
Model Based Sampling
Fitting an ensemble of models into a single model

Tony Lindgren
Department of Computer and Systems Sciences

Stockholm University
Borgarfjordsgatan 12

164 40, Kista, Sweden
Email: tony@dsv.su.se

Abstract—Large ensembles of classifiers usually outperform
single classifiers. Unfortunately ensembles have two major draw-
backs compared to single classifier; interpretability and classi-
fications times. Using the Combined Multiple Models (CMM)
framework for compressing an ensemble of classifiers into a single
classifier the problems associated with ensembles can be avoided
while retaining almost similar classification power as that of the
original ensemble. One open question when using CMM concerns
how to generate values that constitute the synthetic example. In
this paper we present a novel method for generating synthetic
examples by utilizing the structure of the ensemble. This novel
method is compared with other methods for generating synthetic
examples using the CMM framework. From the comparison it is
concluded that the novel method outperform the other methods.

Keywords—Machine learning algorithms, Supervised learning,
Sampling methods, Approximation algorithms.

I. INTRODUCTION

The usage of ensemble methods in the field of machine
learning has in numerous studies proven to outperform single
models and the reasons for their strengths are well known,
see for example [1], [2]. When comparing single models
with ensemble of models the former has two major attrac-
tive advantages against the latter. The first advantage is the
comprehensibility of the model and the second advantage is
resource efficiency which can be split into two parts (which
go hand in hand) model size and classification speed.

In paper [3] P. Domingos introduces an algorithm called
Combined Multiple Models (CMM) for creating single models
from ensembles of models such that the predictive performance
is not affected to any major extent while making the model
comprehensible as it consists of a single decision tree. The
focus of this work is especially on the comprehensible part
as a motivation of why one should transform an ensemble of
models to a single model.

The main idea of CMM is to generate synthetic examples
which in turn are labeled by the ensemble. These labeled
examples are then used, together with the original training data,
to create a new single model. The function of the ensemble
is in this way transferred from the ensemble via the labeled
examples to the single model.

More recently C. Bucila et. al. in their paper [4], presented
another method based on CMM which address the other major
advantage of single models, i.e. their small memory footprint

and classifying speed by training an Artificial Neural Network
(ANN) with synthetic examples labeled by an ensemble of
models. Their work aimed at making it possible to import and
use the ANN on weak hardware, like PDAs while keeping the
predictive performance and ensuring quick response times for
the classification. In their paper they introduce a novel method
for creating synthetic examples which they call MUNGE which
they compare to Random Uniform Sampling (RUS) and Naive
Bayes Estimation (NBE) [5]. In their experiments MUNGE
outperformed the other two methods.

In this paper we introduce a non-parametric method for
generating synthetic data which utilizes the structural depen-
dencies that the ensemble of models consists of. The rest of
the paper is structured as follows: In the next section we
will present our method for generating synthetic data together
with a quick recapitulation of the MUNGE method and the
Random Uniform Sampling method. We then describe our
experimental setup where we compare the three methods for
generating synthetic examples and present the results from
the experimental evaluation. Finally we end the paper with
a discussion and conclusions and give pointers to future work.

II. METHODS FOR SYNTHETIC EXAMPLE GENERATION

The overall goal for why it is interested to generate
synthetic examples is that we want to use these examples
as mediators when moving from an ensemble of models to
a single model. Hence we want to capture the predictive
performance of the ensemble of models in a single model and
one way of doing this is to generate synthetic examples which
then are labeled by the ensemble of models and later on used
to train a single model together with the original training data.
This follows the CMM methodology as mentioned earlier.

But how does one go about in selecting values for the
synthetic data in such a way that it captures the important
aspects of the ensemble. Clearly the best values would be
real unlabeled examples coming from the same data source
as the labeled training data. Unfortunately it is not always
possible to extract new unlabeled examples that can be used
for training purposes and then a method for synthetic data se-
lection/generation is needed. When generating synthetic values
for the synthetic examples it is important that this is done in
such a way that these values would mimic the true distribution
from which the original labeled examples is drawn from.

