
Automatic Extraction of Main Thesis Documents
Fields Using Decision Trees

Alaa Mahmoud Sobhy
College of Computing and
Information Technology

Arab Academy for Science
Technology and Maritime Transport

Cairo, Egypt
alaa.mahmoud.sobhy@gmail.com

Yasser M. Kamal
College of Computing and
Information Technology

Arab Academy for Science
Technology and Maritime Transport

Cairo, Egypt
dr_yaser_omar@yahoo.com

 Atef Zaki Ghalwash
Computer Science Department

Helwan University
Cairo, Egypt

atef_ghalwash@yahoo.com

Abstract— Thesis documents are underestimated even
though they hold large sets of useful information –as they
include most of the research information–, but since they are
harder to obtain, researchers were lead to depend on research
papers even though they have a size limitation and lack
elaboration. A lot of time and effort are invested in research, so
having a linkage among researchers based on their work would
somehow facilitate solving the research problem process. A
major step to tackle this goal is to structure thesis documents
by extracting some fields such as title, author and abstract.
This paper presents a way to structure a semi-structured thesis
documents using decision trees in 4 different ways (Simple,
Medium, Complex and using KNIME), they scored an overall
accuracy of 99.2%.

Keywords—Structured Data; Semi-structured Data; Thesis
Documents; Decision Trees; Machine Learning

I. INTRODUCTION
Unstructured data forms a descent volume compared to

structured data. Unstructured data, such as webpages,
images and documents, may contain useful information, yet
because they lack clear structure and format it is harder to
be acquired. Structured data is characterized by having a
unified form; an example of structured data would be
databases. A database being structured allows information
to be easily retrieved and allows the manipulation of the
database itself.

Unstructured and semi-structured data are vastly
growing in size annually. Projects done by Corporates such
as EMC and IDC predict that data size will reach 40
zettabytes by 2020 [1]. Extracting knowledge from such
data is highly recommended to enrich the decision making
process. However in order to make the data understandable,
according to each field in business, the data has to go
through a process; extracting information from data
automatically in such a way to make it suitable for business
use. This is generally achieved by automating the
conversion of unstructured or semi-structured data to a
structured form.

Researchers face a lot of problems through their
research. When this happens some researchers resort to

reading other people’s work such as research papers, doing
such a thing is helpful and gets the researcher an insight on
what they should be doing. However not every problem
could be solved by reading papers around the same research
topic, sometimes a deeper reading would be helpful.
Starting from previous discussions, we would like to find a
way to describe a researcher’s work thoroughly and what
better way to describe it, than the researcher’s thesis
document. The paperless solution should consider having a
great deal of details that describe thesis contents, and
consider solving faced problems such as structuring.
Finding thesis documents for someone’s work is harder than
finding a paper published with the researchers’ work that’s
why thesis documents are often ignored. In the present
paper some thesis documents were gathered, from different
sources, to have some structure based on a variety of
contents.

Documents used in this research are considered semi-
structured because of their similarities, even though some of
them may vary in formats and order. The Structuring of
thesis documents is done using decision trees in order to
make them easier to retrieve data from. Having structured
thesis documents would make it easier for researchers who
may need more information to find and use the knowledge.

Thesis documents used as datasets were gathered from
handed over CDs at the Arab Academy for Science
Technology and Maritime Transport, College of Computing
and Information Technology, and the digital library [2] of
The American University in Cairo, School of Science and
Engineering. They were all MSc degrees varying in content,
some were masters in computer science and others were
masters in information systems.

The data set goes through a preprocessing phase that
includes some calculations, statistics and finding some word
occurrences. The data is divided into two groups the first
group would be used for training a decision tree and
creating the machine learning model, the other part of the
data would be used for testing these models and comparing
between a previously predicted supervised model and the
machine learning predicted model.

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.164

204

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.164

203

This paper is divided into 5 sections. In section II some
related work, in structuring different types of documents and
using different types of methods, will be discussed, Section
III is the proposed method for structuring thesis documents,
Section IV is a representation of the experimental results,
and finally in Section V conclusion and future work are
discussed .

II. RELATED WORK
Structuring documents was done using a variety of

methods, such in [3] and [4], on a variety of documents such
as XML Documents as in [5] and [6], document images Ref.
[7], and PDF documents [8].

