
Game–Theme Based Instructional Module for
Teaching Object Oriented Programming

Sharad Sharma, Senior Member, IEEE, James Stigall, Sarika Rajeev
Department of Computer Science

Bowie State University
Bowie, MD 20715, USA

Email: ssharma@bowiestate.edu, {stigallj0813, rajeevs1027}@students.bowiestate.edu

Abstract— Due to complex mathematical nature of computer
science, it is considered a complex and arduous subject by college
students. Due to a gradual decrease in computer science students,
in spite of a growing demand for computer science professionals,
it is crucial to find a way to attract computer science students by
making the concepts even more fascinating and absorbing. The
aim of this paper is to develop game theme based instructional
modules for computer science students that motivates and
engages students while contributing to their learning outcomes.
Game theme based instructional modules are designed to
encourage faculty to teach and motivate students to learn the
concepts of object oriented programming using interactive,
graphical, game-like examples. This paper discusses the design
parameters and implementation of the module and describes a
case study of adopting the module in an existing class. The results
of the study demonstrate the effectiveness of the instructional
module and the possibility to include it in the existing curriculum
with minimum alterations to the existing established course
material. The instructional modules act as a supplement to an
existing course and enable faculty to explore teaching with a
game-theme materials and helping students to be more motivated
and engaged in class.

Keywords—Games;Courseware; Assessment;

I. INTRODUCTION
Game Theme based Instructional (GTI) modules are widely

used in academia as supplementary teaching tools with the
expectation that students will be able to master the content
within the modules. These types of software applications are
typically built around the notion that the student can learn a
concept or idea by experiencing it in real life. Educational
gaming modules are also built with usability in mind whereas
users should find the modules to be intuitive.

Ever since the first game [1] came into existence, we have
observed dramatic increase in the popularity of computer
games. In recent years, there has been a considerable interest in
the gaming modules, when a game was added as a flavor for
computer science students [2]. There are already many studies
pertaining to the use of games for education, and most of them
agree that software games provide tangible, understandable,
and appealing context in learning of computer science [3, 4, 5].
Active learning is a kind of learning procedure, when students
use some interactive instrument such as [2,3] gaming modules
to learn the concepts. It is clear that when anyone is actively
engaged in learning, then it is beneficial for learning. A
commitment to the learning environment facilitates exploration

is the subject while engagement promotes the need to explore
further [6]. Existing research and studies [7, 8] have shown that
the game development theory has been successful for CS1
courses, but there are relatively very few studies which
concentrate on CS2. CS2 is still a gridlock for computer
science learning.

 In this paper we show game theme based instructional
modules developed for computer science students. The module
demonstrates the concepts of object oriented programming
language (OOP) specifically, encapsulation, polymorphism,
and inheritance. The module was implemented using Python
within Vizard, a virtual reality development toolkit. Three-
dimensional (3D) models featured in the module were created
in 3ds Max, a 3D modeling and animation software
application. The results demonstrate that the module helped
students learn OOP concepts and found the module user-
friendly. During the semester, the module was evaluated with
undergraduate students in a programming course. The students
experimented with the module and took a survey afterwards.
Survey data demonstrates that the module makes a significant
educational impact on students.

Fig. 1. Virtual Instructor used in the OOP instructional module.

Game-themed instructional modules have the potential to
help students understand these concepts as they present life-
like challenges and prompt students (or users) to come up with
solutions associated with those challenges and the concepts
they are trying to learn. The rest of the paper is structured as

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.35

253

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.35

252

follows: Section II, describes the previous work briefly.
Section III, illustrates the design of OOPS module. In Section
IV, we discuss its implementation using the Vizard Virtual
Reality Toolkit. In Section V, we evaluate the effectiveness of
the two modules with a class of undergraduate computer
Science majors.

II. RELATED WORK

A. Educational Software
Educational software helps students learn concepts by

applying classroom theory to real-world events. This can be
seen as constructivsm where a student acquires, or “builds”,
knowledge from real-world applications of things learned in
the classroom [9]. According to Tam [10], constructivism and
technology provides the student with opportunities to identify
problems and to use critical thinking to solve those problems.
Vichido, et al. [11] state that critics of constructivism regard it
as nothing more than a trend and it is unclear that courses using
the approach should yield the same degree of achievement as
those using more traditional approaches. An instructional
software application teaching Japanese was evaluated by
Nagata [12] with fourteen students, whose first language was
not Japanese. An educational software application evaluated
by Homer, et al. [13] increased children’s knowledge of
asthma, the main character of which suffers from it. The group
that used the software got 77% of the post-test questions
correct compared to 63% correct from those studying only the
paper-based material.