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.27

187

2015 International Conference on Computational Science and Computational Intelligence

978-1-4673-9795-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CSCI.2015.27

186

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

−10 −5 0 5 10

Missmatch between real and syntetic distribution

Variable distribution
Syntetic value distribution

Fig. 1: Showing the mismatch between a variables true distri-
butions and distribution used for generating synthetic examples

Assuming normal distribution this could be done by captur-
ing the mean and the standard deviation for each attribute and
using the values as starting points for generating new values
according to the probability of the normal distribution. This
method has of course the problem that if the distribution differs
from the assumed one we have a problem, e.g. if we have an
continuous attribute and the training examples create two peaks
on the number line we would not capture this very well using
the normal distribution.

See figure 1 for an illustration of this problem. This could
of course be handled by dividing up the number line, using
other distributions, usage of clustering techniques etc.

Another issue to consider when generating synthetic ex-
amples is dependencies between values, for example having
examples containing Sex and Number of pregnancies would
suggest that it would be impossible to generate synthetic
examples with males which have been pregnant more than
zero times. This could be tackled by the use of background
knowledge of the domain that could capture the most obvious
constraints which must hold for a synthetic example.

After getting the grasp with some of the problem we are
facing when trying to generating synthetic examples we will
now present the different approaches that we will compare
for generating synthetic examples, including our novel method
which we call Model Based Sampling.

A. Random Uniform Sampling

Random Uniform Sampling (RUS) can be considered as a
baseline method which we will test the more sophisticated
methods against. The method is simple both to understand
and implement but it has downsides as it will most probably
generate synthetic example values that lies outside the region
of interest. This is the case as if the “true” distribution for
some attribute has one or more regions where the value(s)
are concentrated around RUS will generated values which will
be spread with equal probability over the whole range of the
attributes possible values.

The method works as follows, for one attribute find the
minimum and maximum value. Use these values as boundaries
and randomly select a value that fall in-between the bound-
aries. Do this for all the attributes that constitutes an example
except the class label and for as many times as one needs new
synthetic examples. The process is described more formal in
the Algorithm 1.

The algorithm takes as input training examples and the
number of synthetic examples to generate (𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒). It
then calls the function GetMinMax which takes the training
examples as arguments. This function loops through each at-
tribute and each example in the training examples and collects
the minimum and maximum values for each attribute and
returns a list containing the maximum and minimum values
for each attribute. The function GenExs is then called with
the list of minimum and maximum values for each attribute
together with the sample size, which denotes the number of
synthetic examples to generate. In GenExs the maximum and
minimum attribute values are used as boundaries for a random
number generator.

Algorithm 1 Random Uniform Sampling

Inputs: 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐸𝑥, 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒
Outputs: 𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝐴𝑡𝑡𝑉 𝑎𝑙𝑠← GETMINMAX(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐸𝑥)
𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥← GENEXS(𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒,𝐴𝑡𝑡𝑉 𝑎𝑙𝑠)
return 𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥

function GENEX(𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒,𝐴𝑡𝑡𝑉 𝑎𝑙𝑠)
𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥𝑠← ∅
while 0 < 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 do

𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥← ∅
for each attribute 𝑎𝑚𝑖𝑛,𝑚𝑎𝑥 ∈ 𝐴𝑡𝑡𝑉 𝑎𝑙𝑠 do

𝑉 𝑎𝑙𝑎 ← GETRNDVAL(𝑎𝑚𝑖𝑛,𝑚𝑎𝑥)
𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥← 𝑉 𝑎𝑙𝑎

end for
𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥𝑠← 𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥 ∪ 𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥𝑠
𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒← 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒− 1

end while
end function

B. MUNGE

For a more thorough examination of the MUNGE method
see [4]. MUNGE starts from the original training set and
for each example finds its closest neighbor, using Euclidian
distance for continuous attributes. All attributes are scaled to
the interval [0, 1]. The algorithm takes two parameters, one
probability parameter Prob and a local variance parameters 𝑆.
New examples are generated by interchange of values between
an example 𝑒 and its closest neighbor 𝑒′, each attribute 𝑒𝑎 are
interchanged with the probability Prob.

