servers are booted up. Therefore, an

algorithm that waits allocating requests until new VC-

Servers booted up when load of working servers is high

will be implemented.

• Forecast of Number of Requests and Optimal Number
of VC-Servers
J. Jiang et al. proposed auto-scaling scheme that forecasts

both the number of requests and resource demands [17].

In this study, request records of Web servers are used

as history data, and analyze them to forecast the number

of requests for the next time-unit (1 hour). We think it

is too long and it is not possible to scale-out when the

number of requests increases suddenly. It is necessary

to imprement forecasting algorithm to cope with such a

case.

• Approach to Hetero Cloud Environment
The performance and cost of instances are different with

cloud services. When a distributed Web system uses

multiple cloud services, it is necessary to select better

instances based on performance and cost, and allocate

requests to them according to their performance. M.

Mao et al. proposed a mechanism to dynamically scale

cloud computing instances based deadline and budget

information [18]. Similarly, it is necessary to scale VC-

Servers based on performance and cost of instances, and

response time in our distributed Web system.
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