B. Usability in Educational Games
Usability is an important aspect of instructional software.

Costible, et al. [14] states that if instructional software is not
usable, then users will spend more time trying to understand
how to use it instead of learning the content within the software
– poor usability distracts students from learning objectives.
Koutanis, et al. [15] and Virvou, et al. [16] defined usability
issues faced in developing educational software. Koutanis, et
al. argued that the software aspects that users pay the most
attention to are the objectives of the application, installation of
additional software on their computers, protection of personal
information by the software, content completeness within the
software, reaction time of the user selection, and references to
information sources in the software. Chang, et al. [17] found
that users who regularly play video games tend to be more
engaged and less frustrated than those who do not regularly
play video games. Ahmad, et al. [18] also evaluated a mobile
application that teaches English as a foreign language to
school-age children by surveying parents and teachers and
interviewing the children using it.

C. Educational Virtual Reality (VR) Games

Educational virtual reality (VR) games motivate students to
learn. According to Psotka [19], combining VR with
educational games helps students understand complex events
and objects using abstractions and real-life experiences. They
also foster teamwork and social skills when played in a multi-
user environment as observed by Martinez-Reyes and
Hernandez-Santana [20]. In an age where a majority of youth
are familiar with VR technologies such as video games, its role

in education is relevant as stated by Callaghan, et al. [21] and
by Burkle and Kinshuk [22]. Educational VR games should be
considered as an alternative to a more traditional curriculum
when the real environment being studied is harmful to the
student or to itself, if the student interacts with it [23]. Cecil, et
al. [24] evaluated a virtual reality module developed for a
course in micro assembly. On the other hand, Yahaya [25]
assessed a module that taught decision making to students
majoring in Business and found that the students using the
module were engaged in the tasks presented to them and fully
understood the decision-making processes that helped them
complete those tasks. Also, Mavrogeorgi, et al. [26] developed
a mobile VR application that provided the user with
information on historical sites when the user was in front of it.

VR applications and educational modules are also seen in
industry. Akiyoshi, et al. [27] created a module to train
employees on power equipment maintenance in an effort to
help visualize the equipment and to deepen their understanding
of maintenance tasks. A VR system teaching metal casting
was implemented by Watanuki and Kojima [28].

III. MODELING AND DESIGN OF GAME THEME INSTRUCTIONAL
MODULE (GTI)

This section discusses the modeling of the OOP

instructional module, gives a brief overview of the Vizard
platform used to develop the games, and the concepts covered
in the module.

A. Design Considerations
The modules were built with the Constructivist Theory in

mind, which states that the student “builds” knowledge by
experiencing it for themselves in the real world. The modules
were also built using functional and nonfunctional
requirements. The functional requirements were taken from the
student’s perspective while the nonfunctional requirements
were taken from the instructor’s perspective. The functional
requirements are listed as follows:

• User interface must be intuitive – students using any of
the modules should not have any difficulty interacting
with them. This requirement makes user experience
enjoyable.

• The student should be able to restart either module at
any time – if a student experiences a technical difficulty
(e.g.: a module crashes, not getting correct responses),
then the module should be restarted.

• The student should be able to understand the
instructions – user instructions detailed in each module
should be easy to understand so that the student can
navigate through the module without confusion.

• Pseudocode displayed should be comprehensible – as
with the instructions, pseudocode should also be easy to
understand. The purpose of it is to give the student a
high-level view of how a polymorphism, inheritance,
and encapsulation operates.

254253

• Within each module, the student should be able to
switch between one game and another – if a student
grows tired of a game within any module, the student
should switch from that game to another without
difficulty.

The nonfunctional requirements are listed as follows:

• Each module should motivate the student to learn – the
objects (pseudocode, graphics, etc.) featured in each
module should spawn interest in the student for
programming. Each module should motivate the
student to further his/her knowledge of loops, arrays,
and other data structures.

