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Abstract— Thesis documents are underestimated even 
though they hold large sets of useful information –as they 
include most of the research information–, but since they are 
harder to obtain, researchers were lead to depend on research 
papers even though they have a size limitation and lack 
elaboration. A lot of time and effort are invested in research, so 
having a linkage among researchers based on their work would 
somehow facilitate solving the research problem process. A 
major step to tackle this goal is to structure thesis documents 
by extracting some fields such as title, author and abstract. 
This paper presents a way to structure a semi-structured thesis 
documents using decision trees in 4 different ways (Simple, 
Medium, Complex and using KNIME), they scored an overall 
accuracy of 99.2%. 

Keywords—Structured Data; Semi-structured Data; Thesis 
Documents; Decision Trees; Machine Learning 

I. INTRODUCTION 
Unstructured data forms a descent volume compared to 

structured data. Unstructured data, such as webpages, 
images and documents, may contain useful information, yet 
because they lack clear structure and format it is harder to 
be acquired. Structured data is characterized by having a 
unified form; an example of structured data would be 
databases. A database being structured allows information 
to be easily retrieved and allows the manipulation of the 
database itself. 

Unstructured and semi-structured data are vastly 
growing in size annually. Projects done by Corporates such 
as EMC and IDC predict that data size will reach 40 
zettabytes by 2020 [1]. Extracting knowledge from such 
data is highly recommended to enrich the decision making 
process. However in order to make the data understandable, 
according to each field in business, the data has to go 
through a process; extracting information from data 
automatically in such a way to make it suitable for business 
use. This is generally achieved by automating the 
conversion of unstructured or semi-structured data to a 
structured form. 

Researchers face a lot of problems through their 
research. When this happens some researchers resort to 

reading other people’s work such as research papers, doing 
such a thing is helpful and gets the researcher an insight on 
what they should be doing. However not every problem 
could be solved by reading papers around the same research 
topic, sometimes a deeper reading would be helpful. 
Starting from previous discussions, we would like to find a 
way to describe a researcher’s work thoroughly and what 
better way to describe it, than the researcher’s thesis 
document. The paperless solution should consider having a 
great deal of details that describe thesis contents, and 
consider solving faced problems such as structuring. 
Finding thesis documents for someone’s work is harder than 
finding a paper published with the researchers’ work that’s 
why thesis documents are often ignored. In the present 
paper some thesis documents were gathered, from different 
sources, to have some structure based on a variety of 
contents. 

Documents used in this research are considered semi-
structured because of their similarities, even though some of 
them may vary in formats and order. The Structuring of 
thesis documents is done using decision trees in order to 
make them easier to retrieve data from. Having structured 
thesis documents would make it easier for researchers who 
may need more information to find and use the knowledge. 

Thesis documents used as datasets were gathered from 
handed over CDs at the Arab Academy for Science 
Technology and Maritime Transport, College of Computing 
and Information Technology, and the digital library [2] of 
The American University in Cairo, School of Science and 
Engineering. They were all MSc degrees varying in content, 
some were masters in computer science and others were 
masters in information systems.  

The data set goes through a preprocessing phase that 
includes some calculations, statistics and finding some word 
occurrences. The data is divided into two groups the first 
group would be used for training a decision tree and 
creating the machine learning model, the other part of the 
data would be used for testing these models and comparing 
between a previously predicted supervised model and the 
machine learning predicted model.  

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.164

204

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.164

203



This paper is divided into 5 sections. In section II some 
related work, in structuring different types of documents and 
using different types of methods, will be discussed, Section 
III is the proposed method for structuring thesis documents, 
Section IV is a representation of the experimental results, 
and finally in Section V conclusion and future work are 
discussed .  

II. RELATED WORK 
Structuring documents was done using a variety of 

methods, such in [3] and [4], on a variety of documents such 
as XML Documents as in [5] and [6], document images Ref. 
[7], and PDF documents [8]. 