The interchange itself works as follows: a new value 𝑒𝑎
is generated from the normal distribution, with the standard
deviation 𝑠𝑑 = ∣𝑒𝑎 − 𝑒′𝑎∣/𝑠 and 𝑒′𝑎 as mean. The value for 𝑒′𝑎
is generated in similar fashion but with 𝑒𝑎 as it’s mean. The

188187

algorithm is described more formally in Algorithm 21 MUNGE
takes as input the probability 𝑃𝑟𝑜𝑏 and the local variance 𝑆 as
mentioned before, training examples and 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒, which
denotes the number of synthetic examples to generate.

Algorithm 2 MUNGE

Inputs: 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐸𝑥, 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒, 𝑃𝑟𝑜𝑏, 𝑆
Outputs: 𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠

D ← ∅
while 0 < 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒/2 do

for each example 𝑒 ∈ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐸𝑥 do
𝑒′ ← the closest example of 𝑒 from 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐸𝑥
for each attribute 𝑎 ∈ 𝑒 do

with probability 𝑃𝑟𝑜𝑏: 𝑒𝑎 ← 𝑛𝑜𝑟𝑚(𝑒′𝑎, 𝑠𝑑) and
𝑒′𝑎 ← 𝑛𝑜𝑟𝑚(𝑒𝑎, 𝑠𝑑), where 𝑠𝑑← ∣𝑒𝑎 − 𝑒′𝑎∣/𝑠,
and, 𝑛𝑜𝑟𝑚(𝑎, 𝑏) is the random value taken from
the normal distribution with mean 𝑎
and standard deviation 𝑏.

end for
end for
𝐷 ← 𝐷 ∪ new 𝑒 ∪ new 𝑒′

end while
return 𝐷

C. Model Based Sampling

In contrast to the RUS and MUNGE Model based Sam-
pling, utilizes the ensemble of models not just for setting the
class label of the generated synthetic examples but also for
generating the examples values. Having an ensemble consisting
of decision trees it ranks all leaf nodes in the trees according
to how many examples from the training set it covers. The
total number of example covered 𝑡𝑜𝑡𝑁𝑢𝑚 in the leaf nodes is
then used as a basis for a probability mapping. By randomly
selecting a number within 0 to 𝑡𝑜𝑡𝑁𝑢𝑚 on can then select a
leaf node with a probability proportional to the chance that a
random example (drawn from the same source as the training
examples) would fall into this leaf. Using the conditions for the
leaf, i.e. the path from the leaf to the root node, we establish
the boundaries that must be preserved by the synthetic example
values. Using attributes that are present in the conditions of
the leaf together with the training examples that fall into
the leaf, we can calculate for each attribute its mean and
standard deviation. We the use these values to sample from the
normal distribution with the mean and standard deviation as
parameters and also checking that the generated values do not
violate the conditions of the leaf node. The generated attribute
values are then removed from the list of attributes that needs
values for a particular synthetic example.

We then start the algorithm over again, but firstly we filter
out all leaf nodes that have conditions that are contradictory to
the attribute values we just assigned to our synthetic example.
Hence only keep leaf nodes that are compliant with the values
of the synthetic example. Then the previous step is repeated

1We only present the MUNGE’s method for usage with continuous values
as this is what we use in this paper. We have also changed the algorithm
slightly, it previously generated multiples of the original training data, and we
instead use a parameter the set the number of examples to generate.

until all attributes has a value, and the example is complete
and ready to be label by the ensemble.

There are is a few special cases that must be pointed out;
it can for example be the case that some attributes are not
used by any leaf. This special case are handled and filtered
out before we run the basic algorithm, the attributes (if there
are any) that do not have any leaf nodes are assigning values
based on all training data’s mean and standard deviation for
these attributes. It can also be the case that after we filter out
contradictory leaf nodes we are left with an empty list, we the
handle this by generating values for these attributes based on
all training instances mean and standard deviation for these
attributes. The algorithm is shown in Algorithm 3.