• Each module should teach the student about the subject
– although each module features examples from
disciplines outside of Computer Science, the module
should ultimately teach the student about object
oriented programing concepts. The examples featured
in each module should not deviate from the subject
matter.

• Reaction to user input should be immediately rendered
– the student should not wait for any reaction to his/her
input (i.e. button clicks). Waiting for reaction could
impair user experience.

• Graphics should be appealing to the student – each
module should feature graphics (3D models, buttons,
text, etc.) that visually appeal to the user. This
requirement enhances user experience.

• The modules should be portable – the student should be
able to play each module on any platform. That is, it
should work whether the student is using a Windows or
Macintosh system.

• An award system should be featured – having an award
system would give the student some idea of his/her
learning progress for OOP.

The environment for the module was built using three-
dimensional models found on various websites. The models
were adapted into a format compliant with Vizard using 3ds
MAX, a software application where 3D models can be created
and animated. Afterwards, textures were added to the lake,
grass, and gazebo area. The environment for the module
includes a matrix of buttons and a built-in male instructor
avatar as shown in fig. 1.

B. Vizard Framework
Vizard Virtual Reality Toolkit is a Python-based integrated

development environment (IDE) used to develop virtual reality
applications. Three-dimensional (3D) models can be built in
3ds MAX and then imported into the Vizard environment using
its built-in exporter. Picture (.jpg or .png) files can be also be
incorporated into the environment. Models and pictures
imported into Vizard can be positioned into the environment
and scaled to fit it. Through its libraries, Vizard provides built-
in functions that govern interactions between objects and their
environments. One can also add shapes, text, buttons, and
sliders through those functions. Vizard consists of a Python

script editor and debugger. After a script has been created, it
can be run with or without debugging. It can also be published
as an executable (.exe) file for use by the general public.

IV. GAME THEME INSTRUCTIONAL MODULE (GTI)
IMPLEMENTATION

The development of the Object-Oriented Programming
(OOP) training module aimed to supplement the curriculum
surrounding OOP, whether it is used as an in-class activity or
as a study tool. The design and implementation phase
consisted of creating the module with the user in mind.

A. OOP Instructional Module
The OOP training module was developed with two goals in

mind: instruction and user-friendliness. Each game in the
module starts with a tutorial on the game’s topic (for example,
the Polymorphism game would start with a tutorial on
polymorphism). The tutorials start by explaining what the
topic is and then gives examples to further help the user
understand the topic. Tutorials were built with beginners in
mind but users possessing more advanced knowledge on the
topic may skip a tutorial and proceed directly to the game. The
first goal was also met through the Constructivism Theory –
where one “builds” knowledge by practicing what is being
studied. The quizzes and challenges featured in each game in
the module embodies this theory by enabling the student to
construct knowledge through gaming metaphors.

As far as usability is concerned, user instructions given
throughout the module are clear so that the user is able to
understand the objectives of the game and the concept being
taught. Also, at the end of each game, the user can either play
the game again or play another game. If the user plays the
game again, the user has the opportunity to improve his/her
performance during the second attempt, provided that the user
did not play the game as well as expected the first time. The
module’s graphics (3D models, text, pictures, etc.) were added
to make the module visually appealing to the user, enhancing
the user’s experience and actualizing the game-like
environment. Lastly, the module is portable – meaning that it
can be played on any platform (e.g. Windows, Macintosh)
providing convenience for the user.

B. MVC Implementation
The OOP training module was developed using the Vizard

Virtual Realty Toolkit – a Python-based integrated
development environment (IDE) used to create VR
applications. Three-dimensional models featured in the
module were developed using 3ds Max 2014 and imported into
Vizard, and scaled to fit the user environment. Picture files
were also imported and scaled. The functionalities for those
models, pictures, and user interface elements (buttons, text
boxes, etc.) were implemented in Python. Built-in avatars were
used to interact and engage the user.

The software architecture pattern used is illustrated in Fig.
2. The model-view-controller (MVC) architecture was used to
develop the model whereas the model represents the data, the
view represents how the data is presented to the user, and the
controller represents how the data is manipulated by the user.

255254

In this module, the Python source code is
software architecture. The renderer used to g
the 3D models seen in the model, and the s
also seen in the model all constitute the view
architecture. The mouse and keyboard comm
are used to interact with the module, so th
controller in the architecture.

