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Abstract—This work describes how clustering can
aid in the modelling of the curriculum timetabling
problem. The practical timetabling problem cannot
be solved to proven optimality in any reasonable
time. A clustering technique is used to construct
additional constraints, that reduce the size of the
feasible search space, and improves the quality of the
time-tables found within a reasonable computational
time. The approach is illustrated using on a real world
timetabling problem and a state-of-the-art commer-
cial solver.

Keywords-Clustering; timetable problem; building
mathematical models;

I. Introduction

This work describes the curriculum university
timetabling problem at the School of Engineering and
Natural Science, University of Iceland. As with any real
world timetabling problem there are many issues that
cannot be addressed, since the data used is typically
unreliable and dynamic. For this reason the timetables
are constructed by hand by two or more persons in the
start of each semester, with varying results. Here an
attempt is made to solve this timetabling problem as a
mixed integer programming problem. Clustering is used
to discover pseudo curricula. These are curricula defined
by a set of courses taken by a large number of students
and are not part of the regular curricula. Finding these
and enforcing them as constraints reduces the feasible
search space significantly and so the mixed integer pro-
gramming (MIP) model becomes more tractable.

The approaches to the school timetabling problem
are perhaps as many as the schools. Each school or
educational system has its own set of rules that must
be adhered to. The timetabling problem studied here is
no exception. In the recent months there have been a
number of papers devoted to an overview or survey of
this important problem domain [1], [2], [3], [4]. In essence
the problem is about assigning classes to timeslots and
rooms. Common requirements are that courses should
not clash, especially courses for the different curricula
offered by the school. The utilization of rooms should be
maximized. They should not be overfilled but all should
be utilized. The workload of both teachers and students
should be balanced. The timetables should be compact

for the students but not for the teacher. Various custom
preference are then added to these conditions specific for
the school and may even vary between semester. The
timetabling problem investigated here has all of these
elements, but is tackled very differently to that described
in the literature. However, the approach presented for re-
ducing the size of the search space, using clustering, may
be applied to the other formulations in the literature.

It is anticipated that many conditions will change dur-
ing the timetabling process in the time leading up to the
start of the semester. This is due to the volatility of the
data used. Teachers availability, student registrations,
and room requirements may all be subject to change.
The process is an iterative one and for this reason it is
desirable that the timetabling problem deliver quality
solutions in a reasonable time.

The paper is organized as follows. In section II a MIP
model for the curriculum based university timetabling
problem is described. It has similar feature to models
seen previously in the literature, but uses a timeslot
system specific to the University of Iceland. The system
eliminates the need to balance specifically the work-
load of the students and organizes the lectures in a
balanced manner. In section III the clustering method
used to discover pseudo curricula is described and the
accompanying constraints needed for the MIP model.
This is followed by an experimental study on real work
timetabling data from the University of Iceland. The
paper concludes with a discussion and summary of main
findings.

II. Timetabling at the University of Iceland

The courses at the University of Iceland are assigned
to pre-defined time-slots which are in total seven. Each
time-slot is split up into two continuous blocks on two
separate days. One of the blocks will hold two 40 minute
lectures with one break and the other three lectures with
two breaks. Hence a total of five 40 minute lectures or
tutorials can be held in any time slot. Five of these
time- slots are before lunch while a further two are im-
mediately after lunch on Monday through to Thursday.
The seven time-slots are shown in figure 1. The idea
behind this scheme is that students have at least a one
day break for any given course. Typically a course will
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require five forty minute lectures/tutorials. Two courses
or more could be placed within any time-slot, as long
as the number of lectures does not total to more than
five. Some courses may require more than five lectures,
in this case putting these classes in slots six and seven
would be best as these time-slots are in the afternoon
and could therefore be easily extended. If the first five
time slots were extended they would go into the lunch
break, which is possible but not desirable. Any course,
that does not fit into this scheme, could also be placed
in the afternoon within a dummy time-slot labelled the
eight time-slot in figure 1. Typically tutorials are held
in the afternoon for large courses and will be assigned
to time-slot eight1. In general it is preferable that these
classes be in the first five slots before the lunch break.

When building a timetable the set of courses that de-
fine a curriculum may not clash, these curricula clashes

are hard constraints. However, it is quite common that
students complete their three year bachelor degree in
four years. This means that there will exist curricu-
lum clashes between semesters. Furthermore, during the
last two semesters students will typically take elective
courses also. These electives and the fact that students
take the degree over a longer period, create potential
course clashes. Teacher clashes are also plausible, but
can be treated equivalently to a curriculum clash. That
is, a set of lectures given by a teacher may not clash.
In general this is not a problem. Teachers usually teach
only one or two classes. The third possibility for a clash
are room clashes, no two classes can be taught in the
same room at the same time. However, more than one
class may share a timeslot and room as long as the total
lecture hours does not exceed the Tt hours available in
time-slot t.