One method presented by Ranganathan at [9] was to use
GATE to structure the semi structured Word Documents
and Excel Sheets but first the document is converted to
XML first. GATE works with documents by converting
them to plain text then annotating it. GATE is not able to
refer back to the original document hence converting to
XML as GATE can work with XML but not Word and
Excel directly.

Rusu et al. [10] Extracting knowledge from databases
KDD (Knowledge Discovery in Databases) aims to find
useful information in data, it works in two ways either
defining descriptive approximation for the generated data,
or creating a predictive model for estimating the value of
future cases. The Data mining is done through analysis and
discovery algorithms. In order to deal with unstructured data
the paper followed some steps. Firstly they extract data from
its current form for example if it’s in a webpage or an
image. As for HTML documents they get formatted into
XML. Secondly the extracted data goes into a syntactic
analysis phase which generates a parse tree for each
sentence dividing it into subject verb phrase. Thirdly a
classification algorithm is used to classify and categorize the
data.

Zhang [11] used medical documents to be clustered
using ontology based term similarity measures, first by
indexing terms in medical documents, the ontology based
term similarity measure calculated the weight of terms, then
the clustering was done by spherical L-means.

Huang [12] introduced text categorization technique
called VSM_WN_TM which is a combination of Vector
Space Model (VSM), WordNet ontology, and Probabilistic
Latent Semantic Analysis (PLSA) topic modeling. It also
used the support vector machine for classification purposes.
The technique started by creating a VSM model for a
document, and based on observation they created a
weighing scheme, afterwards they used WordNet with VSM
to categorize text, then they incorporated VSM with PLSA
to choose topics from documents, and then finally it
generated a hybrid VSM model for classification.

III. PROPOSED METHOD

A. Dataset and Preprocessing
Total number of gathered thesis documents is 65; which

were divided into a group of 36 thesis documents to be used
for training the classifier and the remaining 29 were used for
testing and prediction. The total number of pages for all
theses is 8,346 pages, averaging 128.4 pages per thesis.
Most thesis documents were originally in PDF format and
some were Word, for the sake of unification, the documents
were all converted into Word Documents.

B. Features
Each thesis document has a catalogue of features that

was extracted to describe it. Features extraction was done by
identifying global features that must exist in each thesis
document regardless of them having a standard format or
not i.e. (semi-structured or not structured). For each thesis
14 features were extracted per page. Features were stored as
a matrix; columns represent features while rows represent
the value of each feature per page. Features were extracted
using a C# code and NetOffice assemblies for accessing
Word documents.

Each category of features was chosen separately. At the
beginning the interest was finding where each part of the
thesis was, the concept was similar to bookmarks, which is
why all extracted features are related to a page number. The
first category was the positions of certain words in the
documents; these words must exist in almost all thesis
documents as a subtitle to describe its contents. The position
of these words reflected all the occurrences of the word
itself regardless of its actual location. That led to the second
category; it is necessary to know the relation between the
word and the next few pages, if they were related or not.
Which would clarify, on average, pages that are connected
to each other; this was done for the important words not for
the whole document. Furthermore a column to describe
whether this page has a subtitle or not, the column would
make it easier to get the actual occurrence of the word and
ignore it if it’s just mentioned randomly. The final category
was added to try some general statistics and test if the count
of paragraphs, words and digits would be of help in the
structuring process, or would it be ignored by the machine
learning system.

Extracted features, as previously mentioned, were
divided into three categories of features, as shown in fig. 1,
the first feature represents page number’s count for each
thesis document, and the page number refers to the count in
Word regardless of the numbering done by the author.

 The first category of features represents the
occurrences of some chosen words, it is described by either
0 if the feature doesn’t exist in the page or 1 if the feature
does exist, the redundancy of the word in the page is
ignored. In the first category the selected words were,
“thesis” which was chosen to focus on its first mentioning in
the document, the first occurrence of the thesis word
represents the first page contents which contain important
data such as (title, year, author,… etc.), other words

205204

positioning and occurrences were recorded: “supervisor”,
“acknowledgement”, “Abstract”, “Contents”, “Conclusion”
and “References/Bibliography”.

