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Abstract—The effect of uncertainties in the stabilization
of the velocity control of a DC motor is compensated by
proposing an adaptive control based on Particle Swarm
Optimization (ACPSO). The ACPSO is based on an on-line
dynamic optimization problem with dynamic constraints. The
empirical analysis based on modifying the inertia weight of the
ACPSO indicates that it can effectively regulate the motor’s
velocity and hence the ACPSO can be another alternative
to control the DC motor under parametric uncertainties.
Simulation results verify the proposed approach.
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I. INTRODUCTION

The control system is a crucial factor to develop a task in
a mechatronic system. Frequently, cascade control systems
are used for mechatronic systems due to this achieve fast
disturbance rejection. One of the basic cascade control sys-
tem has two control loops. The outer control loop determines
the set point for the inner control loop. When the actuators
of the mechatronic system are Direct Current (DC) motors,
then the inner control loop involves the control of the DC
motors. In [1] a cascade control system is implemented in
a mobile robot. Bounded control is proposed for the outer
control loop and the proportional integral control is chosen,
as the inner control loop, for the velocity control of the DC
motors of the mobile robot wheels. Hence, the control of the
DC motor for the control loop of cascade control systems is
an important element to be considered for the performance
of mechatronic systems. The parametric uncertainties such as
changes in the parameters of the DC motor, variations in the
load, etc. affect the performance of the control system. In the
last decades, this fact has motivated to search different control
strategies to improve the behavior of the control system of
a DC motor under parametric uncertainties. The adaptation
of the control system has been performed by using different
approaches: The control parameter adaptation is gotten from
the Lyapunov analysis [2], [3], the adaptation is obtained

by using neural networks for the online tune of the control
parameters [4], the gradient descent method is applied to
update the PID control gains [5]. In this paper the online
adaptation of the control system parameters of a DC motor is
done by establishing a dynamic optimization problem (DOP).

In the last years some efforts in the search of the so-
lution in nonlinear optimization problems have been done.
Because of the importance for finding the ”best” solution
in a nonlinear optimization problem, several optimization
techniques have been developed. The optimization techniques
can be classified as gradient based algorithms and meta-
heuristic based algorithms. Gradient based algorithms have
the main drawbacks that have a fast convergence and can
easily be trapped in local minima. In addition, only continuos
optimization problem can be solved with these algorithms.
On the other hand meta-heuristic algorithms present better
performance with discontinuos and nonlinear spaces. Genetic
algorithms (GA) are meta-heuristic ones with an acceptable
convergence rate. However, the high computational complex-
ity makes the real time implementation (laboratory testing)
a difficult task. On the other hand, there are other proposals
based on the meta-heuristic, they are grouped as ”Swarm
Intelligence Algorithms” where the main characteristic is
the collective behavior of decentralized and self-organized
systems. Particle swarm optimization (PSO) is a population
based optimization technique developed by Dr. Eberhart and
Dr. Kennedy in 1995 [6], inspired by social behavior of
bird flocking or fish schooling. PSO has advantages over
other evolutionary techniques, such as rapid convergence
and few parameters which are tunning. PSO computational
complexity is related to the interaction between the particles,
the number of particles and the number of iterations required
to find the solution.

In the last 20 years, there have been developed several
versions of PSO. Among the difference of the proposed PSO
are the changes in the constriction coefficients, changes in the
interaction of particles using different population topologies
(static or dynamic) [7], minimization of the population size
and the number of iterations to find solution [8], and hybrid
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schemes [9], with the main goal of reducing the compu-
tational complexity and increasing the convergence rate of
PSO.

From 2007, it has been reported more applications of PSO
in the control loop of mechatronic system. For example in
[10], PSO is used to calculate the coefficients of impedance
that maintain dynamic stability in the mobile manipulator
with flexible base, when this have contact with objects in
unknown conditions. Each particle in the workspace is as-
sumed to have these impedance coefficients and cost function
is the integration of the difference between contact force and
desired force. In [11] a modified PSO is proposed to solve
the problem fuzzy predictive control considering the control
of the Continuous Stirred Tank Reactor (CSTR). In [9] for
the control of Ultrasonic Motors (USMs), an intelligent PID
control method using Neuronal Network (NN) combined with
type PSO is developed.

In this paper the analysis if the inertia weight in the
online adaptation of the control system parameters of a DC
motor based on PSO algorithm is done establishing dynamic
optimization problem. Empirical analysis with simulation
results validate the proposed approach under the effects of
uncertainties in the parameters of the DC motor.