Let us now formulate the problem as a mixed integer
programming problem (MIP). Consider now the binary

1This is considered to be a separate timetabling problem for now.
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Figure 1. The seven time-slots and time-slot eight.

variable xc,t,r indicating whether a class c occupies room
r in time-slot t. It will take the value 1 when true.
Furthermore, let Lc be the number of lectures/tutorial
needed for course c. Then we have, given the number of
lectures Tt held by slot t,

∑

c∈C

Lcxc,t,r ≤ Tt, t ∈ T , r ∈ R \ {rd} (1)

It may not be possible to allocate a room to all courses.
To compensate for this classes can be assigned room
rd, implying that a room has yet to be found. The
hard condition that no set of courses Cq ⊂ C within
a curriculum q should clash is formulated in a similar
manner, that is

∑

c∈Cq

Lc

∑

r∈R

xc,t,r ≤ Tt, t ∈ T , q = 1, . . . , nq (2)

where nq is the total number of curricula. Furthermore,
one must make sure that a course fits within a given
timeslot, as follows

∑

r∈R

Lcxc,t,r ≤ Tt, c ∈ C, t ∈ T (3)

Each class must necessarily be assigned to some time-
slot and room, but only once, that is

∑

r∈R

∑

t∈T

xc,t,r = 1, c ∈ C (4)

This also means that any given class must fall within
a single time-slot. If the required lecturing hours for a
class is greater than Tt it will not fit within that time-
slot. The total number of lecturing hours held by time-
slot eight is, nevertheless, such that any class size can be
placed there. Thus guaranteeing that a feasible solution
will be found. A similar issues arises when assigning
rooms, as the number of rooms is scarce. The schools
within the University will initially assign as many classes
as they can to the rooms within their buildings, after
that one must “compete” for the remaining rooms within
the entire University campus. Classes with few students,
say S

¯c, are typically not assigned to a room at first for
this reason. In order for constraint (4) to be feasible
the dummy room rd can effectively be used to assign
any class. However, it should be made undesirable to
assign classes to this room, which will be reflected in
the objective function. Indeed assigning a class to this
room means that the class has yet to be assigned a room.
For this reason it would be necessary to assign all classes
with few students to this room. In other words

∑

c∈C,t∈T :Sc≤S
¯

c

xc,t,rd
= 1 (5)

where by Sc > 0 is the number of students enrolled in
class c.
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The number of students attending a course must not
exceed the room capacity by a large number. Typically
the number of students attending class will be less than
that enrolled, although most will show up for lectures
the first week. As a rule of thumb it is generally possible
to overfill a room by up to 20%, or by a factor fr = 1.2.
If the room capacity is Cr, we say that

xc,t,r ≤ frCr/Sc, c ∈ C, t ∈ T , r ∈ R \ {rd} (6)

and will work to reduce the size of the search space.
The objects of the timetabling problem are more than

one. One would like to assign classes before lunch if
possible and so create a tight morning schedule. The
utilization of the rooms should be maximal and attempts
should be made to assign as many courses as possible to
the available rooms at the school. The number of course
clashes should be minimal. Consider now the following
objective function

min
x

W1

∑

c∈C

∑

r∈R

(
xc,6,r + xc,7,r

)
+ W2

∑

c∈C

∑

r∈R

xc,8,r (7)

+W3

∑

c∈C

∑

r∈R\{rd}

∑

t∈T

(frCr − Sc)xc,t,r (8)

+W4

∑

c∈C,t∈T :Sc>S
¯

c

xc,t,rd
(9)

+W5

∑

t∈T

∑

c1∈C,c2∈C:c1<c2

zt,c1,c2
Mc1,c2

(10)

Objective (7) forces courses to be assigned to time-slots
1 − 5, with W1 < W2, timeslots 6 − 7 are preferable to
timeslot 8 (the dummy timeslot). The objective (8) will
attempt to maximize room utilization and objective (9)
will make if undesirable to assign a class to no room (the
dummy room rd). The part of the objective function that
deals with the course clashes is given by (10). It uses
a new variable zt,c1,c2

which will indicate that courses
c1 and c2 don’t fit in the same time-slot t. The binary
indicator variable zt,c1,c2