 The second category of features consists of two
columns; the first one is called positive proximity which is
the distance of each word from the upcoming few pages. For
example if the table of contents starts from page 10 through
page 15 the positive proximity in page 10 would be 1,
because it’s where table of contents begins the next page
would be 2 and so on till we reach 5. This is the
representation of the relationship between each subtitle and
the next few pages that contain the content of that title. The
second column is a true or false reflection of whether the
page has a subtitle in it or not (1 is for true and 0 is for
false). Furthermore if the subtitle exists in a page but it is
not the actual subtitle content it would be recorded as a 0.
The last category of features is the calculation of some
statistics per page; these are the total number of paragraphs,
the total number of digits and the total number of words.

C. Response Column

In machine learning a result needs to be specified to be
able to train the classifier. A response column was created to
describe each row of features. The last column is integers
within the range of 1 to 7. Fig. 2 Phase two shows the
outline of creating a response column or a result column.
The integer 1 describes the existence of metadata in the
page i.e. (Title, Author, Supervisor, and Year). 2 for abstract
pages, 3 is the integer representing table of content pages, 4
represents acknowledgement pages, all of the previous are
considered the first partition of the document, 5 refers to
conclusion pages, 6 references or bibliography pages, 7 is
for any other pages such as chapters, publications,
declaration, dedication and appendices.

After those 3 steps an inverted file is complete for
insertion into the decision tree for training and testing. Table
I shows a sample of the inverted file.

 Fig. 1. Phase 1 Extracted Features from Thesis Documents

Fig. 2. Phase 2 Response Column

Fig. 3. Phase 3 Decision Tree

D. Decision Trees
Decision trees were chosen because initially a code was

written to structure thesis documents in C#, the code ended
up having a lot of “if and else” clauses which suggested, by
default, having a binary decision tree due to all of the
conditions that were written. Fig. 3 describes that extracted
features go through training first then through testing the
decision tree, which is the last phase. MATLAB was used
for decision tree training and testing.

Total rows of features for training were a little over
5,000 while a about 3,200 rows of features were used for
testing and validation. Cross validation were used to prevent
overfitting, as the training data set was divided into
randomly partitioned and almost same size folds which are
called k-folds, the number of folds is 5. Each fold is used
for training except one which is used for validating the
trained subsets and this process is repeated 5 times [13].

Decision trees were applied with different tools KNIME
was used at first and then MATLAB, and they were
compared against each other. Decision trees got the most
accurate results of supervised machine learning systems.
MATLAB’s simple decision tree, a medium decision tree
and a complex decision tree were tested. The difference
between the three is the number of leaves in each tree, the
more leaves there is the more accurate the class distinction.

IV. EXPERIMENTAL RESULTS

A. Decision Trees
All trained models were tested several times with

different dataset ordering and selection. The best results
were presented by the medium decision tree; it recorded the
most efficient and almost stable results of all models. The
root feature that was used to decide the classification was
the positive position feature. Fig. 4 is a view of the
confusion matrix resulting of the trained tree. Algorithm 1 is
the algorithm used to train the decision tree. It describes the

206205

TABLE I. INVERTED FILE SAMPLE

Page
Number Thesis Supervisor Ack. Abstract TOC Conc. Ref. Biblio. Num.

Parag.
Num.
Digits

Num.
Words

Proxim.
Positive

Has
Subtitle Response

1 1 1 0 0 0 0 0 0 47 4 72 1 1 1
2 1 0 0 0 0 0 0 0 39 0 81 0 0 7
3 1 1 0 0 0 0 0 0 10 0 182 1 1 4
4 1 0 0 1 0 0 0 0 9 16 292 1 1 2
5 1 0 0 0 0 0 0 0 6 3 229 2 0 2
6 1 0 0 0 1 0 0 0 53 97 147 1 1 3

process of reading the dataset and training the decision tree,
while algorithm 2 is the actual generated decision tree.

B. Testing and Validation
Trained models were used to predict new data, the

testing data were a total of 29 theses with an average of
3,200 thesis document features. Predicted results by models
were compared to a supervised observation.

Table II is a collection of the accuracy results given by
each model, the most accurate model was given by the
medium decision tree which scored an accuracy rate of
99.2% and an error rate of 0.8%.