One method presented by Ranganathan at [9] was to use 
GATE to structure the semi structured Word Documents 
and Excel Sheets but first the document is converted to 
XML first. GATE works with documents by converting 
them to plain text then annotating it. GATE is not able to 
refer back to the original document hence converting to 
XML as GATE can work with XML but not Word and 
Excel directly.  

Rusu et al. [10] Extracting knowledge from databases 
KDD (Knowledge Discovery in Databases) aims to find 
useful information in data, it works in two ways either 
defining descriptive approximation for the generated data, 
or creating a predictive model for estimating the value of 
future cases. The Data mining is done through analysis and 
discovery algorithms. In order to deal with unstructured data 
the paper followed some steps. Firstly they extract data from 
its current form for example if it’s in a webpage or an 
image. As for HTML documents they get formatted into 
XML. Secondly the extracted data goes into a syntactic 
analysis phase which generates a parse tree for each 
sentence dividing it into subject verb phrase. Thirdly a 
classification algorithm is used to classify and categorize the 
data.  

Zhang [11] used medical documents to be clustered 
using ontology based term similarity measures, first by 
indexing terms in medical documents, the ontology based 
term similarity measure calculated the weight of terms, then 
the clustering was done by spherical L-means. 

Huang [12] introduced text categorization technique 
called VSM_WN_TM which is a combination of Vector 
Space Model (VSM), WordNet ontology, and Probabilistic 
Latent Semantic Analysis (PLSA) topic modeling. It also 
used the support vector machine for classification purposes. 
The technique started by creating a VSM model for a 
document, and based on observation they created a 
weighing scheme, afterwards they used WordNet with VSM 
to categorize text, then they incorporated VSM with PLSA 
to choose topics from documents, and then finally it 
generated a hybrid VSM model for classification.  

III. PROPOSED METHOD 

A. Dataset and Preprocessing  
Total number of gathered thesis documents is 65; which 

were divided into a group of 36 thesis documents to be used 
for training the classifier and the remaining 29 were used for 
testing and prediction. The total number of pages for all 
theses is 8,346 pages, averaging 128.4 pages per thesis. 
Most thesis documents were originally in PDF format and 
some were Word, for the sake of unification, the documents 
were all converted into Word Documents.  

B. Features 
Each thesis document has a catalogue of features that 

was extracted to describe it. Features extraction was done by 
identifying global features that must exist in each thesis 
document regardless of them having a standard format or 
not i.e. (semi-structured or not structured). For each thesis 
14 features were extracted per page. Features were stored as 
a matrix; columns represent features while rows represent 
the value of each feature per page. Features were extracted 
using a C# code and NetOffice assemblies for accessing 
Word documents. 

Each category of features was chosen separately. At the 
beginning the interest was finding where each part of the 
thesis was, the concept was similar to bookmarks, which is 
why all extracted features are related to a page number. The 
first category was the positions of certain words in the 
documents; these words must exist in almost all thesis 
documents as a subtitle to describe its contents. The position 
of these words reflected all the occurrences of the word 
itself regardless of its actual location. That led to the second 
category; it is necessary to know the relation between the 
word and the next few pages, if they were related or not. 
Which would clarify, on average, pages that are connected 
to each other; this was done for the important words not for 
the whole document. Furthermore a column to describe 
whether this page has a subtitle or not, the column would 
make it easier to get the actual occurrence of the word and 
ignore it if it’s just mentioned randomly. The final category 
was added to try some general statistics and test if the count 
of paragraphs, words and digits would be of help in the 
structuring process, or would it be ignored by the machine 
learning system. 

Extracted features,  as previously mentioned, were 
divided into three categories of features, as shown in fig. 1, 
the first feature represents page number’s count for each 
thesis document, and the page number refers to the count in 
Word regardless of the numbering done by the author. 

  The first category of features represents the 
occurrences of some chosen words, it is described by either 
0 if the feature doesn’t exist in the page or 1 if the feature 
does exist, the redundancy of the word in the page is 
ignored. In the first category the selected words were, 
“thesis” which was chosen to focus on its first mentioning in 
the document, the first occurrence of the thesis word 
represents the first page contents which contain important 
data such as (title, year, author,… etc.), other words 
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positioning and occurrences were recorded: “supervisor”, 
“acknowledgement”, “Abstract”, “Contents”, “Conclusion” 
and “References/Bibliography”. 

