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Abstract— Traffic congestions are a major concern for big 
cities around the world due to its multifaceted negative 
impacts. A cost-effective solution to reduce vehicle travel times 
and prevent traffic congestions is traffic signal control. In this 
work, we investigate a biologically-inspired neural network, 
which, in contrast to other approaches, is able to continuously 
monitor the system state and make decisions. An extension of a 
previous model is proposed, establishing a multiagent system 
and allowing the coordinated control of multiple intersections. 
Methods for parameter determination and stability analysis 
are also proposed. Finally, the model performance for different 
sets of parameters and vehicle demands is evaluated with a 
simulator of urban mobility and compared to a conventional 
cycle-based control method. 

Keywords- Computational intelligence; urban traffic control; 
intelligent transportation systems; complex dynamic systems; 
biologically-inspired neural networks. 

I.  INTRODUCTION 

Urban traffic is a complex dynamic system with multiple 
impacts on the economy, the environment and society. Daily 
traffic congestions affect, for example, human health, due to 
stress increase; the Gross Domestic Product (GDP), mainly 
because of the opportunity cost of the additional time 
citizens spend commuting; and air quality, as a consequence 
of gas emission. The continuous increase in traffic demand 
worsens the situation, as it is not accompanied by an 
equivalent improvement in urban infrastructure. 

A cost-effective solution to mitigate these negative 
impacts is traffic signal control, which optimizes vehicle 
flows to prevent traffic congestion by determining 
semaphore green times. Traffic signal control is an important 
research topic in the intelligent transportation systems field, 
and hence many approaches were proposed. Among them, 
the majority is based on optimal control theory and artificial 
intelligence, as briefly reviewed in the next section. These 
solutions predominantly adopt a cycle-based control, 
measuring the system state and determining semaphore green 
times after each semaphore cycle, which comprises all 
semaphore phases of an intersection between streets.  

However, the resulting large sampling and decision 
making time restricts the system efficiency, as it prevents a 
faithful characterization of the system state and does not 
provide a flexible actuation. This efficiency restriction is also 
a consequence of the system complexity, which is partially 
observable and controllable, as driver actions are 
unpredictable, and has a stochastic nature, nonlinear 
dynamics, and numerous state and input variables. 

Based on the good results of biologically-inspired neural 
networks (BiNNs) for controlling complex dynamic systems, 
such as stability and adaptability [1], we further investigate a 
model for traffic signal control [2]. The main difference 
between BiNNs and artificial neural networks is that the 
latter focuses on the learning aspect of biological neural 
networks, whereas the former focuses on its dynamic 
behavior, not having – in most cases – a training period. 
Moreover, BiNNs adopt more characteristics of biological 
neural networks, such as inhibitory synapses and neural 
adaptation mechanisms. 

The approach investigated has a higher reactivity than 
other urban traffic control methods, being able to 
continuously measure the system state and to modify the 
active semaphore phase at any moment. Previous work [2] 
presented the neural network model and performed 
comparative simulations. Nevertheless, only the control of a 
single intersection was studied and pre-established model 
parameters were adopted, not allowing the definition of a 
desired behavior. 

Therefore, we extend here the model proposed into a 
multiagent system, in which each agent controls a single 
intersection and interacts with its immediate neighbors to 
achieve coordinated control of multiple intersections. 
Furthermore, we propose a method to determine the model 
parameters according to the desired behavior and present a 
method to analyze the model stability. The model 
performance for controlling multiple intersections is 
evaluated in two simulation studies: the first has a constant 
vehicle demand and different parameter configurations; and 
the second compares the BiNN to a conventional cycle-based 
control method for various vehicle demands. 
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II. RELATED WORKS 

Modern urban traffic control can be divided in two 
groups according to its basis: optimal control theory; and 
artificial intelligence. Regarding the former group, the 
predominant control method is the distributed model 
predictive control, in which each intersection is represented 
by an agent that interacts with its neighbors in order to 
determine an optimal solution for the multiagent system. 
Thereby, agents iteratively predict the system behavior with 
a linearized model of the urban traffic. 

