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Abstract—Demand Response (DR) events are initiated by util-
ities during peak demand periods to curtail consumption. They
ensure system reliability and minimize the utility’s expenditure.
Selection of the right customers and strategies is critical for
a DR event. An effective DR scheduling algorithm minimizes
the curtailment error which is the absolute difference between
the achieved curtailment value and the target. State-of-the-art
heuristics exist for customer selection, however their curtailment
errors are unbounded and can be as high as 70%. In this work,
we develop an Integer Linear Programming (ILP) formulation
for optimally selecting customers and curtailment strategies that
minimize the curtailment error during DR events in SmartGrids.
We perform experiments on real world data obtained from
the University of Southern California’s SmartGrid and show
that our algorithm achieves near exact curtailment values with
errors in the range of 10−7 to 10−5, which are within the
range of numerical errors. We compare our results against the
state-of-the-art heuristic being deployed in practice in the USC
SmartGrid. We show that for the same set of available customer-
strategy pairs our algorithm performs 103 to 107 times better in
terms of the curtailment errors incurred.

Keywords: Demand Response, SmartGrid, Integer Linear
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I. INTRODUCTION

With the advent of advanced metering technologies such

as smart meters, the traditional power grids have transformed

into complex interconnection systems. Smart meters allow fine

grained control and monitoring of customer consumption by

utilities [1], [2]. By employing various data processing tools

such as time series prediction [3], complex event process-

ing [4] etc., the information collected from smart meters can

be used to improve grid efficiency and reliability.

Utilities have to ensure reliable power supply while mini-

mizing their expenditure. For system reliability, it is absolutely

critical that power demand from customers is met. If demand

exceeds the generation capacity of the utility, extra power

needs to be bought from the spot market at higher rates, which

increases the expenditure of the utility.

This work has been funded by the U. S. Department of Energy under Award
Number DE-OE0000192, the Los Angeles Department of Water and Power
(LADWP) and the U.S. National Science Foundation under grant number ACI
1339756.

Typically, peak power consumption of several customers in

the grid overlap during certain periods of the day, for example,

afternoon on a hot summer day. Such periods are referred to as

peak demand periods. During peak demand periods, the power

demand might exceed the generation capacity. To avoid buying

extra power from the market, utilities require techniques that

shift the consumption away from the peak periods.

Demand Response is a widely used technique by the utilities

to reduce power consumption during peak periods. It is defined

by the Federal Energy Regulatory Commission as, “Changes

in electric usage by end-use customers from their normal

consumption patterns in response to changes in the price of

electricity over time, or to incentive payments designed to

induce lower electricity use at times of high wholesale market

prices or when system reliability is jeopardized” [5]. Utilities

roll out Demand-Response programs and enroll customers

into it. The participation can be voluntary, the customers can

be incentivised to curtail their consumption during the peak

periods or it can be involuntary, the electricity rates of the

peak periods can be increased to discourage customers from

consuming a lot of power. In either case, by reducing the power

consumption during peak periods, the expenditure of the utility

is minimized while ensuring system reliability.

Now imagine that an apartment owner is contacted by the

utility company asking her to curtail the power consumption

from 1 to 5 pm everyday by 20 kWh. Given that her daily

power consumption would not exceed that amount, it is

infeasible for her to comply. Therefore for managing DR

events, utilities assign each customer with a set of strategies

corresponding to a range of curtailment values within their

abilities. These strategies could include actions such as turning

off the AC or switching off some of the lights. Meeting the

overall curtailment target requires the utilities to carefully

select customers and their corresponding strategies using this

information.

State-of-the-art heuristics exist to address the problem of

customer selection for Demand Response. However, the errors

of such heuristics are unbounded and can be as high as 70%

as mentioned in [6]. In this work, we define an Integer Linear

Programming (ILP) formulation for the problem of optimal

customer selection for Demand Response. The customer se-
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lection is optimal as it minimizes the curtailment error which

is the difference between targeted curtailment and the achieved

curtailment. We run experiments on real world data obtained

by the University of Southern California SmartGrid and show

that the curtailment errors are in the range of 10−7 to 10−5.