Fig. 2. Software architecture used in developing the mo

All the elements in the view (except for
defined by the source code, which also def
commands and the buttons. Since the contr
used to interface with the module, they contr
source code can be executed and which 3D
screen elements are visible at a given time.
the view elements control what commands an
the code can be executed.

C. GTI Modules
The module is divided into three games

one topic related to object-oriented progr
inheritance, polymorphism, and encapsulation

Fig. 3. Main menu showing the tree instructional mood

When the user starts the module, he/she
avatar giving them an overview of what it is
the main menu. The welcome screen and m
seen in Fig. 2 and 3.

1) Inheritance Module
In this module, the user is greeted with

modeling language) class diagram located i
screen. That diagram has only one class,
object, the integer variable “speed”. At the
the user is asked to build a vehicle by first c

the model in the
enerate the scenes,
shapes and figures
w of the module’s
mands and buttons
hey constitute the

odule

r the renderer) are
fines the available
roller elements are
rol what part of the
D model and other
 The visibility of
nd what portion of

s, each discussing
ramming, namely:
n.

dules

is greeted with an
about followed by

main menu can be

h a UML (unified
in the top right of
Vehicle, and one
start of the game,
hoosing what type

of vehicle he/she wants to bu
vehicle. The UML diagram
corresponding to the type of v
The newly added class is show
Vehicle class and, thus, inheri
class. Lastly, the user is aske
vehicle – whether it will be us
commercial purposes. Once th
UML diagram expands a
corresponding to the chosen pu
is displayed as being the child
vehicle type class – the purpos
the type class. The resulting ve

A screenshot of the Inherita
In the screenshot, the parent cla
is Air, corresponding to the t
inherits the variable, “speed”,
its own function, fly(). The
Commercial, which inherits tw
fly(), while containing its own
and ArrivalT(). The vehicle
commercial jetliner.

Fig. 4. Commercial jetliner built in t
UML diagram.

2) Polymorphism Module
In the Polymorphism modu

number between 1 and 20,
number, also between 1 and
computer guesses correctly, th
incorrect, either player loses t
the computer start out with 1
when both players make five i
zero points) or if either player m

In Fig. 5, the user is represe
located to the left of the screen
by a picture of a laptop, loca
Beneath each player is Java ps
player is making their guesse
guess by using his brain whil
number generator to make
pseudocode, the one located b
below the computer, contain a
However, that function behav

uild – an air vehicle or a land
expands to include the class

vehicle the user wishes to build.
wn to be the child class of the
its the properties of the Vehicle
ed to choose the purpose of the
sed for military purposes or for
he user makes that choice, the

again to include the class
urpose for the vehicle. That class

class for the previously-chosen
e class inherits the properties of

ehicle is displayed, as well.

ance module is shown in Fig. 4.
ass is vehicle and the child class
type of vehicle. The class Air

from Vehicle while containing
child class for Air is the class

wo objects from Air, “speed” and
n objects: the variable “Airline”

that ends up being built is a

the Inheritance Game and the resulting

ule, the user is asked to guess a
then the computer guesses a
20. If either the user or the

he game is over. If the guess is
two points. Both, the user and
10 points, so the game is over
incorrect guesses (for a total of
makes a correct guess.
ented by an avatar, named Jack,
n. The computer is represented
ated at the right of the screen.
seudocode describing how each
es. Jack (the user) makes the
le the computer uses a random
the guess. Both pieces of

below Jack and the one located
a common function, getGuess().
ves differently. This metaphor

256255

realizes the principle of polymorphism wher
can have the same function(s) but th
differently.

Fig. 5. Screenshot of the Polymorphism Game

3) Encapsulation Module
The Encapsulation module is comprised o

the first quiz, the user is asked to assign
modifier (those being public, private, or prot
variable or function in the class Car.

Fig. 6. First quiz in the Encapsulation Game

For each object in the class Car, the use
terms of the real-life operation of a car. Onc
the user is given feedback on his/her answe
points. The user may take a second quiz or
screenshot of the first quiz can be seen in Fig

V. RESULTS AND ANALYSIS

Game theme based instructional mod
analyzed with interaction of students to these
the fall semester, the OOP module was eval
undergraduate students in a CS2 programm
students completed the pre and post survey
had taken a previous CS1 programming cou
were male and 20% students were female
were computer science and technology m
student was a mathematics major. The stud

re multiple classes
hey may behave

of two quizzes. In
the proper access
tected) to a certain

er must respond in
ce the quiz is done,
ers and is awarded

quit the game. A
. 6.