Whilst Tettamanti et al. [3] focused on achieving more 
robust predictions, other authors focused on the spatial and 
temporal decomposition of the urban traffic control problem 
and on the coordination of agents [4, 5]. The main 
disadvantage of these approaches is the difficulty in 
predicting the behavior of a stochastic system, such as the 
urban traffic, with a linearized model [6].  

Artificial intelligence is a broadly explored field in urban 
traffic control, in which works based on fuzzy systems, 
artificial neural networks, reinforcement learning, and 
evolutionary algorithms were already surveyed [7]. The 
majority of them adopt a multiagent basis to decompose the 
complex problem of urban traffic control, and their main 
advantage is the exemption of a model of the controlled 
system. 

Among the most recent solutions, Gokulan and 
Srinivasan [8] proposed a symbiotic evolutionary learning 
approach to determine the parameters of distributed fuzzy 
controllers. Tahifa, Boumhidi and Yahyaouy [9] proposed a 
swarm Q-learning approach, in which agents also learn from 
neighbor experience. Chu and Wang [10] proposed an 
approximate Q-learning approach, in order to reduce the 
computational complexity of the learning algorithm. 
Nevertheless, learning-based control requires a huge amount 
of data and training time to adequately represent the behavior 
of stochastic systems with many variables [3, 7, 8]. 

Works related to biologically-inspired neural networks 
(BiNNs) mainly focus on the control of robots, which are 
also complex dynamic systems. The different BiNNs vary in 
network structure and neuron model, which comprises 
membrane potential (activation) and neuron output 
determination, types of synapses and neural adaptation 
mechanisms. 

According to Nichols, Mcdaid and Siddique [11], the 
more realistic a neuron model is, the higher its computational 
cost. The authors adopted the leaky integrate-and-fire neuron 
model because of its low computational cost, and elaborated 
a non-recurrent network structure with a neural adaptation 
mechanism to control the motion of a wheeled robot. 
Helgadóttir et al. [12] also controlled the motion of a 
wheeled robot with a non-recurrent neural network, 
additionally adopting inhibitory synapses and extending the 
integrate-and-fire model to directly provide neural adaptation 
to the membrane potential calculation. 

Another type of BiNN for robot control is the neural 
oscillator, which was applied to control walking, crawling, 
swimming and flying robots, and whose related works were 
surveyed by Yu et al. [1]. According to Ijspeert [13], the 

advantages of BiNNs with oscillatory output signals are their 
intrinsic limit cycle, which indicates stability; few control 
parameters, which are able to modulate signals with 
flexibility; and easy feedback integration.  

The BiNN investigated here has an oscillatory behavior 
achieved by lateral inhibition dynamics and a neural 
adaptation mechanism called intrinsic plasticity. Moreover, 
the neuron model adopted is similar to the model of artificial 
neural networks, which has the lowest computational cost. 
As aforementioned, in contrast to the urban traffic control 
approaches reviewed in this section, the BiNN investigated is 
not cycle-based, because of its highly dynamic behavior. 

III. BIOLOGICALLY-INSPIRED NEURAL NETWORK  

The scenario studied in this work consists of five 
intersections between streets, which have two semaphore 
phases each, as illustrated in Fig. 1. Due to the modularity 
principle of the model, each intersection is represented by an 
agent, whose behavior is detarmined by a BiNN. In order to 
consider the interaction between neighboring intersections 
and to establish a multiagent system dynamics, the model 
previously proposed [2] is extended with the additional 
inputs qn,1 and qn,2, as illustrated in Fig. 2. These sensorial 
receptors form axoaxonic synapses with receptors qa and qb, 
having a multiplicative effect on them. 