Compared with the state-of-the-art heuristic being deployed

in practice, for the same set of customer strategy pairs, we

perform 103 to 107 times better in terms of the curtailment

errors incurred.

The rest of the paper is organized as follows: Section II

details the work done in the research community related

to Demand Response in SmartGrids. Section III defines the

problem and also provides motivation for the same. Section IV

demonstrates our experimental results on USC SmartGrid and

Section V concludes our work with some details about the

future plans.

II. RELATED WORK

A survey of Demand Response including its definition;

benefits and costs; and its measurement is provided in [7].

Other works such as [8] and [9] study the challenges involved

in Demand Response, and develop estimation methodologies

to calculate the energy savings.

Several works have focused on optimizing Demand Re-

sponse scheduling from a customer perspective. Authors

in [10] focus on scheduling consumption for individual res-

idential buildings. In [11], authors focus on scheduling con-

sumption for a multi-residential cooperative. In [12], authors

use Artificial Intelligence to model customer response to

dynamic pricing for Demand Response events. Experts system

theory is employed in [13] for determining suitable customer

response. However, these works focus on Demand Response

from a customer perspective and hence are unsuitable for

performing grid level global optimization.

Traditionally, customers were targeted based on the ag-

gregate data obtained by their billing data or customer sur-

veys [14], [15]. However, with the availability of smart meters,

a more accurate means to measure customer consumption has

become available [16], [17].

Authors in [18] consider a game theoretical approach con-

strained by real time pricing. In [19], authors apply particle

swarm optimization based technique for customer scheduling.

Customer comfort level is considered in works such as [20].

Several dynamic programming and heuristic based algo-

rithms have also been developed for the problem of optimal

customer selection. Authors in [21] use dynamic programming

algorithm for minimizing peak load over a period. In [22],

authors formulate the problem as an Integer Quadratic Pro-

gramming and develop a heuristic for the same. A stochastic

knapsack based approach is proposed by authors in [23]. A

change making scheduler based algorithm is proposed in [24].

The problem with heuristic based approaches is that their

errors are unbounded. For instance, in [23], the error is

unbounded for smaller number of customers. The minimum

number of customers required to achieve the targeted curtail-

ment value with more than 95% probability is a quadratic

function of the targeted curtailment value. Using Integer Linear

Programming based algorithm allows us to provide solutions

with bounded errors.

III. CUSTOMER SELECTION FOR DEMAND RESPONSE

A. Motivation

A SmartGrid is typically operated by a utility. The utility

is responsible for providing power, controlling and monitoring

the SmartGrid. The utility provider has a fixed power genera-

tion capacity. Typically, this capacity is sufficient to fulfill the

power requirements of the customers. However, when there is

a surge in the demand from the customers, the utility needs to

ensure that the demand is met by either adding generators or

purchasing extra power from the spot market, both of which

increase expenditure. Failure to do so compromises the system

reliability and leads to blackouts.

Power consumption profile of a customer varies throughout

the day with periods of high demand interspersed with periods

of low power consumption. Certain periods of the day observe

an overlap between the high demands of several customers. We

denote such periods with the power requirement of the grid

substantially higher than the rest of the day as peak demand

period. The demand in a peak period can exceed the power

generation capacity.

To minimize or avoid the expenditure of purchasing extra

power during peak demand periods, utilities adopt the tech-

nique of Demand Response. Customers are either incentivised

to reduce their consumption during a Demand Response Event

(DR-Event) or they are penalized by increasing the cost of

power during these periods. This reduces the peak power

consumption which is now expected to be met by the available

generation capacity.

Using smart meters, utilities have the power consumption

data of each customer. The granularity of the data can be

as small as 15 minutes. The power consumption profile of

a customer does not change rapidly from day to day, so

it is straightforward to predict future pattern. By employing

prediction techniques, utilities determine the peak demand

periods. They also determine the targeted curtailment required

for a DR-Event which should be scheduled during this period.

Discussion on the prediction techniques is beyond the scope

of this paper. Readers can refer to [3] for further knowledge

on this topic.