S
dules have been
e modules. During
luated with twenty
ming course. The
y. All the students
urse. 80% students
. All the students

majors, while one
dents experimented

with the module and took a s
demonstrates that the m
educational impact on student

Fig. 7. The OOPS game developed m

As seen from figure 7, maj
that the use of OOPS instruc
interest in programming and ga
in figure 8, 86.99% students
understand the code (Inhe
Encapsulation) while playing th

Fig. 8. Were you able to understand
and Encapsulation) while playing the O

Results from the survey giv
was used in class reveal that s
with each module in the areas
the graphical user interface (90%

VI. CONC

We have designed and im
teaching OOPS concepts aimin
of teaching the students in i
courses. We evaluated the GT
undergraduate Computer Scien
demonstrates that the m
educational impact on student l

survey afterward. Survey data
module makes a significant

my interest in programming/gaming

ajority (80%) of students agreed
ctional module developed their
aming. On the other hand as seen
s felt that they were able to
eritance, Polymorphism, and
he OOPS game.

d the code(Inheritance, Polymorphism,
OOPS game?

en after the instructional module
students were generally satisfied
of clarity (92%) in write-up and
%).

CLUSION
mplemented GTI modules for

ng to provide an alternative way
introductory Computer Science
TI module in a class of twenty
nce major students. Survey data
module makes a significant
earning concepts.

257256

Fig. 9. How would you rate the following learning concepts?

The modules allowed the instructor to use GTI and to
improve his own understanding of game-like programming
with a minimal time investment. This allowed the instructor to
increase his expertise and confidence in building his own
game-them based teaching material.

ACKNOWLEDGMENT
The authors would like to thank the National Science

Foundation for supporting the project. This work is funded
under the grant award number- HRD-1238784.

REFERENCES
[1] Pooh. W . Amy, "Computer game addiction and emotional dependence",

2012.
[2] Bayliss, Jessica D and Strout, Sean. Games as a "Flavor" of CS1.

Proceedings of the 37th SIGCSE technical symposium on Compute
r science education, ACM, pp. 500�504,Houston,Texas, USA, 2006.

[3] Leutenegger, Scott and Edgington, Jeffrey.ACM SIGCSE Bulletin
Volume 39 , Issue 1 , pp. 115�118.A games first approach to teac
hing introductory programming. 2007.

[4] Amory, A., Naicker, K., Vincent, J. & Claudia, A. "Computer games as
a learning Resource". Proceeding of ED-MEDIA, ED-TELECOM,
World conference on Education Multimedia and educational
Telecommunications, vol.1, pp.50-55, 1998.

[5] Conati, C. & Zhou, X. Modeling student's emotion from cognitive
appraisal in educational games.", 2002.

[6] Price, S.Rogers, Y.Scaife, M.Stanton, D. & Neale, H. "Using tangibles
to promote novel forms of playful learning" In interacting with
computers (2003), pp. 169-185, 2003

[7] Garlick, Ryan and Akl, Robert. 9th International Conference on En
gineering Education.Interclass Competitive Assignments in CS2:
A One Year Study, 2006.

[8] Forte, Andrea and Guzdial, Mark. Big Island, Hawai`i: IEEE Com
puter Society.Proceedings of the Proceedings of the 37th Annual H
awaii International Conference on System Sciences (HICSS'04) � T
rack 4 � Volume 4. p. 40096.1.Computers for Communication, Not
Calculation:Media as a Motivation and Context for Learning, 2004.

[9] S. Christina and K. Dimitrios, “Applying Constructivism for Interactive
Educational Software: a Research Based Design, Implementation and
Evaluation Method” in Proc. IEEE International Conference on
Advanced Learning Technologies (ICALT ’04), 2004 © IEEE. doi:
10.1109/ICALT.2004.1357614.

[10] M. Tam, “Constructivism, Instructional Design, and Technology:
Implications for Transforming Distance Learning”, Educational Tech. &
Society, vol. 3, no. 2, Apr. 2000.

[11] C. Vichido, M. Estrada, et al., “A constructivist educational tool:
Software architecture for web-based video games” in Proc. Fourth
Mexican Int. Conf. on Computer Science (ENC ‘03), IEEE. doi:
10.1109/ENC.2003.1232888, 2003.