Whilst receptor qn,1 represents the signals from all 
immediate neighbors of agent 1 that affect semaphore phase 
1, qa and qb represent the street occupations related to phases 
1 and 2, respectively. Neurons q1 and q2 sum all inputs of 
each phase and do not have intrinsic plasticity, as biological 
bipolar neurons. Neurons p1 and p2 represent the semaphore 
phases of the controlled intersection, i.e., their output 

 
Figure 2. Structure of the biologically-inspired neural network. 

 
Figure 1. Scenario of the study and semaphore phases. 
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activates their respective semaphore phase. The recurrent 
connections of neurons p1 and p2 represent biological G-
Proteins, which maintain an initial activation for longer 
periods. 

Finally, neurons h1 and h2 inhibit the activity of their 
opposite phase with lateral inhibition dynamics, which 
allows only one phase to become active at a time. These 
neurons receive inputs from pi neurons, generating feedback 
inhibition, as well as from qi neurons, generating 
feedforward inhibition. Whilst feedback inhibition reflects 
the current state of semaphore phases, feedforward inhibition 
anticipates variations in the system input. 

The model dynamics is based on the work of Peláez and 
Andina [14], and, hence, is represented by (1), (2) and (3). 
Whilst (1) determines the neuron activation Ai based on its Ni 
inputs Qj and their respective synaptic weights wj, (2) 
determines the neuron output Oi with a sigmoidal activation 
function. Equation (3) determines the activation function 
shift si, which represents the intrinsic plasticity of biological 
neurons and is the adaptation mechanism of the model. In the 
equation, � determines the neuron adaptation speed. 

����� = ∑ 	
�
�
∈
�  (1) 

����� = 1 �1 + ���������������  (2) 

����� = (���� + ���) (� + 1)⁄  (3) 

The additional input proposed qn,1, whose general form is 
presented in (4), is composed by all interactions of agent 1 
with agents 3 and 5. These interactions are: Mk positve 
signals from neuron outputs of downstream links Op,i, 
wheigthed by a synchronization factor τ to coordinate the 
agent activities and form green waves; and Pk negative 
signals from upstream links, which prevent street saturation 
and are polynomial functions of upstream street occupations 
qj.  

Street saturation causes the spillover effect, which 
drastically reduces the urban network mobility [15], whereas 
green waves reduce vehicle stops at traffic signals, as well as 
their average travel time [16]. The polynomial term of the 
equation was empirically defined in order to produce a 
negligible inhibition for small street occupations and an 
increasingly stronger inhibitory signal when street 
occupation overcomes 80%. 

��,� = ! �
"# ∑ �$,���∈"# − �

%# ∑ �0.9�
� + 0.1�
�
∈%#  (4) 

A. Parameter Determination 
The extended BiNN, presented in Fig. 2, has 9 

parameters: 7 synaptic weights, the adaptation coefficient �, 
and the synchronization factor τ. Due to the huge number of 
possible parameter combinations, and its broad spectrum of 
resulting behaviors, we propose in this subsection a simple 
method for parameter determination according to the desired 
agent behavior, which ultimately determines the mutiagent 
system behavior. 

Agent behavior can be characterized by three intrinsic 
proprieties of the BiNN: natural frequency of oscillation Ω, 
input sensitivity S, and degree of synchrony Τ. The first 
intrinsic propriety refers to the oscillation frequency of 
neuron outputs for constant system inputs, which occurs, for 
example, in saturated urban networks. Altough the 
oscillation frequency can vary from Ω, this parameter defines 
the steady state behavior of the agent. 

As each parameter of the BiNN has a different degree of 
influence on Ω, an experimental sensitivity analysis was 
conducted to determine the most influent parameters. The 
analysis consisted in varying each parameter from its lower 
to its upper bound (0 and 1), whilst the others were 
maintained at their baseline values, as defined in [2]. The 
parameter baseline values are: ξ equal to 0.07, wn and wq 
equal to 1, wp, wqp and wqh equal to 0.4, and wh and wph equal 
to 0.3. 