Table III shows the confusion matrix of the predicted
class and the actual classes. Table IV states some statistics
of each class, there is a total of 7 classes. For each class the
calculations done are True Positive (TP), False Positive
(FN), False Negative (FN), True Negative (TN), Precision,
Sensitivity and Specificity. The following Equations used to
calculate statistics:

True Positive [TP] = Condition Present + Positive result
(1)

False Positive [FP] = Condition absent + Positive result
[Type I error](2)

False (invalid) Negative [FN] = Condition present +
Negative result [Type II error](3)

True (accurate) Negative [TN] = Condition absent +
Negative result (4)

Precision(class) = TP(class) / (TP(class) + FP(class))(5)

Sensitivity(class) = Recall(class) = TruePositiveRate(class)
= TP(class) / (TP(class) + FN(class))(6) Specificity (

mostly used in 2 class problems)=

TrueNegativeRate(class) = TN(class) / (TN(class) +
FP(class))(7)

Fig. 4. Confusion Matrix of Decision Tree

TABLE II. RESULTS OF TESTING DIFFERENT
MACHINE LEARNING TECHNIQUES AND TOOLS

Classifiers Overall Accuracy

Simple Tree 96.97%

Medium Tree 99.20%

Complex Tree 99.17%

KNIME Decision Tree 99.14%

TABLE III. CONFUSION MATRIX OF ACTUAL
CLASSES VERSUS PREDICTED CLASSES

 Actual Classes

 1 2 3 4 5 6 7

Pr
ed

ic
te

d
C

la
ss

es
 1 22 0 0 0 0 0 0

2 0 33 7 1 0 0 0
3 0 2 55 0 0 0 1
4 0 0 1 17 0 0 0
5 0 0 0 0 112 12 0
6 0 0 0 0 2 111 0
7 0 0 0 0 0 1 2858

207206

TABLE IV. STSTISTICS ON EACH CLASS

 Actual Classes

 1 2 3 4 5 6 7
TP 22 33 55 17 112 111 2858
FP 0 8 2 1 12 2 1
FN 0 2 8 1 2 13 0
TN 3212 3191 3169 3215 3108 3108 375

Precision 100% 80% 96% 94% 90% 98% 100%
Sensitivity 100% 94% 87% 94% 98% 90% 100%
Specificity 99% 99% 99% 99% 99% 99% 99%

Algorithm 1 Train Decision Tree Classifier Algorithm

Input: Dataset to be trained ThesisData
Output: Trained Classifier
1: Data � Excel Dataset
2: Convert Data to Table ThesisData with header

columns ThesisData�PageNumber, ThesisWord,
SuperviseWord, AckWord, AbstractWord,
ContentsWord, ConclusionWord, ReferencesWord
,BibliographyWord, NumParagraphs, NumDigits,
NumWords, PositionPositive, HasSubtitle, Result

3: Define Result Type � Categorical
4: Define PredictorNames � PageNumber,

ThesisWord, SuperviseWord, AckWord,
AbstractWord, ContentsWord, ConclusionWord,
ReferencesWord, BibliographyWord,
NumParagraphs, NumDigits, NumWords,
PositionPositive, HasSubtitle

5: Convert PredictorNames into a Table
6: Convert PredictorNames to double
7: ResponseName � ThesisData Result column
8: ClassNames� from 1 to 7
9: MaxNumSplits � 20
10: SplitCriterion � gdi
11: Surrogate � off
12: Train Classifier TrainedDTreeMedium � fit

predictors, response, pridictorNames,
ResponseName, ClassNames, SplitCriterion,
MaxNumSplits, Surrogate

13: partitionedModel� Partition model for cross-
validation into 5 folds

14: Compute Validation Accuracy

Algorithm 2 Medium Decision Tree for Classification
0: if PositionPositive<0.5 then node 2 elseif

PositionPositive>=0.5 then node 3 else 7
1: if PageNumber<1.5 then node 4 elseif

PageNumber>=1.5 then node 5 else 7
2: if PageNumber<36.5 then node 6 elseif

PageNumber>=36.5 then node 7 else 6
3: class = 1
4: if AckWord<0.5 then node 8 elseif AckWord>=0.5

then node 9 else 7
5: if NumDigits<24 then node 10 elseif NumDigits>=24

then node 11 else 3

6: if NumDigits<32 then node 12 elseif NumDigits>=32
then node 13 else 6

7: if NumDigits<151 then node 14 elseif
NumDigits>=151 then node 15 else 7

8: class = 7
9: if PageNumber<1.5 then node 16 elseif

PageNumber>=1.5 then node 17 else 2
10: class = 3
11: if NumWords<3 then node 18 elseif NumWords>=3

then node 19 else 5
12: if ConclusionWord<0.5 then node 20 elseif

ConclusionWord>=0.5 then node 21 else 6
13: if ConclusionWord<0.5 then node 22 elseif