 The second category of features consists of two 
columns; the first one is called positive proximity which is 
the distance of each word from the upcoming few pages. For 
example if the table of contents starts from page 10 through 
page 15 the positive proximity in page 10 would be 1, 
because it’s where table of contents begins the next page 
would be 2 and so on till we reach 5. This is the 
representation of the relationship between each subtitle and 
the next few pages that contain the content of that title. The 
second column is a true or false reflection of whether the 
page has a subtitle in it or not (1 is for true and 0 is for 
false). Furthermore if the subtitle exists in a page but it is 
not the actual subtitle content it would be recorded as a 0. 
The last category of features is the calculation of some 
statistics per page; these are the total number of paragraphs, 
the total number of digits and the total number of words.  

C. Response Column 

In machine learning a result needs to be specified to be 
able to train the classifier. A response column was created to 
describe each row of features. The last column is integers 
within the range of 1 to 7. Fig. 2 Phase two shows the 
outline of creating a response column or a result column. 
The integer 1 describes the existence of metadata in the 
page i.e. (Title, Author, Supervisor, and Year). 2 for abstract 
pages, 3 is the integer representing table of content pages, 4 
represents acknowledgement pages, all of the previous are 
considered the first partition of the document, 5 refers to 
conclusion pages, 6 references or bibliography pages, 7 is 
for any other pages such as chapters, publications, 
declaration, dedication and appendices. 

After those 3 steps an inverted file is complete for 
insertion into the decision tree for training and testing. Table 
I shows a sample of the inverted file. 
 

 Fig. 1. Phase 1 Extracted Features from Thesis Documents 

 

 

 
Fig. 2. Phase  2 Response Column 

 
Fig. 3. Phase 3 Decision Tree 

D. Decision Trees 
Decision trees were chosen because initially a code was 

written to structure thesis documents in C#, the code ended 
up having a lot of “if and else” clauses which suggested, by 
default, having a binary decision tree due to all of the 
conditions that were written. Fig. 3 describes that extracted 
features go through training first then through testing the 
decision tree, which is the last phase. MATLAB was used 
for decision tree training and testing.  

Total rows of features for training were a little over 
5,000 while a about 3,200 rows of features were used for 
testing and validation. Cross validation were used to prevent 
overfitting, as the training data set was divided into 
randomly partitioned and almost same size folds which are 
called k-folds,  the number of folds is 5. Each fold is used 
for training except one which is used for validating the 
trained subsets and this process is repeated 5 times [13].   

Decision trees were applied with different tools KNIME 
was used at first and then MATLAB, and they were 
compared against each other. Decision trees got the most 
accurate results of supervised machine learning systems. 
MATLAB’s simple decision tree, a medium decision tree 
and a complex decision tree were tested. The difference 
between the three is the number of leaves in each tree, the 
more leaves there is the more accurate the class distinction.  

IV. EXPERIMENTAL RESULTS 

A. Decision Trees 
All trained models were tested several times with 

different dataset ordering and selection. The best results 
were presented by the medium decision tree; it recorded the 
most efficient and almost stable results of all models. The 
root feature that was used to decide the classification was 
the positive position feature. Fig. 4 is a view of the 
confusion matrix resulting of the trained tree. Algorithm 1 is 
the algorithm used to train the decision tree. It describes the  
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TABLE I. INVERTED FILE SAMPLE 

Page 
Number Thesis Supervisor Ack. Abstract TOC Conc. Ref. Biblio. Num. 