Table I presents the relative influence of each parameter 
on Ω and shows that wp and ξ have a combined relative 
influence of 88.32%. Therefore, Ω can be defined as a 
function of wp and ξ, as presented in Fig. 3 by a chart. The 
chart does not cover all values of wp and ξ because the values 
displayed are sufficient to completely represent Ω. 

The second intrinsic propriety proposed to characterize 
agent behavior is input sensitivity S, which regards how 
variations in the system inputs affect the transition between 
semaphore phases. Thus, S is a measure of how reactive an 
agent is, as determined by (5). In the equation, wqp and wqh 
must have equal values in order to guarantee balanced 
inhibitory dynamics. A high value of S establishes a high 
influence of the system inputs on the neuron dynamics, 
denoting a high reactivity. Meanwhile, low values of S 
require stronger input variations to cause phase transitions, 
mantaining the oscillation frequency close to Ω due to a 
higher inertia. 

& = �	'$ + 	'*� 	$�  (5) 

An agent degree of synchrony Τ is directly determined by 
its synchronization factor τ, which defines agent behavior 
regarding its immediate neighbors. The higher Τ is, the more 
synchronized neighboring agents are, activating semaphore 

TABLE I. RELATIVE INFLUENCE OF MODEL PARAMETERS ON Ω. 

 wp � wph wqp wh wqh 

Influence (%) 56.88 31.44 4.15 3.57 2.44 1.52 

 
 

Figure 3. Ω as a function of wp and ξ. 
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phases at the same time. In contrast, lower values of T cause 
a delay between phase activations, optimizing traffic flows 
according to the street length between neighboring 
intersections. 

B. Stability Analysis 
Besides selecting a set of parameters to achieve a desired 

behavior, the dynamic stability of agents must also be 
ascertained. We previously [2] proved model stability for the 
parameter baseline values with simulations, which are 
insufficient to guarantee stability for different sets of 
parameters. Instead of conducting numerous simulations for 
each new set of parameters, we present in this subsection a 
direct method to analyze model stability. 

The idea is to evaluate the stability of a pi neuron in order 
to infer the stability of the neural network. As all neurons are 
interconnected, the behavior of one neuron reflects the 
behavior of the neural network. Thus, the eigenvalues of a pi 
neuron are evaluated at the neural network equilibrium 
points. According to Fuchs [17], the fixed-points (equilibria) 
of a discrete dynamic system are obtained by substituting the 
system state variables in (6). 

-��� − -� = 0 (6) 

The BiNN state varibles are presented in (7), and the 
resulting system of 8 equations can be either analitically or 
numerically solved. As the focus of this paper is not the 
model convergence, this system of equations is numerically 
solved with MATLAB, presenting an unique equilibrium 
point for each set of input values. 

-� = /�$�� ; �$�� ; �*�� ; �*�� ; �$�� ; �$�� ; �*�� ; �*�� 2 (7) 

The neuron eigenvalues λ are obtained with the Jacobian 
J of its state variables, according to (8), in which I refers to 
an identity matrix and det() stands for the determinant of the 
matrix inside the parenthesis. The Jacobian of neuron p1, 
chosen to evaluate the stability of the BiNN, is presented in 
(9) and is calculated by the partial derivatives of p1 state 
variables (∂Ap1 / ∂Ap1,  ∂Ap1 / ∂sp1,  ∂sp1 / ∂Ap1  and  ∂sp1 / ∂sp1). 