Utilities roll out a program to implement Demand Reponse

and enroll customers into it. A customer is provided with a list

of strategies to be followed each of which leads to a certain

amount of curtailment in power consumption. Strategies can

include procedures such as increasing the temperature of the

AC systems by 2 degrees or turning off every other light in

the hallways, etc. which reduce power consumption. During

a DR-Event, the utility signals each customer to follow a

particular strategy. A customer may be penalized if it fails

to comply. For instance, the University of Southern California

SmartGrid consists of 50,000 sensors across the 170 buildings

to monitor electricity usage. Each building can adopt any one
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of seven available strategies during DR events which occur on

Weekdays 1-5 pm [25].

Careful selection of customers is required to ensure that the

targeted curtailment value is met. A good customer selection

algorithm determines the subset of customers along with the

strategies they should follow during the DR-Event such that

the achieved curtailment value is as close as possible to the

target. The reasons are as follows:

1) Limiting the amount by which the achieved curtailment

value overshoots the target ensures that the grid is not

underutilized. This avoids any loss of revenues to the

utility due to underutilization of grid by aggressive

curtailment.

2) Limiting the amount by which the achieved curtailment

value undershoots the target ensures that the utility

can avoid purchasing power from external sources by

bounding the peak demand of the customers.

B. Problem Definition

We formally define the problem of optimal customer se-

lection for Demand Response using the parameters defined in

Table I. We are given a list of M customers and N strategies.

Each customer can adopt exactly one strategy in the DR event.

The decision variable xij is 1 if customer i adopts strategy j.

We are also given the curtailment in power consumption cij
obtained by customer i adopting strategy j. A default strategy

with a curtailment value of 0 is also included in the curtailment

matrix C. A customer adopting a default strategy essentially

means that it is not participating in the DR event.

A targeted curtailment value γ for the DR event is provided.

The objective it to achieve a curtailment value as close to γ as

possible. The ILP formulation for this problem is as follows:

Minimize : |
M∑

i=1

N∑

j=1

cij ∗ xij − γ | (1)

Subject to :
N∑

j=1

xij = 1, i ∈ {1, . . . ,M} (2)

xij ∈ {0, 1}, ∀i, j (3)

Equation 1 minimizes the absolute curtailment error. Equa-

tion 2 ensures that a customer cannot adopt more than one

strategy in the DR event. Detailed experimental results for

customer selection using the above ILP is shown in Section IV.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The USC SmartGrid has over 50,000 sensors to monitor

electricity usage and equipment status in real time [25].

Demand Response Events occur on weekdays between 1 and

5 pm. We use the data collected by the software developed

to support data-driven demand response optimization in USC

smartgrid [26]. The software provides us the curtailment

values for each strategy that can be adopted by any building

(customer) in USC for the queried time interval. For our

TABLE I: Problem Parameters

Parameter Name Description

M Number of customers

N Number of strategies for each customer

C M × N matrix. Element cij ∈ R is curtail-
ment value of a customer i strategy j pair for
the DR event.

X Decision variable for the DR event. Element
xij ∈ {0, 1} is the decision variable for
customer i adopting strategy j.

γ Desired Curtailment value across the entire DR
event.

experiments we use the data from 27 buildings each of which

can adopt one of seven strategies. The data is collected for the

time intervals 1-3 pm and 3-5 pm for each day from Monday

to Friday. We run our experiments for Targeted Curtailment

values ranging from 100 kWh to 1400 kWh.
We use the Optimization Programming Language [27] to

define the Integer Linear Programming formulation developed

in this paper. IBM ILOG CPLEX optimization software [28]

is used to solve the ILP and produce the set of customers and

the strategies they should adopt.
We compare our results with the state-of-the-art heuris-

tic [24]. Authors in [24] develop a change making problem

based algorithm for customer selection. The change making

problem determines how to make a given amount of money

using the least amount of coins. The coins in the algorithm

are the available customer-strategy pairs and their values the

predicted curtailment values. The amount to be made is the

targeted curtailment value. Customers are grouped into bins

differentiated by their values. A greedy algorithm is used to

pick customers from the bins with highest values. We choose

this heuristic for comparison as it is used in practice by the

USC SmartGrid to schedule customers and their strategies for

the DR events.