, will be set to one in this case.
This may be determined by introducing the constraint

Lc1

∑

r∈R

xc1,t,r + Lc2

∑

r∈R

xc2,t,r ≤ Tt + (11)

zt,c1,c2
(Lc1

+ Lc2
− Tt),

t ∈ T , c1 ∈ C, c2 ∈ C : c1 < c2, Mc1,c2
≥ 1

where 0 ≤ zt,c1,c2
≤ 1 is a continuous variable and

will naturally tends towards zero, due to the objective
function. When the courses c1 and c2 clash z’s value will
take its upper limit, which is one. The parameter Mc1,c2

gives the total number of students taking both courses
c1 and c2. Clearly we need only consider the cases when
c1 < c1 and when Mc1,c2

> 0. There is one potential
problem with this last constraint. This is the possibility

of placing more than two course in any time-slot and
room, these constraints do not cover this situation. For
this reason the following additional constraint is needed,

∑

c∈C

xc,t,r ≤ 2, t ∈ T , r ∈ R \ {rd} (12)

This way only a maximum of two courses are allowed at
any time-slot and room.

III. Clustering common courses

The model presented in the previous selection can
vary in difficulty. If less emphasis is put on (9), how
often the dummy room is used, the easier the problem.
When little emphasis is put on avoiding timeslot eight,
so too the problem becomes easier. Better utilization
of rooms and timeslots makes the problem challenging
for the MIP solver. Furthermore, the addition of the
course clash objective (10), with the introduction of
variable zt,c1,c2

, makes the problem difficult to solve.
One approach to making the problem more tractable for
the MIP solver is to reduce the size of the search space.
One obvious approach would, for example, be to set a
minimal tolerance for the number of students, for any
pair of courses, that can be in a clash. That is, add the
condition that Mc1,c2

≥ M
¯

, some lower bound M
¯

. This
would be an additional condition in (10) and (12). For
example, M

¯
= 3 would imply that one or two students

in any two courses that clash may be ignored. However,
even this low value of 3, if acceptable, still makes the
problem difficult to solve in a reasonable time. For larger
values the objectives will end up being ignored, and so
the solution becomes suboptimal.

The approach taken here to make the problem more
tractable is to reduce the search space by finding pseudo

curricula and introducing them in an equivalent manner
to the regular curricula constraints. This is achieved
by applying a clustering method to discover automat-
ically pseudo curricula from the student registrations.
For this purpose it was found that a centroid based
clustering techniques formed better clusters than con-
nectivity based methods such hierarchical clustering.
Furthermore, the well known k-means clustering method
[5] will be used in our study.

In the extreme case all pairs of courses c1 and c2

with Mc1,c2
≥ 1 could be set as a pseudo curricula. As

these would be hard constraints, they would potentially
force courses to be placed in timeslot eight and the
dummy room. This is an undesirable side-effect. Indeed,
only courses with many required lecture/tutorial courses
should be placed in timeslot eight. This extreme con-
straint, written as

Lc1

∑

r∈R

xc1,t,r + Lc2

∑

r∈R

xc2,t,r ≤ Tt, (13)

t ∈ T , c1 ∈ C, c2 ∈ C : c1 < c2, Mc1,c2
≥ 1
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may, however, actually be useful if the condition
Mc1,c2

≥ 1 would be relaxed a little, to allow for
potentially more clashes, say for example Mc1,c2

≥ 8.
There is a further benefit to using clustering over

the minimizing only object (10), this is that a group
of students will observe fewer clashes and so also the
individuals there within. This is because the clustering
will discover subsets of courses where more than a pair
of courses may not clash, as opposed to just the pair c1

and c2. In effect the individual student will experience
fewer clashes. This is an important aspect, since for the
students, being in one clash may be acceptable whereas
two or more impossible.

The automatic technique used to discover pseudo
curricula works as follows. First of all remove all students
from the data that fit perfectly to their schools set course
curricula Cq. Then repeat the following process:

1) Perform the k-means clustering on the remaining
students, with nk clusters.

2) Treat each of the nk clusters as a new curriculum.
3) Examine how many students actually take exactly

this pseudo curricula, there should be at least one.
If so, add this new pseudo curriculum Cp to the set
of new curricula.

4) Remove all students that fit this new set of pseudo
curricula.

5) If no new pseudo curricula was found then stop,
else return to step 1).