3�4(5 − 67) = 0 (8) 

5 =
⎣⎢
⎢⎢
⎡ ��>?@AB(C?DEF?D)

G@ABC?D�@ABF?DHA − ��>?@AB(C?DEF?D)
G@ABC?D�@ABF?DHA

�
I�� J ��I@AB(F?DEC?D)

G@ABF?D�@ABC?DHAK �
I�� J1 − ��I@AB (F?DEC?D)

G@ABF?D�@ABC?DHAK⎦⎥
⎥⎥
⎤
  (9) 

Solving (8) at each system equilibrium point results in 
the neuron eigenvalues. As the BiNN equilibrium point 
varies with its inputs, an additional constraint needs to be 
imposed in order to couple the BiNN inputs. This constraint, 
described by (10), adds a normalization effect to neurons q1 
and q2, whose outputs are Oq1 and Oq2, and establishes a 
relationship among them, which is presented in (11). 
Therewith, qn,1, qn,2, qa and qb do not affect the BiNN 

stability anymore, and, thus, wn and wq are set to 1. 
According to Peláez and Andina [18], neural normalization 
is a biological characteristic of shunting basket neurons. 

�'� = �'� ��'� + �'��⁄  (10) 

�'� = 1 − �'� (11) 

As neuron p1 has two state variables (Ap1 and sp1), and 
hence is a second-order system, it has two eigenvalues, 
which are shown in Fig. 4 as functions of Oq1. The real and 
imaginary parts of the eigenvalues are represented by solid 
and dashed lines, respectively, indicating the presence of two 
Hopf bifurcations [19], for Oq1 values of 0.1 and 0.9. Hopf 
bifurcations characterize transitions from an equilibrium 
point to a periodic solution, which, in this case, occur when 
the purely real eigenvalues become a complex conjugate 
pair. 

In the urban traffic control scenario, a periodic solution 
represents a sequential transition between semaphore phases, 
whereas an equilibrium point denotes the maintaince of a 
single semaphore phase. According to Fig. 4, when Oq1 equal 
to less than 0.1 or more than 0.9 equilibria are achieved. 
Thereby, in the former case phase 1 remains inactive, and in 
the latter case phase 1 remains active.  

Figs. 5 and 6 present the neuron state variables in a two-
dimensional plot, showing the behavior discussed and that 
the Hopf bifurcations are supercritical, i.e., the resulting 
periodic solution corresponds to a stable limit-cycle. In Fig. 
5, Oq1 has a value higher than 0.9, whereas in Fig. 6 it is 
equal to 0.5. In the figures, the black dots correspond to the 

 
     Figure 5. Trajectory of the Oq1 state variables for Oq1 > 0.9. 

 
Figure 4. λ as a function of Oq1. 

 
      Figure 6. Trajectory of the Oq1 state variables for Oq1 = 0.5. 
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intial conditions of the state variables, whereas the red dot 
represents an equilibrium point and the red arrows represent 
the stable limit-cycle.  

The stability analysis method presented in this subsection 
can be applied to any set of parameters, revealing the 
dynamic behavior of an agent in a direct manner. As shown 
in Fig. 4, the stability chart is symmetrical, which indicates 
that the convergence of Op1 to an inactive equilibrium causes 
the convergence of Op2 to an active equilibrium, and vice 
versa. When an oscillatory behavior is achieved, both 
neurons produce oscillatory outputs. Thus, the neural 
network behavior is extrapolated from the neuron p1 
behavior, defining how the agent controls its semaphore 
phases. 

IV. PERFORMANCE EVALUATION 

In this section the BiNN peformance for controlling 
urban traffic is evaluated in two simulation studies. The first 
regards how different values of Ω, S and T affect 
performance, whereas the second compares the BiNN with a 
conventional cycle-based control method (CBCM), which 
determines the semaphore green times after each cycle 
according to street occupations. This control method 
represents the base concept of all other cycle-based 
approaches, as reviewed in Section II, and adopts a control 
cycle of 1 minute and 30 seconds. 

The BiNNs, one for each of the five agents, were 
implemented in MATLAB, whilst the scenario presented in 
Fig. 1 was modelled in a simulator of urban mobility, 
SUMO, and the software interface was accomplished by the 
protocol TraCI4Matlab [20]. All parameter configurations 
tested were evaluated according to the stability analysis 
method proposed, showing the desired behavior: a periodic 
solution. 