II. OPTIMIZATION PROBLEM

The dynamic model of the DC motor [12]
can be described in the state variable vector
x̃ = [x̃1, x̃2]

T = [q̇m, kmia−boqm−τL
Jo

]T with the
input control vector ũ = Vin as it is observed in
(1)-(2), where p =

[
p1 p2 p3 p4 p5 p6

]T
=

[
b0/J0 km/J0 ke/La Ra/La 1/La τL/J0

]T ∈ R6,
La is the armature inductance, km is the torque constant,
ke is the back electromotive force (back emf), Ra is the
armature resistance, bo is the viscous friction coefficient of
the motor shaft bearing, Jo is the inertia torque of the motor
rotor, Vin is the armature voltage, ia is the armature current,
τL is the load torque and qm, q̇m, q̈m are the position,
velocity and acceleration of the rotor, respectively.

·
x̃1 = x̃2 (1)
·
x̃2 = p2p5ũ+ p1p6 + x̃1(p

2
1 − p2p3)− ia(p2p4 + p1p2)

(2)

It is important to note that the armature current is obtained
by solving the differential equation i̇a = p5ũ− p4ia− p3q̇m.

An inverse dynamic control ũ(t) is proposed to regulate
the velocity of the DC motor and it is given in (3), where e =
wr − x̃1(t) is the error between the desired angular velocity
wr, and the current angular velocity x̃1(t), ė = ẇr− ˙̃x1(t) is
the error between the desired angular acceleration ẇr and the
current angular acceleration ˙̃x1(t), ẅr is the rate of change
of the desired angular acceleration, kp, kd are the control
gains and p̄ ∈ R6 is the estimated vector of p.

ũ =
ẅr + kpe+ kdė+ p̄1p̄2x3 − p̄21x2 + p̄1p̄6

p̄2p̄5
+

p̄3x2

p̄5
+

p̄4x3

p̄5
(3)

Defining the time space Ω as Ω =
{λ ∈ R | λ ∈ [t1, tn] ⊆ t, t1 = tn −Δw,Δw > Δt}
and the estimated dynamics of the DC motor as
˙̃̄x = f̄ (¯̃x(t), ũ(t), p̄) then, the dynamic optimization
problem consists on finding the optimum control design
variable vector p̄∗ = [p̄1

∗, p̄2∗, p̄3∗, p̄4∗, p̄5∗, p̄6∗]T that
minimizes J (4) which is the error between the DC motor
model and an estimated one such that p̄∗ compensate the
nonlinear effects on the parameter vector p of the DC motor,
subject to the DC motor dynamics (5), the estimated DC
motor dynamics (6), bounds in the control signal (7) and
bounds in the design variable vector (8), where ũMax, ũMin

are the upper and lower control bounds and p̄Max, p̄Min

are the upper and lower design variable bounds. Hence, the
general formulation of the dynamic optimization problem is
stated as in (4)-(8).

Min
p̄∗

J =

∫
t∈Ω

(x̃1(t)− ¯̃x1(t))
2dt+

∫
t∈Ω

(x̃2(t)− ¯̃x2(t))
2dt

+

∫
t∈Ω

(ia(t)− īa(t))
2dt (4)

Subject to:

dx̃

dt
= f(x̃(t), ũ(t), p), x(0) = [0, 0, 0]T (5)

¯̃x

dt
= f(¯̃x(t), ũ(t), p̄)

∣
∣
∣
∣
t∈Ω

, ¯̃x(t1) = x̃(t1) (6)

ũMin ≤ ũ(tn) ≤ ũMax (7)

p̄Min ≤ p̄ ≤ p̄Max (8)

In Fig. 1 the closed-loop system of the adaptive control
based on PSO (ACPSO) is shown.

III. PARTICLE SWARM OPTIMIZATION ALGORITHM

The algorithm PSO is inspired by the social behavior of
flocks and fish schools foraging algorithm, developed in 1995
by psychologist - sociologist Jammes Kennedy and Russell
Eberhart electronic engineer.

PSO consists in the initialization of the swarm of particles
and the iterative process to solve the optimization problem.

A. Initialization

The algorithm PSO creates a swarm of NP particles
p0i,G=0 = [p01,i,0, p02,i,0, ..., p0j,i,0, ..., p0D,i,0, ...]