Algorithm 3 Model Based Sampling

Inputs: 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐸𝑥, 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒, 𝑇 𝑟𝑒𝑒𝑠
Outputs: 𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥𝑠

while 0 < 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 do
𝑒𝑥 ∈ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐸𝑥
𝐴𝑡𝑡𝑠← all attributes in 𝑒𝑥
while 𝐴𝑡𝑡𝑠! = ∅ do

𝑛𝑜𝑡𝑈𝑠𝑒𝑑𝐴𝑡𝑡← NOTUSEDATTS(𝑇𝑟𝑒𝑒𝑠)
if 𝑛𝑜𝑡𝑈𝑠𝑒𝑑𝐴𝑡𝑡𝑠! = ∅ then

calculate mean and std deviation for
attributes ∈ 𝑛𝑜𝑡𝑈𝑠𝑒𝑑𝐴𝑡𝑡𝑠, 𝐴𝑡𝑡𝑠𝑚, 𝐴𝑡𝑡𝑠𝑠𝑡𝑑
𝐴𝑡𝑡𝑉 𝑎𝑙𝑠← NORM(𝐴𝑡𝑡𝑠𝑚, 𝐴𝑡𝑡𝑠𝑠𝑡𝑑)
𝐴𝑡𝑡𝑠← 𝐴𝑡𝑡𝑠 ∩ 𝑛𝑜𝑡𝑈𝑠𝑒𝑑𝐴𝑡𝑡𝑠

end if
𝐿𝑒𝑎𝑓𝑁 ← OKAYLEAFNODES(𝑇𝑟𝑒𝑒𝑠,𝐴𝑡𝑡𝑠)
if 𝐿𝑒𝑎𝑓𝑁 == ∅ then

calculate mean and std deviation for
remaining attributes, 𝐴𝑡𝑡𝑠𝑚, 𝐴𝑡𝑡𝑠𝑠𝑡𝑑
𝐴𝑡𝑡𝑉 𝑎𝑙𝑠← NORM(𝐴𝑡𝑡𝑠𝑚, 𝐴𝑡𝑡𝑠𝑠𝑡𝑑)
𝐴𝑡𝑡𝑠← ∅
𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒← 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒− 1

else
𝑆𝑜𝑟𝑡𝐿𝑒𝑎𝑓𝑁, 𝑇𝑜𝑡𝑁𝑢𝑚← SLEAFS(𝐿𝑒𝑎𝑓𝑁)
𝑟𝑛𝑑𝑉 𝑎𝑙← RND(0, 𝑇 𝑜𝑡𝑁𝑢𝑚)
𝑙𝑒𝑎𝑓𝑁 ← GETLEAFN(𝑟𝑛𝑑𝑉 𝑎𝑙, 𝑆𝑜𝑟𝑡𝐿𝑒𝑎𝑓𝑁)
𝐴𝑡𝑡𝑉 𝑎𝑙𝑠← NCOND(𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑𝑑𝑒𝑣, 𝑙𝑒𝑎𝑓𝑁)
𝐴𝑡𝑡𝑠← 𝐴𝑡𝑡𝑠 ∩𝐴𝑡𝑡𝑉 𝑎𝑙𝑠

end if
end while
𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒← 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒− 1
𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥← 𝐴𝑡𝑡𝑉 𝑎𝑙𝑠
𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥𝑠← 𝑆𝑦𝑛𝑡𝑒𝑖𝑐𝐸𝑥𝑠 ∪ 𝑆𝑦𝑛𝑡𝑒𝑡𝑖𝑐𝐸𝑥

end while

Model Based Sampling takes as input the number of
synthetic examples to generate (𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒) and the forest of
decision trees. The outer while loop checks with 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒
to see if more examples are to be generated, if so attributes
𝐴𝑡𝑡𝑠 are initialized. The inner while loop check if there are
still attributes that needs values assigned to them for the current
synthetic example, if so the function NotUsedAtts checks the
conditions of the forest and returns the attributes not used in
conditions. If such attributes exist their values are generated
using all training data to compute the attribute(s) mean and
standard deviation as input to the normal distribution, other-

189188

wise the function OkayLeafNodes filter out leaf nodes of the
forest which are compatible with the current attribute values
of the example (if any are present).