All simulations last one hour and have an equally 
distributed vehicle demand. Ten simulation runs were 
conducted for each scenario configuration, and the 
performance indicator, mean travel time (MTT) of vehicles, 
is averaged over all runs. MTT refers to the mean time 
vehicles need to drive through their whole routes, from 
origin to destination, in one simulation run. The small 
resulting coefficients of variation, circa 1% in all cases, 
indicate that the use of averages to perform the comparisons 
is an adaquate option. 

A. Effects of BiNN intrinsic proprieties on its performance 
In the first simulation study, simulations have a constant 

vehicle demand of 2.75 vehicles per second and the effect of 
the parameter determination method proposed on MTT of 
vehicles is analyzed. The first evaluation of this study 
regards the BiNN performance for different values of Ω. 
Table II shows the results, indicating that a Ω of 0.2 is the 
best option for the scenario studied. Natural frequencies of 
oscillation higher than this value caused short phase 
durations, increasing vehicle stops at traffic signals. In 
contrast, the cases with Ω lower than 0.2 presented 
diminished performances due to the difficulty of 
coordinating the resulting vehicle platoons, which were 
larger than the street lenght. 

In the second evaluation, Ω is set to 0.2, with ξ equal to 
0.195 and wp equal to 0.3, and the effect of agent input 
sensitivity S on urban traffic control is analyzed. According 
to (5) and to the wp defined, the values of S evaluated 
correspond to the following values of wqp and wqh: 0.3, 0.4, 
0.5, 0.6 and 0.7. Table III shows that a S of 2.67 has the best 
performance. Higher values of S caused anticipated phase 
transitions, not allowing the complete vehicle platoons to 
cross the intersections, whereas lower values presented a low 
reactivity, forcing vehicles to stop at traffic lights before 
acknowledging their arrival. Thus, both cases had an increase 
in the MTT.  

The last evaluation regards different values of the agent 
degree of synchrony T, with Ω equal to 0.2 and S equal to 
2.67. As presented in Table IV, a T of -0.3 is optimal, 
because it imposes a delay between the activation of 
neighboring agents that synchronize them according to the 
street length of the scenario studied. Higher values of T 
present smaller delays, activating the green lights long before 
vehicle platoons arrive at intersections. For lower values of 
T, vehicle platoons arive at intersections before the green 
lights are activated, causing unnecessary vehicle 
decelerations. 

The three-step method proposed reduced a MTT of 134.7 
seconds, obtained with baseline parameter values, to 109.9 
seconds, which represents a 18.4% gain in performance. 
Regardless of the BiNN auto-organization capacity, which 
provides good results in any scenario, the method proposed 
can further optimize the MTT by considering the scenario 
specific characteristics, such as street length, number of lanes 
and vehicle mean speed. 

B. BiNN and CBCM performance for various demands 
The first vehicle demand evaluated, 2.5 vehicles per 

second, represents a scenario with low traffic volume, in 
which the control methods obtain their best results, as shown 
in Table V. In the second scenario, with moderate traffic, the 

TABLE V.       MTT OF CONTROL METHODS FOR VARIOUS DEMANDS. 

   Demand (vehicles/s) 2.50 2.75 3.00 

MTT (s) 
BiNN 109.4 109.9 213.0 

CBCM 140.5 146.9 268.6 

TABLE IV.       MEAN TRAVEL TIME OF VEHICLES FOR DIFFERENT T. 

T -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 

MTT (s) 113.3 109.9 110.3 111.8 111.8 117.0 118.6 

TABLE III.       MEAN TRAVEL TIME OF VEHICLES FOR DIFFERENT S. 

S 2.00 2.67 3.33 4.00 4.67 

MTT (s) 117.7 111.8 116.7 115.9 118.7 

TABLE II.       MEAN TRAVEL TIME OF VEHICLES FOR DIFFERENT Ω. 