B. Results and Analysis
The power consumption profile of a building is similar for

the same day of a week across different weeks. So by running

our experiments on data collected from DR events over a week,

we are able to demonstrate our algorithm on a wide range of

power consumption profiles. Moreover, a typical DR-event in

the USC SmartGrid starts with the selection procedure at 1

pm and then another selection occurs typically around 3 pm.

Therefore, we consider them as two separate DR events for

our experiments.
Figure 1a and 1b show the errors incurred by our ILP

based customer selection algorithm and the State-of-the-art

heuristic [24] for every DR event from Monday to Friday for

various curtailment target values. As shown in Figure 1a, the

highest error incurred by our ILP based algorithm is around

0.0002 kWh during the DR-events on Tuesday 1-3 pm for

a targeted curtailment of 600 kWh and Friday 3-5 pm for

a targeted curtailment of 800 kWh. For the State-of-the-art

heuristic, the highest error incurred is around 8 kWh during

the DR event on Tuesday 3-5 pm for the targeted curtailment

of 400 kWh as shown in Figure 1b.

303302



One may note that the errors between the state-of-the-

art heuristic and our approach differ by multiple orders of

magnitude. so we take the ratio of the error for comparison.

A higher value of ratio implies better performance by our

approach. In Figures 2a-6b we compare the errors incurred

by the two algorithms for various targeted curtailment value

for each DR event

The customer selection problem can be visualized as a pack-

ing problem. We are trying to pack the targeted curtailment

with values obtained from the customer-strategy pairs. The

ILP produces the best possible packing. Any error is due to

the nature of the data. Similarly, the heuristic based approach

tries to provide best packing in each of the bins. Error incurred

in packing each bin accumulates throughout the algorithm

and may lead to very large errors. Since we are using real

world data, as seen in the Figures 2a-6b the peaks in the

ratio of errors for various DR events varies with the targeted

curtailment values with no discernible pattern. The highest

ratio observed is around 3× 107 which occurs during the DR

event on Thursday 1-3 pm.

Although solving an ILP is computationally intensive, opti-

mal customer selection for each target was obtained in less

than 5 seconds on a standard workstation. This time can

be significantly reduced by using sophisticated computational

platforms. Note that in a typical DR Event, the utility deter-

mines the curtailment target well in advance. Thus even a 5

second delay in computing the optimal customer-strategy pairs

and signaling the customers is tolerable.

V. CONCLUSION

Optimal customer selection is critical for maintaining sys-

tem reliability and minimizing utility expenditure in a Smart-

Grid. The heuristic based algorithms developed so far to

address this problem may lead to unbounded errors in some

cases which is unacceptable. By developing an Integer Linear

Programming (ILP) based algorithm, we guarantee that the

error is minimized. In practice, the error is close to zero which

we have substantiated quantitatively by running experiments

on real data from USC SmartGrid.

Our future work will focus on developing techniques to

scale the ILP based algorithm for larger grid sizes. Several

other objectives such as customer comfort level, strategy

switching overhead will also be incorporated.
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(a) ILP based Algorithm (b) State-of-the-Art Algorithm

Fig. 1: Error incurred by ILP based Algorithm and State-of-the-art Algorithm for various targeted Curtailment Values for

Different DR Event

(a) Monday 1-3 pm
(b) Monday 3-5 pm

Fig. 2: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR events on Monday

(a) Tuesday 1-3 pm
(b) Tuesday 3-5 pm

Fig. 3: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR events on Tuesday
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(a) Wednesday 1-3 pm (b) Wednesday 3-5 pm

Fig. 4: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR events on Wednesday

(a) Thursday 1-3 pm
(b) Thursday 3-5 pm

Fig. 5: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR events on Thursday

(a) Friday 1-3 pm (b) Friday 3-5 pm

Fig. 6: Ratio of error of State-of-the-art Heuristic and ILP algorithm for DR events on Friday
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