If no leaf nodes are compatible with current assigned
attribute values for the remaining attributes are generated
using the normal distribution with all training examples used
for calculating each attribute(s) mean and standard deviation.
𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 is then reduce by 1 and 𝐴𝑡𝑡𝑠 is set to the empty
set. Otherwise the leaf nodes are sorted so that they “occupy”
a space proportional to the number of (training) examples
that they cover. This is done by the function SLeafs which
also return the accumulated number of examples in the leafs
(note that this figure probably is much higher than that of the
number of training instances, as some examples are cover by
multiple leafs). A random number generator, Rnd generate a
number between 0 and TotNum. The random number 𝑟𝑛𝑑𝑉 𝑎𝑙
is then used by the function GetLeafN to extract the leaf
node pointed out by the random value. The function NCond
generate values for the attributes that the leaf node has as
conditions (on its path from the leaf to the root node) for these
attributes the function calculates the mean, standard deviation
for the examples in the leaf node and uses them for generating
new values it also checks that the conditions of the leaf node
is not violated. The generated attributes are then removed
from 𝐴𝑡𝑡𝑉 𝑎𝑙𝑠 and finally if 𝐴𝑡𝑡𝑉 𝑎𝑙𝑠 is empty 𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒
is reduced by one and the attribute values are added to the
synthetic example which in turn is added to the set of synthetic
examples.

III. EXPERIMENTAL EVALUATION

Evaluation of the methods is done on 14 data sets all
taken from the UCI repository [6]. All data sets contain only
attributes with numerical data. In the case of MUNGES two
parameters, the probability and local variance parameter, there
were no clues of what would be sensible / good value to use.
In the paper [4] they did not present which values they used
in their experiment. This is not ideal and we had to come up
with sensible values for these parameters.

A upper bound of 0.5 for the probability parameters is
easily motivated as if it is exceeded more than half of the
values would come from another example, this value was in
our case set to 0.25, e.g. if an example contains 4 attributes
and one class label this would on average change 1 attribute of
the synthetic examples. The local variance is harder to reason
about to find a sensible value as it in my opinion needs to
be set dynamically for each attribute of a data set, but that is
not correct according to the MUNGE algorithm where it is an
input to the algorithm and constant over all attributes. How
to choose a good value for this parameter is a mystery so we
resorted to select a value ad-hoc. The value was set to 4 with
no further motivation.

A. Experimental setup

The three methods where evaluated in a 10-fold cross
validation scheme. Results are also shown for a single tree
and the original ensembles result. The ensemble size where
set to 100, i.e. a forest consisting of 100 decision trees. The
ensemble strategy was that of bagging [7] thus creating a new
training set for each of the 100 trees by sampling examples
with replacement.

Two data sets contained missing values in the case of breast
cancer Wisconsin 16 missing values where replaced by the
value 1, in the case of Cleveland heart disease all missing
values were replace by 0.0. Different synthetic sample sizes
where used for all three methods, the sizes were: 100, 250,
500, 750, 1000, 2500, 5000, 7500 and 10000. So the methods
generated this amount of synthetic data which then was labeled
by the forest and used together with the original training data
to build a single tree.

From the experiments the average accuracy and average
tree size over the 10 folds are measured. The datasets ranges
from size of 150 to 7494 instances, the number of attributes
ranges from 3 to 34 attributes excluding class label. The algo-
rithms where implemented with Sicstus Prolog, and are avail-
able to downloaded from http://dsv.su.se/∼tony/programs.html
together with the data sets.