Ω 0.05 0.10 0.15 0.20 0.25 

MTT (s) 136.3 120.7 120.0 118.7 121.6 
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BiNN maintains its performance due to the well-tuned 
synchronization between agents, whereas the CBCM has a 
decrease of 4.9% in performance. The last scenario 
represents a congested traffic, in which both control methods 
present a deteriorated performance. Nevertheless, the BiNN 
obtained a result 20.7% better than the CBCM. 

The results show that the BiNN was on average 22.7% 
better than the CBCM, which is not only due to the dynamic 
interaction between neighboring agents, but also because of 
its immediate sensing and responding capability. This 
simulation study also highlights the relevance of the method 
proposed for parameter determination, as the BiNN was only 
6.9% better than the CBCM with its baseline parameter 
values. 

V. CONCLUSION 

This paper investigated a biologically-inspired neural 
network (BiNN) for controlling urban traffic, a complex 
dynamic system with multiple impacts on society. An 
extension to a previous model was proposed in order to 
consider the dynamics of neighboring intersections and to 
establish a multiagent system. The axoaxonic synapse 
proposed modulates the BiNN sensorial receptors to prevent 
street saturation and to coordinate the activities of 
neighboring agents, originating green waves.  

Due to the large number of parameter combinations, we 
proposed a three-step method to determine agent behavior 
according to three intrinsic characteristics of the BiNN: 
natural frequency of oscillation, input sensitivity, and degree 
of synchrony. Simulations showed that tuning these BiNN 
proprieties can optimize its performance, which was 18.4% 
better in terms of mean travel time of vehicles in the scenario 
studied. 

Apart from determining agent behavior, we also 
presented a method to infer the dynamic stability of the 
BiNN from the stability of a single neuron for any set of 
parameters. This stability analysis is vital to guarantee an 
oscillatory behavior, i.e., to prevent a semaphore phase from 
dominating the other and being indefinitely active. 

In comparison to a conventional cycle-based control 
method, the BiNN was on average 22.7% better in 
simulations with low, moderate and congested traffic. These 
results highlight the main contribution of the model 
proposed: fast-response and coordinated control of a 
complex dynamic system. 

Future research directions include the study of the BiNN 
computational and behavioral complexity, analyzing the 
model scalability as well as further investigating the 
emergent multiagent behavior in larger scenarios with 
different demand profiles. Moreover, the application of the 
BiNN proposed for controlling other complex dynamic 
systems, such as robots, will also be treated. 

ACKNOWLEDGMENT 

This work was supported by CNPq, Conselho Nacional 
de Desenvolvimento Científico e Tecnológico – Brasil / 
Brazilian National Council of Scientific and Technological 
Development. 

REFERENCES 

[1] J. Yu, M. Tan, J. Chen and J. Zhang, “A survey on CPG-inspired 
control models and system implementation,” IEEE Trans. Neural 
Networks and Learning Syst., vol. 25, no. 3, pp. 441-456, Mar. 2014. 

[2] G. B. Castro, J. S. C. Martini and A. R. Hirakawa, “Biologically-
inspired neural network for traffic signal control,” in Proc. 17th IEEE 
ITSC, Qingdao, China, 2014, pp. 2144-2149. 

[3] T. Tettamanti, T. Luspay, B. Kulcsár, T. Péni and I. Varga, “Robust 
control for urban road traffic networks,” IEEE Trans. Intell. Transp. 
Syst., vol. 15, no. 1, pp. 385-398, Feb. 2014. 

[4] S. Timotheou, C. G. Panayiotou and M. M. Polycarpou, “Distributed 
traffic signal control using the cell transmission model via the 
alternating direction method of multipliers,” IEEE Trans. Intell. 
Transp. Syst., vol. 16, no. 2, pp. 919-933, Apr. 2015. 