The pseudo curricula is now added to the model
described in the previous section, in a similar way to
the regular curricula, that is,

∑

c∈Cp

Lc

∑

r∈R

xc,t,r ≤ Tt, t ∈ T , p = 1, . . . , np (14)

where np is the total number of pseudo curricula discov-
ered.

There are two algorithm settings needed for the k-
means clustering, the number of clusters nk and the
distance metric used. The data used in the clustering
are binary vectors whose length is equal to the total
number of courses held. Each bit in the vector corre-
sponds to a course and when set to true the student is
registered in the corresponding course. The cityblock (L1
distance) and Hamming distances are the most suitable
measures for this representation. The centroid is then the
component-wise median of the points in that cluster. A
centroid then represents a pseudo curriculum. We will
now illustrate the technique on a typical semester in
what follows.

IV. Experimental Study

The data used in the study is from the autumn
semester 2014 for the School of Engineering and Natural

Science at the University of Iceland. There are 2166 stu-
dents are pursuing their studies in their respective fields,
which result in a total of nq = 89 curricula depending
on speciality tracks and year of study. The classes on
offer are 204. The number of students that take only
a given curricula and no other courses are depicted in
the black colour in figure 2. This is around one third
of all students. These students will not experience any
course clashes, due to constraint (2). The figure also
depicts students that fall entirely within a typical set
of pseudo curricula, in the dark gray colour, found using
clustering. This particular set contains in total np = 286
specific pseudo curricula. These are around one fifth
of the students. A further one tenth of the students
take only a single course and so experience no clashes.
Given then that a feasible solution is found one can then
estimate that two thirds of the students will experience
no clashes. The rest of the students, depicted in the
lighter colour, taking two or more classes rely on the
minimization of objective (10) to avoid clashes.

The k-means clustering algorithm is initialized ran-
domly with nk = 10 clusters. For this reason we have
investigated the performance of the technique, described
in the previous section, by performing 30 independent
experiments. The number of pseudo curricula np versus
the number of students that fit these pseudo curricula is
shown in a 2D boxplot in figure 3. As one can see the
performance varies. In our experiments we will simply
use the result of one of these experiments, the one used
in figure 2.

The courses with four students or less are forced
into the dummy room as discussed previously. For this
particular semester these are 30 courses in total. The
total number of rooms used in the study is 25 (plustotal number of rooms used in the study is 25 (plu

1 2 3 4 5 6 7

0
2
0
0

4
0
0

6
0
0

Full curriculum

Outside curriculum

Pseudo curriculum

Figure 2. The number of students registered in one to seven
courses. Students are put in one of three groups, those following
strictly a full-, pseudo- and outside curricula.
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the dummy room). These are the actual rooms preferred
by the school. There are 8 courses which have over 195
students registered, which exceeds the capacity of the
largest room. In figure 4 the room capacity of the 25
rooms are plotted as horizontal lines. The figure also
plots on the horizontal axis the courses, those with
more than 8 students, against the number of students
registered for the course. There one can see that eight
courses are above the 195 student limit on the far
right side. At the level below there are 21 courses
that would potentially be assigned to the 195 student
room. At least seven can be accommodated, or more
depending of weekly hours of lecturing. So in total at
least 30 + 8 + (14) ≈ 52 classes will be forced to the
dummy room, or slightly less.

A. General setup

All the computational experiments were conducted us-
ing the MIP solver Gurobi [6]. The runs were performed
on a desktop computer with a 16 core Intel(R) Xeon(R)
CPU E5-2650 0 @ 2.00GHz, using sixteen threads. The
internal memory on the machine is 32GB which is more
than sufficient for the problem, the runs below consume
up to around one third of this memory. The weights for
the objectives were set to W2 = W4 = 100, W5 = 10
and W1 = W3 = 1. These were arbitrarily chosen, but
reflect the importance of each objective. The runs were
terminated after a time limit of 3 hours.

B. Models

The following model settings are investigated

1) The plain model presented in section II.1) The plain model presented in section II.

300 350 400 450 500

1
0
0

3
0
0

5
0
0

number of students

n
p

Figure 3. Boxplot of the number of students fitting exactly the
pseudo curricula versus the number of pseudo curricula created,
based on 30 independent clustering experiments.

2) Plain model with constraint (13), but with the
condition that Mc1,c2

≥ M
¯

(described below).
3) Plain model with constraint (13), but with the

condition that Mc1,c2
≥ 8.

4) Plain model with the pseudo curriculum con-
straint (14).