T ∈ R
D,

∀ i = 1, 2, ...NP by the generation G = 0. The particles are
randomly initialized p0j,i,G=0 = pmin

j +randj(0, 1)(p
max
j −

pmin
j ), where randj is a random number with uniform

distribution in the interval [0, 1]. Desing variables D are
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Figure 1: Schematic diagram of the adaptive control of the
DC motor based on PSO.

includes in each particle, these variables are bounded by
[pmin

j , pmax
j ] ∀ j = 1, 2, ..., D.

An auxiliary swarm �p1i,G=0 is created and initialized like
�p0i,G=0.

The speed of the particles vi,G=0 =
[v1,i,0, v2,i,0, ..., vj,i,0, ..., vD,i,0, ...]

T ∈ R
D , ∀

i = 1, 2, ...NP is bounded by [vmin
j , vmax

j ]
∀ j = 1, 2, ..., D and randomly initialized
vj,i,G=0 = vmin

j + randj(0, 1)(v
max
j − vmin

j ).
The best solution found by each particle pBesti,G=0 =

[pBest1,i,0, pBest2,i,0, ..., pBestj,i,0, ..., pBestD,i,0, ...]
T ∈

R
D is initialized pBestj,i,G=0 = 1000 ∀ j = 1, 2, ...D and
∀ i = 1, 2, ...NP .

The best solution found in
the neighborhood gBesti,G=0 =
[gBest1,i,0, gBest2,i,0, ..., gBestj,i,0, ..., gBestD,i,0, ...]

T ∈
R

D is inicialized gBestj,i,G=0 = 0 ∀ j = 1, 2, ...D and ∀
i = 1, 2, ...NP .

The constriction coefficients χ = 0.2, U1i,G=0 =
[U11,i,0, U12,i,0, ..., U1j,i,0, ..., U1D,i,0, ...]

T and
U2i,G=0 = [U21,i,0, U22,i,0, ..., U2j,i,0, ..., U2D,i,0, ...]

T ∈
R

D are initialized U1j,i,G=0 = 0 and U2j,i,G=0 = 0 ∀
j = 1, 2, ...D and ∀ i = 1, 2, ...NP .

B. Iterative process

For G = 1, 2, ..., GenMax is evaluated J( �p0i,G) and
J( �pBesti,G), ∀ i = 1, 2, ...NP .

If J( �p0i,G) is better than J( �pBesti,G) according to the
constraint handling of Deb [13], �pBesti,G take the value
of �p0i,G. Then �U1i,G and �U2i,G are randomly generated as
U1j,i,G = 0.3+ randj(0, 1)(0.9− 0.3) and U2j,i,G = 0.3+
randj(0, 1)(0.9−0.3), ∀ j = 1, 2, ...D and ∀ i = 1, 2, ...NP .

1 BEGIN
2 G = 0

3 Creating a swarm of particles �p0i,G=0 ∀ i = 1, 2, ...NP

4 Creating a auxiliar swarm of particles �p1i,G=0, ∀ i = 1, 2, ...NP

5 Initialize �vi,G=0 , �pBesti,G=0, �gBesti,G=0 , �U1i,G=0

and �U2i,G=0, ∀ i = 1, 2, ...NP , and χ

6 Evaluate J( �gBesti,G=0), ∀ i = 1, 2, ...NP
7 For G = 0 to MaxGen
8 For i = 1 to NP

9 Evaluate J( �p0i,G) and J( �pBesti,G)

10 If J( �p0i,G) is better than J( �pBesti,G) (according to Deb)

11 �pBesti,G = �p0i,G
12 EndIf
13 For j = 1 to D
14 U1j,i,G = 0.3 + randj(0, 1)(0.9− 0.3)
15 U2j,i,G = 0.3 + randj(0, 1)(0.9− 0.3)
16 vi,j,G = χ ∗ vi,j,G + U1j,i,G ∗ (pBesti,j,G − p0i,j,G)

+U2j,i,G ∗ (gBesti,j − p0i,j,G)

17 vi,j,G is limit between vmin
j and vmax

j

18 p1i,j,G = p0i,j,G + vi,j,G
19 p1i,j,G is limit between pmin

j and pmax
j

20 EndFor
21 Evaluate J( �p1i,G)

22 If J( �p1i,G) is better than J( �p0i,G) (according to Deb)
23 �p0i,G = �p1i,G
24 EndIf
25 EndFor
26 Update �gBesti,G,∀ i = 1, 2, ...NP
27 G = G + 1
28 EndFor
29 END

Figure 2: Pseudocode algorithm PSO.