ConclusionWord>=0.5 then node 23 else 7
14: if NumParagraphs<25.5 then node 24 elseif

NumParagraphs>=25.5 then node 25 else 7
15: class = 1
16: if AbstractWord<0.5 then node 26 elseif

AbstractWord>=0.5 then node 27 else 2
17: if PositionPositive<10 then node 28 elseif

PositionPositive>=10 then node 29 else 6
18: if PositionPositive<7.5 then node 30 elseif

PositionPositive>=7.5 then node 31 else 5
19: if NumParagraphs<4 then node 32 elseif

NumParagraphs>=4 then node 33 else 6
20: class = 5
21: class = 7
22: class = 7
23: class = 6
24: class = 7
25: if PositionPositive<1.5 then node 34 elseif

PositionPositive>=1.5 then node 35 else 4
26: class = 2
27: class = 6
28: class = 7
29: class = 5
30: if PageNumber<119.5 then node 36 elseif

PageNumber>=119.5 then node 37 else 6
31: class = 5
32: class = 6
33: class = 4
34: class = 2
35: class = 6
36: class = 5

V. CONCLUSION AND FUTURE WORK
This paper contributes in structuring thesis documents to

help researchers access knowledge easily. This was done by
a machine learning technique which is a decision tree;
different tools were used to train the decision tree also
different types of decision trees were trained and all were
compared to each other. The most accurate, efficient and
low in variance model was picked which recorded in the
validation and testing phase an accuracy of 99.2%.

For future work visual features could be added such as
font size, tab spacing, alignment or some other statistical

208207

features that could help with improving results and overall
accuracy, also a spelling check would help in this matter to
reduce the errors of extractions that were ignored because of
misspelled words. Furthermore, extending accepted formats
is essential such as PDFs.

REFERENCES
[1] Tomer Shiran, The Future of Hadoop: MapR VP of Product

Management.2014.
[2] AUC Libraries, http://library.aucegypt.edu/.
[3] Poullet, Line, Jean-Marie Pinon, and Sylvie Calabretto. "Semantic

structuring of documents." Information Technology, 1997.
BIWIT'97., Proceedings of the Third Basque International Workshop
on. IEEE, 1997.

[4] Gavrilova, Tatiana, and Irina Leshcheva. "Collective Ontologies
Design and Development." Complex, Intelligent and Software
Intensive Systems (CISIS), 2014 Eighth International Conference on.
IEEE, 2014.

[5] Hwang, Jeong Hee, and Mi Sug Gu. "Clustering xml documents
based on the weight of frequent structures." Convergence Information
Technology, 2007. International Conference on. IEEE, 2007.

[6] Huang, Yin-Fu, and Po-Lun Liou. "Retrieving Representative
Structures from XML Documents Using Clustering
Techniques." Intelligence and Security Informatics Conference
(EISIC), 2011 European. IEEE, 2011.

[7] Chen, Siyuan, et al. "Structured document classification by matching
local salient features." Pattern Recognition (ICPR), 2012 21st
International Conference on. IEEE, 2012.

[8] Hadjar, Karim, et al. "Xed: a new tool for extracting hidden structures
from electronic documents." Document Image Analysis for Libraries,
2004. Proceedings. First International Workshop on. IEEE, 2004.

[9] Ranganathan, Girish R., Yevgan Biletskiy, and Alexey Kaltchenko.
"Semantic annotation of semi-structured documents." Electrical and
Computer Engineering, 2008. CCECE 2008. Canadian Conference
on. IEEE, 2008.

[10] Rusu, Octavian, et al. "Converting unstructured and semi-structured
data into knowledge." Roedunet International Conference
(RoEduNet), 2013 11th. IEEE, 2013.

[11] Zhang, Xiaodan, et al. "Medical document clustering using ontology-
based term similarity measures." (2008).

[12] Huang, Yinghao, Xipeng Wang, and Yi Lu Murphey. "Text
categorization using topic model and ontology
networks." Proceedings of the International Conference on Data
Mining (DMIN). The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2014.

[13] Tomas Borovicka, Marcel Jirina, Jr., Pavel Kordik "Advances in Data
Mining Knowledge Discovery and Applications." (2012).

209208