Parag. 
Num. 
Digits 

Num. 
Words 

Proxim. 
Positive 

Has 
Subtitle Response 

1 1 1 0 0 0 0 0 0 47 4 72 1 1 1 
2 1 0 0 0 0 0 0 0 39 0 81 0 0 7 
3 1 1 0 0 0 0 0 0 10 0 182 1 1 4 
4 1 0 0 1 0 0 0 0 9 16 292 1 1 2 
5 1 0 0 0 0 0 0 0 6 3 229 2 0 2 
6 1 0 0 0 1 0 0 0 53 97 147 1 1 3 

 

 

 

process of reading the dataset and training the decision tree, 
while algorithm 2 is the actual generated decision tree. 

B. Testing and Validation  
Trained models were used to predict new data, the 

testing data were a total of 29 theses with an average of 
3,200  thesis document features. Predicted results by models 
were compared to a supervised observation.  

Table II is a collection of the accuracy results given by 
each model, the most accurate model was given by the 
medium decision tree which scored an accuracy rate of 
99.2% and an error rate of 0.8%.  

Table III shows the confusion matrix of the predicted 
class and the actual classes. Table IV states some statistics 
of each class, there is a total of 7 classes. For each class the 
calculations done are True Positive (TP), False Positive 
(FN), False Negative (FN), True Negative (TN), Precision, 
Sensitivity and Specificity. The following Equations used to 
calculate statistics: 

 

True Positive [TP] = Condition Present + Positive result 
(1) 

False Positive [FP] = Condition absent + Positive result 
[Type I error](2) 

False (invalid) Negative [FN] = Condition present + 
Negative result [Type II error](3) 

True (accurate) Negative [TN] = Condition absent + 
Negative result (4) 

Precision(class) = TP(class) / ( TP(class) + FP(class) )(5) 

Sensitivity(class) = Recall(class) = TruePositiveRate(class) 
= TP(class) / ( TP(class) + FN(class) )(6) Specificity ( 

mostly used in 2 class problems )= 

TrueNegativeRate(class) = TN(class) / ( TN(class) + 
FP(class) )(7) 

 

 

 

 

 

 

 
Fig. 4. Confusion Matrix of Decision Tree 

 

TABLE II. RESULTS OF TESTING DIFFERENT  
MACHINE LEARNING TECHNIQUES AND TOOLS 

Classifiers Overall Accuracy 

Simple Tree 96.97% 

Medium Tree 99.20% 

Complex Tree 99.17% 

KNIME Decision Tree 99.14% 

 

TABLE III. CONFUSION MATRIX OF ACTUAL  
CLASSES VERSUS PREDICTED CLASSES 

  Actual Classes 

  1 2 3 4 5 6 7 

Pr
ed

ic
te

d 
C

la
ss

es
 1 22 0 0 0 0 0 0 

2 0 33 7 1 0 0 0 
3 0 2 55 0 0 0 1 
4 0 0 1 17 0 0 0 
5 0 0 0 0 112 12 0 
6 0 0 0 0 2 111 0 
7 0 0 0 0 0 1 2858 
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TABLE IV. STSTISTICS ON EACH CLASS 

  Actual Classes  

  1 2 3 4 5 6 7 
TP 22 33 55 17 112 111 2858 
FP 0 8 2 1 12 2 1 
FN 0 2 8 1 2 13 0 
TN 3212 3191 3169 3215 3108 3108 375 

Precision 100% 80% 96% 94% 90% 98% 100% 
Sensitivity 100% 94% 87% 94% 98% 90% 100% 
Specificity 99% 99% 99% 99% 99% 99% 99% 

 

Algorithm 1 Train Decision Tree Classifier Algorithm 
 
Input: Dataset to be trained ThesisData  
Output: Trained Classifier  
1: Data � Excel Dataset 
2: Convert Data to Table  ThesisData with header 

columns ThesisData�PageNumber, ThesisWord, 
SuperviseWord, AckWord, AbstractWord, 
ContentsWord, ConclusionWord, ReferencesWord 
,BibliographyWord, NumParagraphs, NumDigits, 
NumWords, PositionPositive, HasSubtitle, Result  