[5] Z. Zhou, B. D. Schutter, S. Lin and Y. Xi, “Multi-agent model-based 
predictive control for large-scale urban traffic networks using a serial 
scheme,” IET Control Theory & Applications, vol. 9, no. 3, pp. 475-
484, Feb. 2015. 

[6] J. Q. Li, “Discretization modeling, integer programming formulations 
and dynamic programming algorithms for robust traffic signal 
timing,” Transp, Res. Part C: Emerging Technol., vol. 19, no. 4, pp. 
708-719, Aug. 2011. 

[7] D. Zhao, Y. Dai and Z. Zhang, “Computational intelligence in urban 
traffic signal control: a survey,” IEEE Trans. Systems, Man, and 
Cyb.—Part C: App. and Rev., vol. 42, no. 4, pp. 485-494, July 2012. 

[8] B. P. Gokulan and D. Srinivasan, “Modified symbiotic evolutionary 
learning for type-2 fuzzy system,” IEEE Trans. Intell. Transp. Syst., 
vol. 8, no. 2, pp. 353-362, June 2014. 

[9] M. Tahifa, J. Boumhidi and A. Yahyaouy, “Swarm reinforcement 
learning for traffic signal control based on cooperative multi-agent 
framework,” in Proc. 1st  ISCV, Fez, Morocco, 2015, pp. 1-6. 

[10] T. Chu and J. Wang, “Traffic signal control with macroscopic 
fundamental diagrams,” in Proc. ACC, Chicago, USA, 2015, pp. 
4380-4385. 

[11] E. Nichols, L. J. Mcdaid and N. Siddique, “Biologically inspired SNN 
for robot control,” IEEE Transactions on Cybernetics, vol. 43, no. 1, 
pp. 115-128, Jan. 2013. 

[12] L. I. Helgadóttir, J. Haenicke, T. Landgraf, R. Rojas and M. P. 
Nawrot, “Conditioned behavior in a robot controlled by a spiking 
neural network,” in Proc. 6th International IEEE/EMBS NER, San 
Diego, USA, 2013, pp. 891-894. 

[13] A. J. Ijspeert, “Central pattern generators for locomotion control in 
animals and robots: a review,” Neural Networks, vol. 21, no. 4, pp. 
642-653, May 2008. 

[14] F. J. R. Peláez and D. Andina, “Do biological synapses perform 
probabilistic computations?,” Neurocomputing, vol. 114, pp. 24-31, 
Aug. 2013. 

[15] K. Jang, H. Kim and I. G. Jang, “Traffic signal optimization for 
oversaturated urban networks: queue growth equalization,” IEEE 
Trans. Intell. Transp. Syst., vol. 16 no. 4 pp. 2121-2128, Aug. 2015. 

[16] A. A. Batista Junior and L. R. Coutinho, “A multiagent system for 
combining green wave and adaptive control in a dynamic way,” in 
Proc. 16th IEEE ITSC, The Hague, The Netherlands, 2013, pp. 2439-
2444. 

[17] A. Fuchs, Nonlinear Dynamics in Complex Systems: Theory and App. 
for the Life-, Neuro- and Natural Sciences. Springer, 2013. 

[18] F. J. R. Peláez and D. Andina, “The koniocortex-like network: a new 
biologically plausible unsupervised neural network,” Artificial Comp. 
in Biology and Medicine, vol. 9107, pp. 163-174, June 2015. 

[19] H. K. Sarmah, T. K. Baishya and M. C. Das, “Hopf-bifurcation in a 
two dimensional nonlinear differential equation,” Int. Journal of 
Modern Engineering Research, vol. 4, no. 1, pp. 168-178, July 2014. 

[20] A. F. A. Gil, J. Espinosa and J. E. Espinosa, “TraCI4Matlab: Re-
engineering the Python implementation of the TraCI interface,” in 
Proc. SUMO2014, Berlin, Germany, 2014, pp. 145-155.  

215214