With χ, �pBesti,G and �gBestiG is update �vi,G and bounded
by [vmin

j , vmax
j ], ∀ i = 1, 2, ...NP and ∀ j = 1, 2, ...D.

Also �p1i,G is update by �vi,G and �p0i,G, and limited by
[pmin

j , pmax
j ], ∀ i = 1, 2, ...NP and ∀ j = 1, 2, ...D.

J( �p1i,G) is evaluated . If J( �p1i,G) is better than J( �p0i,G)

according to the constraint handling of Deb, �p0i,G take the
value of �p1.

Finally is update the best solution �gBesti,G, found in the
neighborhood of �p0i,G, ∀ i = 1, 2, ...NP in a star topology.

C. Selection mechanism

The selection mechanism proposed by Deb can be set as
follows: The constraint handling of Deb [13] are the selection
mechanism proposes that the fitness J(�a) is better than the
fitness J(�b) if any of the following conditions is met:

• �a and �b are feasible and �a dominates �b.
• �a is feasible and �b is not feasible.
• �a and �a are not feasible, but �a have fewer restrictions

violated.
The pseudocode of PSO is show in figure.

IV. RESULTS AND DISCUSSION

In this work, the PSO algorithm is programmed in Matlab
on a Windows 7 platform. Computational experiments were
performed on a PC with a 2.83 GHz Intel Core Quad 2
processor and 4 GB of RAM. The parameters of the PSO
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algorithm are proposed as follows: the swarm size consists of
50 particles i.e., NP = 50, the acceleration coefficients given
by φ1 and φ2 are set to be in the interval (0.3, 0.9) and the
velocity v is chosen accordingly to the bounds of the design
variable vector p̄, i.e., vmax = pmax/2 and vmin = pmin/2.
The stop criterion is when the number of generations is
fulfilled i.e., GMax = 15 and the back time interval is
selected as Δw = 50ms.

The parameters of the simulation results provided by the
Euler method are set as: final time tf = 1.5, integration step
Δt = 5ms with an initial condition x(0) = [0, 0, 0]T . The
uncertainties in the DC motor are chosen such that its pa-
rameters varies sinusoidally at 10% from their nominal values
and the load torque of τL = 0.05Nm is applied at the interval
[0.7, 1.1]s. The nominal values of the DC parameters are
shown in Table I. The controller gains kp =34524, kd = 368
are proposed with the velocity reference wr = 52.35rad/s.

Showing the effects of the inertia weight in the adap-
tive control of DC motor based on PSO algorithm, four
different experiments are proposed. Those experiments con-
sist on using different inertia weight as follows: w =
[0.2, 0.4, 0.6, 0.8]. Ten independent runs are carried out for
each experiment.

The results of independent runs for each experiment are
presented in Table II. The last column indicates the con-
vergence time of the PSO algorithm in each integration
step of the closed-loop system. All experiments have a
convergence time around 0.51s. Future research involves the
laboratory testing of the ACPSO and hence the reduction
of the convergence time around the sampling time (at least
5ms). The term mean(|ė|) and std(|ė|) are the mean and
the standard deviation of the absolute velocity error |ė| in the
time interval from the setting time to the final time. Based on
the results in Table II, it is observed that the lowest velocity
error’s average (mean(|ė)|) is given by using the inertia
weight value of 0.2 in experiment 1 and the lowest standard
deviation’s average (std(|ė)|) is given with the inertia weight
value of 0.4 in experiment 2. Those are marked in boldface
in Table II. The highest value of the velocity error average
and the standard deviation average is found by assigning the
value of 0.8 in the inertia weight for the experiment 4. This
indicates that the inertia weight of the PSO algorithm affects
the behavior of the control performance in the stabilization

Nominal Parameters Value Unit
J0 0.000345 Nms2

km 0.394600 Nm
b0 0.000585 Nms2

Ra 9.665000 Ω
ke 0.413300 V/rads
La 0.102440 H
τL 0 Nm

Table I: Nominal parameters of the DC Motor.