B. Experimental results

Given any dataset we expect that the accuracy of single
tree would be lower than that of the ensemble of 100 trees.
This is also true in the general case. It is also expected that
the single tree and the ensemble would serve as boundaries
for the sampling methods which accuracies would fall in
between the accuracies of the single tree and the ensemble.
This is also true for the general case but as we will see when
looking at the results sometimes the sampling methods actually
outperform the ensemble, but there is also one instance where
the sampling methods perform worse than expected and fall
below the performance of the single model.

In table I the average accuracies over the ten-folds is shown
for the ensemble and the single tree, together with the average
rule size, i.e. number of paths from leaf node to root. For
sampling methods the average value over all sample sizes is
shown together with the worst-best accuracies, shown within
parenthesis. Their rule sizes in the table are also averaged over
all sample sizes. The best average result for a sampling method
is marked in bold font. Here we see that when comparing the
synthetic sampling methods, MBS wins over the other methods
in 8 out of 14 domains, the same figure for RUS is 4 out of 14
domains and for MUNGE 2 out of 14 domains. This seems to
indicate that MBS outperforms the other methods. If one looks
at the sizes of the trees constructed by the synthetic sampling
methods, there is no clear pattern or difference between the
methods.

Following the significance test procedure of [8]2, we first
apply the Friedman test, the ranking is shown in the table in the
row with Friedman rank 1 in the first column. As expected the
Ensemble method are ranked best then comes MBS and RUS,
surprisingly MUNGE is ranked after Single Tree. The p-value
of the test is: 0.00004321, which indicate that we indeed have
statistical significant differences between the methods. As we
are interested in the differences between the sampling methods
we exclude the ensemble method and the single tree and re-run
the Friedman test.

The result is shown in the row marked Friedman rank 2
the P-value is: 0.03019738 which still denote a significant

2The statistical test are performed with the software that can be found at:
http://sci2s.ugr.es/keel/multipleTest.zip.

190189

TABLE I: Average result table

Data set Ensemble Single tree Random Uniform Samp. Model Based Samp. MUNGE
Breast c. w. 95.3, 1020.3 94.7, 13.9 91.0 (90.7-91.8), 20.7 94.6 (93.7-95.1), 35.7 94.1 (93.3-94.9), 24.5
BUPA liver d. 71.9, 3887.9 62.6, 55.6 59.5 (56.2-62.3), 129.2 66.8 (61.4-70.1), 136.6 62.1 (60.3-64.9), 210.6
Cleveland h. 56.0, 4140.2 51.0, 55.0 52.1 (48.3-54.3), 266.1 54.7 (51.7-56.3), 230.4 50.2 (47.0-53.0), 88.7
Climate model 93.7, 1078.6 93.3, 14.4 94.1 (93.1-94.8), 28.6 93.5 (92.6-94.6), 27.9 93.6 (92.2-94.6), 19.2
Glass id. 94.5, 369.2 93.6, 4.8 94.0 (91.8-95.4), 17.9 94.1 (92.7-95.4), 5.1 92.6 (90.9-93.6), 5.0
Haberman 68.0, 4350.8 65.4, 65.3 68.3 (62.4-70.6), 143.0 70.2 (67.3-73.5), 149.9 68.0 (58.8-72.2), 168.0
Image seg. 89.5, 1219.3 85.2, 13.5 86.3 (84.7-87.6), 55.8 87.4 (85.6-90), 72.2 89.1 (87.6-90.9), 16.8
Ionosphere 74.0, 1028.8 66.3, 14.9 75.8 (70.0-82.3), 73.4 76.5 (73.7-82.3), 122.7 73.3 (70.0-81.1), 83.8
Iris 96.7, 436.4 95.3, 4.8 95.7 (95.3-96.0), 6.0 95.4 (94.6-96.0), 7.4 95.0 (93.3-96.7), 6.1
Thyroid dis. 94.4, 475.7 93.0, 5.6 87.2 (81.9-94), 5.2 92.9 (92.1-93.5), 9.4 93.5 (93.0-94.4), 5.9
Pen digitis 96.1, 9122.0 94.4, 100.6 93.7 (92.6-94.6), 193.2 93.6 (92.7-94.2), 208.1 92.4 (91.0-94.4), 262.6
P. i. diabetes 76.3, 6064.6 69.0, 86.1 71.8 (66.0-73.9), 175.0 74.0 (71.1-77.1), 179.4 70.5 (66.9-73.2), 190.9
Waveform n. 82.9, 15465.8 77.4, 253.3 77.7 (77.3-78.3), 313.0 77.8 (77.2-78.6), 315.3 77.3 (76.8-77.8), 227.0
Wine 96.1, 506.1 93.8, 5.1 93.9 (93.3-94.9), 17.0 93.5 (91.6-94.4), 11.9 93.4 (91.6-95.5), 7.9