All models presented in the previous section were
unsolvable and terminated after 24 hours. Because of this
some approximation was needed to make the problem
solvable within reasonable time. The approximation is
as follows, in object (10) the additional condition was
added that only M

¯
students or more taking a pair of

common courses need be considered. That is,

. . . + W5

∑

t∈T

∑

c1∈C,c2∈C:c1<c2,Mc1,c2
≥M

¯

zt,c1,c2
Mc1,c2

(15)

and set zt,c1,c2
= 0 for the cases where Mc1,c2

< M
¯

. Two
different settings for M

¯
are used, 4 and 5, which obtain

a reasonable gap.

C. Computational results

A suitable gap2 or around 0.2%, or less, was achieved
after three hours of computation. Runs using M

¯
= 4

versus using 5 requires twice the internal memory. The
key objective values for the four different settings are
given in table II and I, using M

¯
equal to 4 and 5

respectively. In table I we see that model 4) requires one
or two additional courses to be in timeslot 8 and the
room utilization is worse than the other models. Model

2The gap is the objective bound minus incumbent object value
all divided incumbent object value.all divided incumbent object value.
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The horizontal lines are the

different room capacities

Figure 4. The number of students registered versus courses. The
maximum allowable room capacity for the 25 rooms are plotted as
horizontal dotted lines.
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3) achieves fewer course clashes than model 1), otherwise
its performance is similar. The fewest course clashes are
achieved here using model 2) and 4). In general model
4) is far superior in terms of student course clashes.
We would have expected to get even better results with
model 4) with M

¯
equal to 4, but it may be that a longer

computation time that 3 hours may be needed. When
reducing the value of M

¯
the more computation time

is needed and also the internal memory. The internal
memory required doubles when M

¯
is reduced from 5 to

4.

Table I
Summary of results in terms of various solution

attributes. With M
¯

= 5 and over considered in the

objective function.

C
on

st
ra

in
ts

∑
∑ (x

c
,6

,r
+

x c
,7

,r
)

∑
∑ x c

,8
,r

∑ z t,
c 1

,c
2

∑ z t,
c 1

,c
2

M
c 1

,c
2

∑ r d
∑

∑
∑ (f

r
C

r
−

S
c
)x

c
,t

,r

In
cu

m
b
en

t

G
ap

1) 61 1 171 276 50 1903 7141 0.17%
2) 60 2 166 290 50 1904 7164 0.18%
3) 60 1 169 290 50 1932 7142 0.18%
4) 63 3 122 203 49 2022 7285 0.22%

Table II
Summary of results in terms of various solution

attributes. With M
¯

= 4 and over considered in the

objective function.

C
on

st
ra

in
ts

∑
∑ (x

c
,6

,r
+

x c
,7

,r
)

∑
∑ x c

,8
,r

∑ z t,
c 1

,c
2

∑ z t,
c 1

,c
2

M
c 1

,c
2

∑ r d
∑

∑
∑ (f

r
C

r
−

S
c
)x

c
,t

,r

In
cu

m
b
en

t

G
ap

1) 61 1 164 249 50 1933 7145 0.22%
2) 60 2 142 211 50 1903 7164 0.19%
3) 62 1 147 235 50 1933 7145 0.22%
4) 61 3 141 217 50 1951 7312 0.21%

V. Conclusion and discussion

The idea of using clustering to find pseudo-curricula
is two fold. Firstly, to shrink the feasible search space
and secondly to reduce the number of individual stu-
dents having numerous clashes. It was also shown that
the search space could be shrunk simply using con-
straint (13) with some suitable tolerance on the number
of students taking common courses, that is Mc1,c2

should
be greater than 8 was used in the experiments. Using
a value of 1 implies that no clashes are tolerated. This
would mean more courses are forced into time-slot eight.
The objective function that attempts to minimize all
course clashes fails to solve the problem to optimality
even after 24 hours. However, when this condition is
relaxed to allow for more clashes it can be solved with a
reasonable gap within a few hours. A suitable gap was
achieved with M

¯
as low as 4.

The use of clustering not only helps in building more
efficient timetabling models, but also gives insight into
how the students are taking their degree. The work
described is work in progress. The next steps are to
investigate more thoroughly the number of clashes ex-
perienced by the individual students. In the extreme
case each students can be treated as a curriculum and
the object would be to satisfy as many of these student
curricula as possible. This may be achieved by setting
the students curriculum as soft constraints. However,
such an approach may be fruitless as it will introduce
even more binary variables to the problem. However,
incrementally adding students that have many clashes in
their timetable as a pseudo-curricula may be one answer.
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