3: Define Result Type � Categorical  
4: Define PredictorNames � PageNumber, 

ThesisWord, SuperviseWord, AckWord, 
AbstractWord, ContentsWord, ConclusionWord, 
ReferencesWord, BibliographyWord, 
NumParagraphs, NumDigits, NumWords, 
PositionPositive, HasSubtitle 

5: Convert PredictorNames into a Table 
6: Convert PredictorNames to double 
7: ResponseName � ThesisData Result column 
8: ClassNames� from 1 to 7 
9: MaxNumSplits � 20 
10: SplitCriterion � gdi 
11: Surrogate � off 
12: Train Classifier TrainedDTreeMedium � fit 

predictors, response, pridictorNames, 
ResponseName, ClassNames, SplitCriterion, 
MaxNumSplits, Surrogate 

13: partitionedModel� Partition model for cross-
validation into 5 folds  

14: Compute Validation Accuracy 
 

Algorithm 2 Medium Decision Tree for Classification  
0:  if PositionPositive<0.5 then node 2 elseif 

PositionPositive>=0.5 then node 3 else 7 
1:  if PageNumber<1.5 then node 4 elseif 

PageNumber>=1.5 then node 5 else 7 
2:  if PageNumber<36.5 then node 6 elseif 

PageNumber>=36.5 then node 7 else 6 
3:  class = 1 
4:  if AckWord<0.5 then node 8 elseif AckWord>=0.5 

then node 9 else 7 
5:  if NumDigits<24 then node 10 elseif NumDigits>=24 

then node 11 else 3 

6:  if NumDigits<32 then node 12 elseif NumDigits>=32 
then node 13 else 6 

7:  if NumDigits<151 then node 14 elseif 
NumDigits>=151 then node 15 else 7 

8:  class = 7 
9:  if PageNumber<1.5 then node 16 elseif 

PageNumber>=1.5 then node 17 else 2 
10:  class = 3 
11:  if NumWords<3 then node 18 elseif NumWords>=3 

then node 19 else 5 
12:  if ConclusionWord<0.5 then node 20 elseif 

ConclusionWord>=0.5 then node 21 else 6 
13:  if ConclusionWord<0.5 then node 22 elseif 

ConclusionWord>=0.5 then node 23 else 7 
14:  if NumParagraphs<25.5 then node 24 elseif 

NumParagraphs>=25.5 then node 25 else 7 
15:  class = 1 
16:  if AbstractWord<0.5 then node 26 elseif 

AbstractWord>=0.5 then node 27 else 2 
17:  if PositionPositive<10 then node 28 elseif 

PositionPositive>=10 then node 29 else 6 
18:  if PositionPositive<7.5 then node 30 elseif 

PositionPositive>=7.5 then node 31 else 5 
19:  if NumParagraphs<4 then node 32 elseif 

NumParagraphs>=4 then node 33 else 6 
20:  class = 5 
21:  class = 7 
22:  class = 7 
23:  class = 6 
24:  class = 7 
25:  if PositionPositive<1.5 then node 34 elseif 

PositionPositive>=1.5 then node 35 else 4 
26:  class = 2 
27:  class = 6 
28:  class = 7 
29:  class = 5 
30:  if PageNumber<119.5 then node 36 elseif 

PageNumber>=119.5 then node 37 else 6 
31:  class = 5 
32:  class = 6 
33:  class = 4 
34:  class = 2 
35:  class = 6 
36: class = 5 

 

V. CONCLUSION AND FUTURE WORK 
This paper contributes in structuring thesis documents to 

help researchers access knowledge easily. This was done by 
a machine learning technique which is a decision tree; 
different tools were used to train the decision tree also 
different types of decision trees were trained and all were 
compared to each other. The most accurate, efficient and 
low in variance model was picked which recorded in the 
validation and testing phase an accuracy of 99.2%.  

For future work visual features could be added such as 
font size, tab spacing, alignment or some other statistical 
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features that could help with improving results and overall 
accuracy, also a spelling check would help in this matter to 
reduce the errors of extractions that were ignored because of 
misspelled words.  Furthermore, extending accepted formats 
is essential such as PDFs. 
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