Friedman rank 1 1.393 3.857 3.071 2.643 4.036
P value 0.00004321

Friedman rank 2 - - 1.999 1.499 2.5
P value 0.03019738

difference between the methods, although not as strong as
before, according to the probability threshold of 5 percent.
To further investigate the statistical differences between the
synthetic sampling methods we conducted paired tests. In
table II the first column show which pair of sampling methods
are compared in that row, the second row show the unadjusted
P-value, the following rows show the adjusted P-values for
Nemenyi’s, Holm’s, Shaffer’s and Bergmann’s procedure re-
spectively.

From the table it is clear that MBS differs significantly
from MUNGE, while the rest of the methods do not differ
significantly.

TABLE II: Adjusted 𝑝-values

hypothesis unadjusted 𝑝 𝑝𝑁𝑒𝑚𝑒 𝑝𝐻𝑜𝑙𝑚 𝑝𝑆ℎ𝑎𝑓 𝑝𝐵𝑒𝑟𝑔
MBS vs MUNGE 0.00815097 0.0244529 0.0244529 0.02445291 0.02445291
RUS vs MUNGE 0.18587673 0.5576302 0.3717535 0.18587673 0.18587673

RUS vs MBS 0.18587673 0.5576302 0.3717535 0.18587673 0.18587673

In figure 2 four domains and the corresponding experi-
mental results are shown, on the horizontal axis the number
of synthetic examples created are denoted and on the vertical
axis the accuracies for the different methods are plotted. The
accuracy of the single tree and ensemble methods are displayed
as a vertical line in green respectively red, as their accuracy is
not affected by the synthetic sample size. In all subfigures the
RUS accuracy is plotted using a blue line, MBS using a pink
line and MUNGE magenta colored line. Subfigure (a) and (b)
display a typical, and predicted, pattern of the methods where
the accuracies is typically in between the accuracy bound of
the single tree and the ensemble. The trend is also that the
accuracy increases with larger sample sizes, even though this
is not monotonic. The subfigure (a) shows the Cleveland heart
disease examples set and subfigure (b) the bupa (liver disorder
dataset).

In subfigure (c) which regards the Ionosphere data set
the results are quite strange and not what we expected, the
MBS method almost outperforms the ensemble methods on all
sample sizes. Even more impressive is the performance from
RUS methods on sample sizes from 2500 and upwards. Where
it reaches an accuracy of just above 82 percent compared with
the ensemble accuracy of 74 percent. MUNGE perform well

initially but then drops in accuracy but perform as expected, i.e.
between ensemble and single tree. One possible explanation
of why RUS perform so well could be that is samples from
potential values more freely than both MBS and MUNGE,
which could be beneficial in this domain.

Finally in subfigure (d) the roles are switched there all
sampled methods perform worse than expected, i.e. the all fall
below that of the performance of the single tree. Why the
methods fail on this data set is unclear at the moment and this
needs further investigation. Given limited space not all figures
from the experiment could be included in the paper.

IV. DISCUSSION AND CONCLUSIONS

We have introduced a novel method for generating syn-
thetic examples, using the CMM approach these examples
are labeled by an ensemble of classifiers and then used for
constructing a single tree. The method was expected to have
a performance that would lay in between that of the original
ensemble but higher than a single tree constructed from the
original data. This notion was confirmed by the Friedman
ranking and of the methods, except for the MUNGE method
which was ranked last ad hence after single tree method. This
could maybe be explained by wrong parameter choice for the
method, and if this is the case, the local variance is probably
the parameter that needs attention.