Inertia Run mean(|ė|) std(|ė|) Convergence time [h]
0.2 1 0.3373 0.4237 0.5119
0.2 2 0.3747 0.6204 0.5224
0.2 3 0.3452 0.5201 0.5121
0.2 4 0.3212 0.4362 0.5082
0.2 5 0.3108 0.4882 0.5129
0.2 6 0.3587 0.5538 0.5199
0.2 7 0.3773 0.5117 0.5185
0.2 8 0.3389 0.5255 0.5158
0.2 9 0.3629 0.5079 0.5110
0.2 10 0.3247 0.4197 0.5110

Average 0.3451 0.5007 0.5143
0.4 1 0.3464 0.4648 0.5106
0.4 2 0.3039 0.3409 0.5189
0.4 3 0.3706 0.6108 0.5186
0.4 4 0.3432 0.4485 0.5188
0.4 5 0.4054 0.8620 0.5100
0.4 6 0.3440 0.3808 0.5080
0.4 7 0.3594 0.5512 0.5204
0.4 8 0.3768 0.4618 0.5135
0.4 9 0.3481 0.4013 0.5189
0.4 10 0.3279 0.3571 0.5208

Average 0.3525 0.4879 0.5158
0.6 1 0.3494 0.3933 0.5133
0.6 2 0.3766 0.4633 0.5078
0.6 3 0.418 0.5134 0.5097
0.6 4 0.3491 0.4619 0.5168
0.6 5 0.3517 0.4037 0.5219
0.6 6 0.4458 1.0422 0.5094
0.6 7 0.3879 0.4952 0.5172
0.6 8 0.3879 0.4952 0.5179
0.6 9 0.3954 0.4907 0.5127
0.6 10 0.3455 0.3791 0.5111

Average 0.3807 0.513 0.5137
0.8 1 0.4689 0.6541 0.5111
0.8 2 0.4391 0.5677 0.5183
0.8 3 0.4204 0.4718 0.5133
0.8 4 0.5625 1.6499 0.5190
0.8 5 0.4634 0.5904 0.5120
0.8 6 0.3918 0.4606 0.5181
0.8 7 0.3987 0.4932 0.5122
0.8 8 0.3616 0.3983 0.5105
0.8 9 0.5229 1.5652 0.5180
0.8 10 0.4453 0.5901 0.5212

Average 0.4474 0.7441 0.5153

Table II: Performance of the adaptive control based on PSO
for the DC motor.

of the motor’s velocity.
A better stabilization of the DC motor’s velocity under

the effect of uncertainties is carried out if the velocity error’s
average is decreased. In order to statistically confirm that the
selection of the inertia weight as w = 0.2 in Experiment 1,
presents a better performance than others three experiments,
non-parametric statistical test are included. The pairwise
comparison ”Wilcoxon signed ranks test” is used for this
purpose and in Table III those results are shown. Therefore,
the pairwise statistical comparisons state the following: i)
The Experiment 1 outperforms the Experiment 3 and 4 with
a level of significance α = 0.001. 2) When the comparison of
the Experiment 1 is with the Experiment 2, the Experiment 1
does not present a significant improvement over Experiment
2. However, the probability of presenting a better stabiliza-
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Comparison R+ R− p− value
Experiment 1 versus Experiment 2 34 21 0.278
Experiment 1 versus Experiment 3 55 0 0.001
Experiment 1 versus Experiment 4 55 0 0.001

Table III: Comparison results with wilcoxon signed rank test.

tion in the closed-loop system of the DC motor with the
Experiment 1 is 72.2%. In addition, in the Experiment 1 the
evolution of the velocity error through the time presents more
deviation from the reference, it is observed in the standard
deviation.

In Fig. 3 the behavior of the stabilization of the motor’s
velocity at 52.35rad/s with the control signal based on
ACPSO is shown for the run 1 of Experiment 1. It is observed
that the ACPSO compensate the changes on both the dynamic
parameters and the load of the DC motor such that regulation
of the velocity to the desired reference is almost not affected.

V. CONCLUSION

In this paper an adaptive control based on Particle Swarm
Optimization is proposed to control the velocity of the DC
motor. The empirical study state that the inertia weight of
the ACPSO is an important factor to be considered in order
to adequately control the DC motor.

Simulation results show the performance of the ACPSO
under parametric uncertainties. The results presented in this
paper indicates that this approach can stabilize the motor’s
velocity in spite of such uncertainties.

Future research involves the laboratory testing of the
proposed ACPSO on an experimental platform. The main
issue is the convergence time of the ACPSO that must be
smaller than the sampling time (at least 5ms).
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