[12] N. Nagata, “Input vs. Output Practice in Educational Software for
Second Language Acquisition”, Language Learning and Technology,
vol. 1, no. 2, pp. 23-40, Jan. 1998.

[13] C. Homer, O. Susskind, et al., “An Evaluation of an Innovative
Multimedia Educational Software Program for Asthma Management:
Report of a Randomized, Controlled Trial”, Pediatrics: Official Journal
of the American Academy of Pediatrics, vol. 106, no. 1, pp. 210-215,
Jul. 2000.

[14] M. F. Costabile, M. De Marsico, et al., “On the Usability Evaluation of
E-Learning Applications”, IEEE. doi: 0-7695-2268-8/05, Proc. 38th
Hawaii Int’l Conf. on System Sciences, 2005.

[15] D. Koutanis, M. Virvou, et al., “Identifying and Managing Risks in the
Development of Online Educational Software” in 5th International
Conference on Information, Intelligence, Systems and Applications, IISA
2014, Chania, Greece, pp. 245-252, 2014.

[16] M. Virvou and G. Katsionis, “On the usability and likeability of virtual
reality games for education: The case of VR-ENGAGE”, Computers &
Education, vol. 50, no. 1, pp. 154-178.

[17] M. Chang, M. Evans, et al., “Educational Video Games and Students’
Game Engagement” IEEE. doi: 10.1109/ICISA.2014.6847390, in 2014
Fifth Int. Conf. on Information Sci. and Applications (ICISA 2014),
2014.

[18] W.F.W. Ahmad, A.R.S. Shaarani, et al., “Mobile Language Translation
Game” in Proc. 2012 International Conference on Computer &
Information Science (ICCIS), Kuala Lumpur, Malaysia, pp. 1099-1104,
2012.

[19] J. Psotka, “Educational Games and Virtual Reality as Disruptive
Technologies”, Educational Technology & Society, vol. 16, no. 2, pp.
69-80, Apr., 2013.

[20] F. Martinez-Reyes and I. Hernandez-Santana, “The Virtual Maze: A
game to promote social interaction between children” in Proc. Eighth
International Conference on Intelligent Environments, Guanajuato,
Mexico, pp. 331-334, 2012.

[21] M. J. Callaghan, K. McCusker, et al., “Integrating Virtual Worlds &
Virtual Learning Environments for Online Education” in First
International Consumer Electronic Society’s IEEE Games Innovation
Conference, London, United Kingdom, pp. 54-63, 2009.

[22] M. Burkle and Kinshuk, “Learning in virtual worlds: The challenges and
opportunities” in Proc. 2009 International Conference on CyberWorlds,
Bradford, United Kingdom, pp. 320-327, 2009.

[23] S. Fan, Y. Zhang, et al., “The Application of Virtual Reality in
Environmental Education: Model Design and Course Construction” in
Proc. 2010 Int. Conference Biomedical Eng. and Computer Sci., 2010.

[24] J. Cecil, P Ramanathan, et al., “Virtual Learning Environments in
Engineering and STEM Education” in 2013 Frontiers in Education
Conference, Oklahoma City, OK, pp. 502-507, 2013.

[25] R. A. Yahaya, “Assessing the Effectiveness of Virtual Reality
Technology as part of an Authentic Learning Environment” in
Proceedings of the Sixth International Conference on Advanced
Learning Technologies (ICALT ’06), Kerkrade, The Netherlands, pp.
262-264, 2006.

[26] N. Mavrogeorgi, S. Koutsoutos, et al., “Vivid educational experience
with virtual reality” in Proc. The Fourth International Multi-Conference
on Computing in the Global Information Technology (ICCGI ‘09),
Cannes/La Bocca, France, pp.196-201, 2009

[27] M. Akiyoshi, S. Miwa, et al., “A Learning Environment for Maintenance
of Power Equipment Using Virtual Reality” in Fifth International
Conference on Image Processing and its Applications, Edinburgh, pp.
331-335, 1995.

[28] K. Watanuki and K. Kojima, “Virtual Reality Based Knowledge
Acquisition and Job Training for Advanced Casting Skills” in Proc. 16th
Int. Conference on Artifical Reality and Telexistence, 2006.

258257