The fact that RUS and MBS do not need to have param-
eters set is another major advantage for both these methods
compared MUNGE. MBS do perform better than RUS but the
difference is not statistically significant. Albeit not in focus
in this study the time complexity for MBS much higher than
for RUS and MUNGE, as trees in the ensemble needs to be
traversed repeatedly for each generated synthetic example. But
this is of course a single effort and after it is done the model
can be used repeatedly so the extra complexity could be worth
the effort, in order to achieve better classification performance.

The MBS results also (through the empirical results) sup-
port the notion that is important to keep track of the distri-
butions in the leaf nodes of the ensemble when constructing
synthetic examples, as P. Domingos pointed out in his paper
[3].

191190

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 a
cc

ur
ac

y
(%

C
or

re
ct

ly
 c

la
ss

ifi
ed

)

Sample size (no examples)

Cleveland Heart Disease

Ensemble
Single tree

Random Uniform Sampling
Model Based Sampling

MUNGE

(a) Plotted performance for sample methods on Cleveland h.

 56

 58

 60

 62

 64

 66

 68

 70

 72

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 a
cc

ur
ac

y
(%

C
or

re
ct

ly
 c

la
ss

ifi
ed

)

Sample size (no examples)

Bupa

Ensemble
Single tree

Random Uniform Sampling
Model Based Sampling

MUNGE

(b) Plotted performance for sample methods on Bupa

 66

 68

 70

 72

 74

 76

 78

 80

 82

 84

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 a
cc

ur
ac

y
(%

C
or

re
ct

ly
 c

la
ss

ifi
ed

)

Sample size (no examples)

Ionosphere

Ensemble
Single tree

Random Uniform Sampling
Model Based Sampling

MUNGE

(c) Plotted performance for sample methods on Ionosphere

 91

 92

 93

 94

 95

 96

 97

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 a
cc

ur
ac

y
(%

C
or

re
ct

ly
 c

la
ss

ifi
ed

)

Sample size (no examples)

Pen Digits

Ensemble
Single tree

Random Uniform Sampling
Model Based Sampling

MUNGE

(d) Plotted performance for sample methods on Pen Digits

Fig. 2: Experimental results from four example domains

A. Future work

Hopefully the MBS method can be further improved; one
issue that needs attention is the time complexity of the method.
Ways for addressing this is an open venue for research.

Investigating why MUNGE performed so badly is some-
thing that needs to be done. Can/should the local variance be
set (dynamically) for each data set? A possible solution is to
pre-process each data set and compute the local variance for
each attribute. These values can then be used as input to the
algorithm for each attribute of a particular data set.

V. ACKNOWLEDGMENTS

This work has been funded by Scania CV AB and
the Vinnova program for Strategic Vehicle Research and
Innovation (FFI)-Transport Efficiency.

REFERENCES

[1] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Machine Learning, vol. 40, no. 2, pp. 139–157, 2000.

[2] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[3] P. Domingos, “Knowledge acquisition from examples via multiple mod-
els,” in In Proceedings of the Fourteenth International Conference on
Machine Learning. Morgan Kaufmann, 1997, pp. 98–106.

[4] C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the Twelfth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Philadelphia, PA,
USA, August 20-23, 2006, 2006, pp. 535–541. [Online]. Available:
http://doi.acm.org/10.1145/1150402.1150464

[5] D. Lowd, “Naive bayes models for probability estimation,” in Proceed-
ings of the Twentysecond International Conference on Machine Learning.
ACM Press, 2005, pp. 529–536.

[6] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[7] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24,
no. 2, pp. 123–140, Aug. 1996. [Online]. Available:
http://dx.doi.org/10.1023/A:1018054314350

[8] S. Garca and F. Herrera, “An extension on ”statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons,” Journal
of Machine Learning Research, vol. 9, pp. 2677–2694, 2008.

192191

